
1

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

6.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

 Basic Concepts

 Scheduling Criteria

 Scheduling Algorithms

 Thread Scheduling

 Multiple-Processor Scheduling

 Real-Time CPU Scheduling

2

6.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To introduce CPU scheduling, which is the basis
for multiprogrammed operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU-
scheduling algorithm for a particular system

6.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Concepts

 Maximum CPU utilization
obtained with
multiprogramming

 CPU–I/O Burst Cycle –
Process execution consists of a
cycle of CPU execution and
I/O wait

 CPU burst followed by I/O
burst

 CPU burst distribution is of
main concern

3

6.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Histogram of CPU-burst Times

6.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Scheduler
 Short-term scheduler selects from among the processes in ready

queue, and allocates the CPU to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state (e.g., an interrupt occurs)

3. Switches from waiting to ready (e.g., at completion of I/O)

4. Terminates

 Scheduling under 1 and 4 is non-preemptive

 All other scheduling is preemptive

 Consider access to shared data

 Consider preemption while in kernel mode => waiting for a
system call to complete

 Consider interrupts occurring during crucial OS activities

4

6.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dispatcher

 Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

 switching context

 switching to user mode

 jumping to the proper location in the user
program to restart that program

 Dispatch latency – time it takes for the dispatcher
to stop one process and start another running

6.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their
execution per time unit

 Turnaround time – amount of time to execute a
particular process

 Waiting time – amount of time a process has been
waiting in the ready queue

 Response time – amount of time it takes from when
a request was submitted until the first response is
produced, not output (for time-sharing environment)

5

6.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

 E.g., to guarantee that all users get good service,
we may want to minimize the maximum response
time.

6.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

6

6.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P1
0 3 6 30

P2 P3

6.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next
CPU burst

 Use these lengths to schedule the process
with the shortest time

 SJF is optimal – gives minimum average waiting
time for a given set of processes

 The difficulty is knowing the length of the next
CPU request

 Could ask the user

7

6.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of SJF

ProcessArriva Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P3
0 3 24

P4 P1
169

P2

6.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Determining Length of Next CPU Burst

 Can only estimate the length – should be similar to the
previous one

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts,
using exponential averaging

 Commonly, α set to ½

 Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

 1n

th
n nt

 .1 1 nnn t

8

6.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Prediction of the Length of the Next CPU Burst

6.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Exponential Averaging

 =0

 n+1 = n

 Recent history does not count

 =1

 n+1 = tn
 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 = tn+(1 -) tn -1 + …

+(1 -)j tn -j + …

+(1 -)n +1 0

 Since both and (1 -) are less than or equal to 1, each
successive term has less weight than its predecessor

9

6.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to
the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5
msec

P4
0 1 26

P1 P2
10

P3P1
5 17

6.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Scheduling

 A priority number (integer) is associated with each
process

 The CPU is allocated to the process with the highest
priority (smallest integer highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling

 Problem Starvation – low priority processes may
never execute

 Solution Aging – as time progresses increase the
priority of the process

10

6.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

1

0 1 19

P1 P2
16

P4P3
6 18

P

6.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Round Robin (RR)

 Each process gets a small unit of CPU time (time
quantum q), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

 If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large FCFS

 q small q must be large with respect to context
switch, otherwise overhead is too high

11

6.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better
response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

6.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

12

6.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

6.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue

 Ready queue is partitioned into separate queues, e.g.,:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time
which it can schedule amongst its processes; e.g., 80% to
foreground in RR

 20% to background in FCFS

13

6.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

6.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Feedback Queue

 A process can move between the various queues;
aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by the
following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a
process

 method used to determine when to demote a
process

 method used to determine which queue a process
will enter when that process needs service

14

6.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8
milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is
served FCFS

 When it gains CPU, job receives 8
milliseconds

 If it does not finish in 8
milliseconds, job is moved to queue
Q1

 At Q1 job is again served FCFS and
receives 16 additional milliseconds

 If it still does not complete, it is
preempted and moved to queue Q2

6.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are
available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses
the system data structures, alleviating the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-
scheduling, all processes in common ready queue, or each has
its own private queue of ready processes

 Currently, most common

 Processor affinity – process has affinity for processor on which
it is currently running

 soft affinity

 hard affinity

 Variations including processor sets

15

6.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

6.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiple-Processor Scheduling – Load Balancing

 If SMP, need to keep all CPUs loaded for efficiency

 Load balancing attempts to keep workload evenly distributed

 Push migration – a periodic task checks the load on each
processor, and if it finds an imbalance – pushes task from
overloaded CPU to other (idle or less-busy) CPUs

 Pull migration – an idle processor pulls a waiting task from a
busy processor

16

6.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Processors

 Recent trend to place multiple processor cores on same
physical chip

 Faster and consumes less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on
another thread while memory retrieve happens

6.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreaded Multicore System

17

6.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time CPU Scheduling

 Can present obvious
challenges

 Soft real-time systems – no
guarantee as to when critical
real-time process will be
scheduled

 Hard real-time systems – a
task must be serviced by its
deadline

 Two types of latencies affect
performance

1. Interrupt latency – time from
arrival of interrupt to start of
routine that services interrupt

2. Dispatch latency – time for
scheduler to take current process
off CPU and switch to another

6.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time CPU Scheduling (Cont.)

 Conflict phase of
dispatch latency:

1. Preemption of
any process
running in kernel
mode

2. Release by low-
priority process
of resources
needed by high-
priority
processes

18

6.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority-based Scheduling

 For real-time scheduling, scheduler must support preemptive, priority-
based scheduling
 But only guarantees soft real-time

 For hard real-time must also provide ability to meet deadlines

 Processes have new characteristics: periodic ones require CPU at
constant intervals
 Has processing time t, deadline d, period p

 0 ≤ t ≤ d ≤ p

 Rate of periodic task is 1/p

6.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtualization and Scheduling

 Virtualization software schedules multiple guests onto
CPU(s)

 Each guest doing its own scheduling

 Not knowing it doesn’t own the CPUs

 Can result in poor response time

 Can effect time-of-day clocks in guests

 Can undo good scheduling algorithm efforts of guests

19

6.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Rate Monotonic Scheduling

 A priority is assigned based on the inverse of its period

 Shorter periods = higher priority;

 Longer periods = lower priority

 P1 is assigned a higher priority than P2.

6.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Missed Deadlines with Rate Monotonic Scheduling

20

6.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Earliest Deadline First Scheduling (EDF)

 Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;

the later the deadline, the lower the priority

6.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Proportional Share Scheduling

 T shares are allocated among all processes in the system

 An application receives N shares where N < T

 This ensures each application will receive N / T of the total
processor time

21

6.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

POSIX Real-Time Scheduling

 The POSIX.1b standard

 API provides functions for managing real-time threads

 Defines two scheduling classes for real-time threads:

1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a
FIFO queue. There is no time-slicing for threads of equal priority

2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for
threads of equal priority

 Defines two functions for getting and setting scheduling policy:

1. pthread_attr_getsched_policy(pthread_attr_t *attr,
int *policy)

2. pthread_attr_setsched_policy(pthread_attr_t *attr,
int policy)

6.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

POSIX Real-Time Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[])

{

int i, policy;
pthread_t_tid[NUM_THREADS];

pthread_attr_t attr;

/* get the default attributes */

pthread_attr_init(&attr);

/* get the current scheduling policy */
if (pthread_attr_getschedpolicy(&attr, &policy) != 0)

fprintf(stderr, "Unable to get policy.\n");

else {

if (policy == SCHED_OTHER) printf("SCHED_OTHER\n");

else if (policy == SCHED_RR) printf("SCHED_RR\n");

else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n");

}

22

6.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

POSIX Real-Time Scheduling API (Cont.)

/* set the scheduling policy - FIFO, RR, or OTHER */
if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0)

fprintf(stderr, "Unable to set policy.\n");

/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i],&attr,runner,NULL);

/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)
{

/* do some work ... */

pthread_exit(0);

}

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 6

