Chapter 6: CPU Scheduling

- wv” :;@
W
NN

Operating System Concepts — 9" Edition Silberschatz, Galvin and Gagne ©2013

7 Chapter 6: CPU Scheduling

m Basic Concepts

®m Scheduling Criteria

®m Scheduling Algorithms

® Thread Scheduling

®m Multiple-Processor Scheduling
®m Real-Time CPU Scheduling

Operating System Concepts — 9" Edition 6.2 Silberschatz, Galvin and Gagne ©2013

™,

p—

N Objectives

® To introduce CPU scheduling, which is the basis
for multiprogrammed operating systems

B To describe various CPU-scheduling algorithms

B To discuss evaluation criteria for selecting a CPU-
scheduling algorithm for a particular system

. ’4')‘-.‘_""
Operating System Concepts — 9" Edition 6.3 Silberschatz, Galvin and Gagn“e @20‘13‘
) caand” .
7 Basic Concepts
B Maximum CPU utilization
Obtalned W|th load store
. . add store CPU burst
multiprogramming read from file

m CPU-I/O Burst Cycle — 10 burst

Process execution consists of @ store increment
index CPU burst

cycle of CPU execution and write to file

I/O Wa|t 1/0 burst

® CPU burst followed by 1/0

load store

CPU burst
burst T e
[| CPQ burst distribution is of o
main concern .
£

"

Operating System Concepts — 9" Edition 6.4 Silberschatz, Galvin and Gagne ©2013

<% Histogram of CPU-burst Times

frequency
g &8 8 8 & 8
T

£
o

n
o

i I i !
16 24 32 40
burst duration (milliseconds)

Operating System Concepts — 9" Edition 6.5 Silberschatz, Galvin and Gagne ©2013

™

"“'fsi,:f CPU Scheduler

m Short-term scheduler selects from among the processes in ready
queue, and allocates the CPU to one of them

e Queue may be ordered in various ways

CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state (e.g., an interrupt occurs)
3. Switches from waiting to ready (e.g., at completion of 1/0O)
4. Terminates

Scheduling under 1 and 4 is non-preemptive

All other scheduling is preemptive
e Consider access to shared data

e Consider preemption while in kernel mode => waiting for a
system call to complete

e Consider interrupts occurring during crucial OS activities

Operating System Concepts — 9" Edition 6.6 Silberschatz, Galvin and Gagne ©2013

=

|

(B Dispatcher

m Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

e switching context
e switching to user mode

e jumping to the proper location in the user
program to restart that program

®m Dispatch latency — time it takes for the dispatcher
to stop one process and start another running

/’/-?\'\

L=

Operating System Concepts — 9" Edition 6.7 Silberschatz, Galvin and Gagne ©2013

'\--g.,_;-—f Scheduling Criteria

m CPU utilization — keep the CPU as busy as possible

B Throughput — # of processes that complete their
execution per time unit

® Turnaround time — amount of time to execute a
particular process

® Waiting time — amount of time a process has been
waiting in the ready queue

B Response time — amount of time it takes from when
a request was submitted until the first response is
produced, not output (for time-sharing environment)

/F/-f \'\

Operating System Concepts — 9" Edition 6.8 Silberschatz, Galvin and Gagne ©2013

=

'*«:s."f:-‘f Scheduling Algorithm Optimization Criteria

m Max CPU utilization
Max throughput
Min turnaround time

|
|

® Min waiting time
® Min response time
|

E.g., to guarantee that all users get good service,
we may want to minimize the maximum response

time.
£
AR
“
Operating System Concepts — 9" Edition 6.9 Silberschatz, Galvin and Gagne ©201£§
P _ . .
A g First- Come, First-Served (FCFS) Scheduling
Process Burst Time
P, 24
P, 3
P, 3
B Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:
Pl PZ PS
B Waiting time for P, =0; P, =24; P,=27
m Average waiting time: (0 + 24 + 27)/3 =17
£
AR
Da

Operating System Concepts — 9" Edition 6.10 Silberschatz, Galvin and Gagne ©2013

5 FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
I:>2 ’ PS ’ I:)1
m The Gantt chart for the schedule is:

Waiting time for P, =6;P, =0.P;=3
Average waiting time: (6 +0+3)/3=3
Much better than previous case

Convoy effect - short process behind long process
e Consider one CPU-bound and many I/O-bound processes

Operating System Concepts — 9" Edition 6.11 Silberschatz, Galvin and Gagne ©2013

'*«cs:f-"-‘f”Shortest-Job-First (SJF) Scheduling

m Associate with each process the length of its next
CPU burst

e Use these lengths to schedule the process
with the shortest time

m SJF is optimal — gives minimum average waiting
time for a given set of processes

e The difficulty is knowing the length of the next
CPU request

e Could ask the user

Operating System Concepts — 9" Edition 6.12 Silberschatz, Galvin and Gagne ©2013

s Example of SJF
Process Burst Time
P, 6
P, 8
P, 3
m SJF scheduling chart
P4 Pl P3 PZ
0 3 9 16 24
m Average waitingtime=(3+16+9+0)/4=7
A9
50
“.":
Operating System Concepts — 9" Edition 6.13 Silberschatz, Galvin and Gagn; ©20-I£5

w’;‘J ‘_ Determining Length of Next CPU Burst

m Can only estimate the length — should be similar to the
previous one

e Then pick process with shortest predicted next CPU burst
m Can be done by using the length of previous CPU bursts,
using exponential averaging

1. t, =actual lengthof n'" CPU burst

2. 7,1 =predicted value for the next CPU burst
3. a,0<a <1

4. Define: Tau =0t +(l-a)r,

® Commonly, a set to /2
m Preemptive version called shortest-remaining-time-first

Operating System Concepts — 9" Edition 6.14 Silberschatz, Galvin and Gagne ©2013

'\..-':;:ﬁ Prediction of the Length of the Next CPU Burst

CPU burst (t) 6 4 6 4 13 13 13

"guess'(t) 10 8 6 6 5 9 11 12

)

A

Operating System Concepts — 9" Edition 6.15 Silberschatz, Galvin and Gagne ©2013

"-'@,ﬁ‘ﬁ Examples of Exponential Averaging

m o=0

® The1 = Tp

e Recent history does not count
m =1

® T =atl,
e Only the actual last CPU burst counts
m |f we expand the formula, we get:
T =0t (1 -)at, (+ ...
+(1-aYat, j+..
+H1 -0)" 1

m Since both a and (1 -) are less than or equal to 1, each
successive term has less weight than its predecessor

4

—_ =

A

=k
o3

Operating System Concepts — 9" Edition 6.16 Silberschatz, Galvin and Gagne ©20:

=

e

. 277 Example of Shortest-remaining-time-first

® Now we add the concepts of varying arrival times and preemption to

the analysis
Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5
m Preemptive SJF Gantt Chart
12 2N 12, 12 12
o 1 5 10 17 2
m Average waiting time = [(10-1)+(1-1)+(17-2)+5-3))/4 = 26/4 = 6.5
msec
£D
Operating System Concepts — 9t Edition 6.17 Silberschatz, Galvin and Gagn.-e @2025
NG Priority Scheduling

m A priority number (integer) is associated with each
process

®m The CPU is allocated to the process with the highest
priority (smallest integer = highest priority)

e Preemptive
e Nonpreemptive

SJF is priority scheduling

Problem = Starvation — low priority processes may
never execute

®m Solution = Aging — as time progresses increase the
priority of the process
£

Operating System Concepts — 9" Edition 6.18 Silberschatz, Galvin and Gagne ©2013

{-"—‘J Example of Priority Scheduling

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 4
P, 1 5
Ps 5 2

®m Priority scheduling Gantt Chart

P P

1 2

0 1 6 16 18 19

® Average waiting time = 8.2 msec

Operating System Concepts — 9" Edition 6.19 Silberschatz, Galvin and Gagne ©2013

™

§F Round Robin (RR)

®m Each process gets a small unit of CPU time (time
guantum q), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

m If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time
in chunks of at most g time units at once. No process
waits more than (n-1)q time units.

m Timer interrupts every quantum to schedule next process

B Performance
e g large = FCFS

e g small = g must be large with respect to context
switch, otherwise overhead is too high

Operating System Concepts — 9" Edition 6.20 Silberschatz, Galvin and Gagne ©2013

10

™

w';-d ‘- Example of RR with Time Quantum =4

Process Burst Time
P, 24
P, 3
P, 3

Pl PZ P3 Pl Pl Pl PI Pl
0 4 7 10 14 18 22 26 30
m Typically, higher average turnaround than SJF, but better
response
® g should be large compared to context switch time
m qusually 10ms to 100ms, context switch < 10 usec
59
4 B/
Operating System Concepts — 9" Edition 6.21 Silberschatz, Galvin and Gagne ©2013

™

».,’;‘ﬁ Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

Operating System Concepts — 9" Edition 6.22 Silberschatz, Galvin and Gagne ©2013

11

. ‘_‘__‘11“'
W@/ Turnaround Time Varies With The Time Quantum

process | time
P, 6
P; 3
Py 1
g P, 7
=
{ =
=1
B
o
=
El
L 100
g
2 o5 80% of CPU bursts
= N should be shorter than g
9.0 |-
1 1 1 1 1 1
1 2 3 4 5 6 7
time quantum
SN
,.r_(:';;"ﬂ
e
Operating System Concepts — 9" Edition 6.23 Silberschatz, Galvin and Gagne ©2013
™.
i 5 ._-»-—-j -
N Multilevel Queue

m Ready queue is partitioned into separate queues, e.g.,:
e foreground (interactive)
e background (batch)
B Process permanently in a given queue
m Each queue has its own scheduling algorithm:
e foreground — RR
e background — FCFS
m Scheduling must be done between the queues:

e Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

e Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; e.g., 80% to
foreground in RR

e 20% to background in FCFS f:;w
(—
Operating System Concepts — 9" Edition 6.24 Silberschatz, Galvin and Gagne ©20-1£’;

12

g7 Multilevel Queue Scheduling

highest priority

system processes

interactive processes

interactive editing processes

batch processes

student processes

I
HHE

lowest priority

Operating System Concepts — 9" Edition 6.25 Silberschatz, Galvin and Gagne ©2013

P .
‘-"?s_,_-f Multilevel Feedback Queue

B A process can move between the various queues;
aging can be implemented this way

m Multilevel-feedback-queue scheduler defined by the
following parameters:

e number of queues
e scheduling algorithms for each queue

e method used to determine when to upgrade a
process

e method used to determine when to demote a
process

e method used to determine which queue a process
will enter when that process needs service

Operating System Concepts — 9" Edition 6.26 Silberschatz, Galvin and Gagne ©2013

13

e

w‘:-‘J Example of Multilevel Feedback Queue

® Three queues:

o Q,— RR with time quantum 8
milliseconds

o Q;—RRtime quantum 16 milliseconds

e Q,-FCFS —.ﬁj——’

m Scheduling

e A new job enters queue Q, which is

served FCFS ﬁ
» When it gains CPU, job receives 8 quanum =15

milliseconds

» If it does not finish in 8

gllllseconds, job is moved to queue ﬁ—-
’

e At Q, job is again served FCFS and
receives 16 additional milliseconds

» If it still does not complete, it is
preempted and moved to queue Q,

o

b

=
2= 3

[

w

=k
w

Operating System Concepts — 9" Edition 6.27 Silberschatz, Galvin and Gagne ©20:

™

«% Multiple-Processor Scheduling

m CPU scheduling more complex when multiple CPUs are
available

Homogeneous processors within a multiprocessor

Asymmetric multiprocessing — only one processor accesses
the system data structures, alleviating the need for data sharing

m Symmetric multiprocessing (SMP) — each processor is self-
scheduling, all processes in common ready queue, or each has
its own private queue of ready processes

e Currently, most common

B Processor affinity — process has affinity for processor on which
it is currently running

e soft affinity
e hard affinity
e Variations including processor sets

%
=

(=4

w

=k
w

Operating System Concepts — 9" Edition 6.28 Silberschatz, Galvin and Gagne ©20:

14

w-— NUMA and CPU Scheduling

CPU CPU

S/

\ .
fast access ”'a& fast access
e,s-S

memory memory

computer

Note that memory-placement algorithms can also consider affinity

20
Operating System Concepts — 9" Edition 6.29 Silberschatz, Galvin and Gagne ©2013
W7 Multiple-Processor Scheduling — Load Balancing
If SMP, need to keep all CPUs loaded for efficiency
Load balancing attempts to keep workload evenly distributed
m Push migration — a periodic task checks the load on each
processor, and if it finds an imbalance — pushes task from
overloaded CPU to other (idle or less-busy) CPUs
® Pull migration — an idle processor pulls a waiting task from a
busy processor
20
Operating System Concepts — 9" Edition 6.30 Silberschatz, Galvin and Gagne ©2013

15

g T Multicore Processors

m Recent trend to place multiple processor cores on same
physical chip

Faster and consumes less power
Multiple threads per core also growing

e Takes advantage of memory stall to make progress on
another thread while memory retrieve happens

A
Operating System Concepts — 9" Edition 6.31 Silberschatz, Galvin and Gagne ©2013
™

r & Multithreaded Multicore System

G compute cycle M memory stall cycle

M»‘ c l M ‘ e ‘ M ‘ G ‘ M l c ‘ M
time
e, c | m|ec | m|c|m]|e
= c | m|c|m|ec|m|e
time
/“" Y
50
Operating System Concepts — 9" Edition 6.32 Silberschatz, Galvin and Gagne ©2013

16

P—
& Real-Time CPU Scheduling

m Can present obvious

challenges .
interrupt

m Soft real-time systems —no
guarantee as to when critical determine
i i kg
real-time process will be type

scheduled context
switch

m Hard real-time systems —a
task must be serviced by its
deadline

m Two types of latencies affect II]
performance
interrupt

1. Interrupt latency — time from latency
arrival of interrupt to start of
routine that services interrupt

2. Dispatch latency — time for time

scheduler to take current process
off CPU and switch to another fﬁ\‘

Operating System Concepts — 9" Edition 6.33 Silberschatz, Galvin and Gagne ©2013

g7 Real-Time CPU Scheduling (Cont.)

m Conflict phase of event response to event
dispatch latency:

|¢————————————response interval ———»
1. Preemptlon of process made

any process interrupt available

. . processing
running in kernel
mode le———— dispatch latency

real-time
2. Release by low- process

priority process execution
of resources. [e—conflicts dispatch —»|
needed by high-
priority
processes

time

Operating System Concepts — 9" Edition 6.34 Silberschatz, Galvin and Gagne ©2013

r & Priority-based Scheduling

®m For real-time scheduling, scheduler must support preemptive, priority-
based scheduling
e But only guarantees soft real-time

For hard real-time must also provide ability to meet deadlines

® Processes have new characteristics: periodic ones require CPU at
constant intervals
e Has processing time t, deadline d, period p
e Ostsdsp
e Rate of periodic task is 1/p

1 P T P i p |
I i il 1
d | d | L d
[| I | I
! Lt t
J ! J L
1 | i | Time S Y
periody period; periods [’/‘_ B
5 7"‘,’;__\
b A
Operating System Concepts — 9" Edition 6.35 Silberschatz, Galvin and Gagne ©2013

=

"'js_,_-’ Virtualization and Scheduling

m Virtualization software schedules multiple guests onto
CPU(s)
m Each guest doing its own scheduling
e Not knowing it doesn’ t own the CPUs
e Can result in poor response time
e Can effect time-of-day clocks in guests
® Can undo good scheduling algorithm efforts of guests

4

it

=
2= 3

[

w

=k
w

Operating System Concepts — 9" Edition 6.36 Silberschatz, Galvin and Gagne ©20:

=

& Rate Monotonic Scheduling

m A priority is assigned based on the inverse of its period

m Shorter periods = higher priority;
m Longer periods = lower priority
m P, is assigned a higher priority than P,.
Deadlines P, P, P, P, Py P,
| R | |P?| | R |P2|| L | Ri | |p2| | R |p2|| L1
0 10 20 30 40 50 60 70 80 90 100110 120 130 140 150 160 170 180 190 200
s
Operating System Concepts — 9" Edition 6.37 Silberschatz, Galvin and Gagne ©201£«}

™

*{:ﬁ Missed Deadlines with Rate Monotonic Scheduling

Deadlines Py Ps Py Py P:
| JP1IJIP2I I JP|J|Ff?I| I I | L L L J

0 10 20 30 40 50 80 70O 80 90 100 110 120 130 140 150 160

Operating System Concepts — 9" Edition 6.38 Silberschatz, Galvin and Gagne ©2013

19

™

"-"f{;‘ﬁ' ' Earliest Deadline First Scheduling (EDF)

m Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;
the later the deadline, the lower the priority

Deadlines Py P2 Py Py P2

| | | Vo

| Py |y Pz | :P1|||P2| |P'||||P2||| J
0 10 20 30 40 50 60 70 80 G0 100 110 120 130 140 150 160

— M

=

{

w

Operating System Concepts — 9" Edition 6.39 Silberschatz, Galvin and Gagne ©2013

o= g

w:-‘J Proportional Share Scheduling

B T shares are allocated among all processes in the system

m An application receives N shares where N< T

m This ensures each application will receive N / T of the total
processor time

=

R

{

w

=k
w

Operating System Concepts — 9" Edition 6.40 Silberschatz, Galvin and Gagne ©20:

4

20

“$%/ POSIX Real-Time Scheduling

The POSIX.1b standard
API provides functions for managing real-time threads

Defines two scheduling classes for real-time threads:

1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a
FIFO queue. There is no time-slicing for threads of equal priority

2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for
threads of equal priority

m Defines two functions for getting and setting scheduling policy:

1. pthread_attr_getsched_policy(pthread_attr_t *attr,
int *policy)

2. pthread_attr_setsched_policy(pthread_attr_t *attr,
int policy)

™

Operating System Concepts — 9" Edition 6.41 Silberschatz, Galvin and Gagne ©2013

=

e

"-'f»_',-’ POSIX Real-Time Scheduling API

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[])

{

int i, policy;
pthread_t_tid[NUM_THREADS];

pthread_attr_t attr;
/* get the default attributes */
pthread_attr_init(&attr);

/* get the current scheduling policy */
if (pthread_attr_getschedpolicy(&attr, &policy) != 0)

fprintf(stderr, "Unable to get policy.\n");
else {

if (policy == SCHED_OTHER) printf(*'SCHED_OTHER\n");

else if (policy == SCHED_RR) printf(*'SCHED_RR\n");

else if (policy == SCHED_FIFO) printf("'SCHED_FIFO\n"™); frﬂj\\
} . = M

Operating System Concepts — 9" Edition 6.42 Silberschatz, Galvin and Gagne ©2013

M

21

‘-‘&,:‘ﬁ' POSIX Real-Time Scheduling API (Cont.)

/* set the scheduling policy - FIFO, RR, or OTHER */
if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0)

fprintf(stderr, "Unable to set policy.\n");
/* create the threads */
for (i = 0; i < NUM_THREADS; i++)
pthread_create(&tid[i],&attr,runner,NULL);
/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++)
pthread_join(tid[i], NULL);

/* Each thread will begin control in this function */
void *runner(void *param)

{
/* do some work ... */
pthread_exit(0);

i

=

Operating System Concepts — 9" Edition 6.43 Silberschatz, Galvin and Gagne ©20:

(1

=k
w

End of Chapter 6

Operating System Concepts — 9" Edition

Silberschatz, Galvin and Gagne ©2013

22

