
1

Chapter 6:
Physical Database Design and

Performance
Modern Database Management

6th Edition
Jeffrey A. Hoffer, Mary B. Prescott, Fred R.

McFadden

Robert C. Nickerson
ISYS 464 – Spring 2003

Topic 23

Database Development
Process

• Database planning
• Database requirements analysis
• Conceptual database design
• Logical database design
• Physical database design
• Database implementation

Physical Database Design

Purpose - translate the logical description
of data into the technical specifications for
storing and retrieving data
Goal - create a design for storing data that
will provide adequate performance and
insure database integrity, security and
recoverability

Physical Design Process

Normalized relations

Volume estimates

Attribute definitions

Response time expectations

Data security needs

Backup/recovery needs

Integrity expectations

DBMS technology used

Inputs

Attribute data types

Physical record descriptions
(doesn’t always match logical
design)

File organizations

Indexes and database
architectures

Query optimization

Leads to

Decisions

Designing Fields

Field: smallest unit of data in
database
Field design
– Choosing data type
– Controlling data integrity

Choosing Data Types

Choose data type for field so as to:
Minimize storage space (smallest possible
field)
Represent all values (large enough field)
Improve data integrity (type of data allowed)
Support needed data manipulation (type of
data)

Use coding, compression, encryption if
necessary

2

Oracle Data Types
CHAR – fixed-length character
VARCHAR or VARCHAR2 – variable-length
character (memo)
SMALLINT, INTEGER – integer number
DEC or NUMBER – number with decimal
positions
DATE – actual date
BLOB – binary large object (good for graphics,
sound clips, etc.)

Figure 6.2
Example code-look-up table (Pine Valley Furniture Company)

Code saves space, but costs
an additional lookup to
obtain actual value.

Controlling Data Integrity
Data validation controls

Data type provides some control of type of data that can
be entered into field
Default value - assumed value if no explicit value
(DEFAULT option in SQL)
Range control – allowable value limitations (constraints
or validation rules; CHECK option in SQL)
Null value control – allowing or prohibiting empty fields
(NOT NULL option in SQL)
Referential integrity – range control (and null value
allowances) for foreign-key to primary-key match-ups

Handling Missing Data
Enforce NOT NULL constraint
Assign a DEFAULT value
Code application so as to ignore missing values (if
value is not significant)
Report any missing values for manual correction
Don’t make up data

Denormalization
Transforming normalized relations into unnormalized physical
record specifications (higher NFs to lower NFs)
Benefits:
– Can improve performance (speed) be reducing number of table lookups

(i.e reduce number of necessary join queries)
Costs (due to data duplication)
– Wasted storage space
– Data integrity/consistency threats
– Modification anomalies

Common denormalization opportunities (create fewer tables)
– One-to-one relationship (Fig 6.3)
– Many-to-many relationship with attributes (Fig. 6.4)
– Reference data (1:N relationship where 1-side has data not used in any

other relationship) (Fig. 6.5)

Denormalization of Relations
in 1:1 Relationship (Fig 6-3)

Normalized relations:
Student (Student_ID, Campus_Address)
Application (Application_ID, Application_Date,

Qualifications, Student_ID)

Denormalized relation:
Student (Student_ID, Campus_Address, Application_ID,

Application_Date, Qualifications)
Results in Nulls because application is optional

3

Denormalization of Relations in
Associative Relationship (Fig 6-4)
Normalized relations:

Vendor (Vendor_ID, Address, Contact_Name)
Item (Item_ID, Description)
Price_Quote (Vendor_ID, Item_ID, Price)

Denormalized relation:
Vendor (Vendor_ID, Address, Contact_Name)
Item_Quote (Vendor_ID, Item_ID, Description, Price)
Results in significant duplication of data in Item_Quote

Fig 6.5 –
A possible

denormalization
situation:

reference data
(Where_Store,

Container_Type)

Extra table
access
required

Data duplication

Partitioning
“Denormalize” to create more tables (not fewer as before)
Horizontal Partitioning: Distributing the rows of a table
into several separate files
– Useful for situations where different users need access to different

rows
– Example: Partition customer data by sales region (can create

supertype/subtype relationship)
Vertical Partitioning: Distributing the columns of a table
into several separate files
– Useful for situations where different users need access to different

columns
– Example: Partition customer data into sales related columns and

billing related columns
– The primary key must be repeated in each file (1:1 relationship)

Combinations of Horizontal and Vertical

Partitions often correspond with User Schemas (user views)

Partitioning
Advantages of Partitioning:
– Records used together are grouped together
– Each partition can be optimized for performance
– Security, recovery
– Partitions stored on different disks: reduces contention
– Take advantage of parallel processing capability

Disadvantages of Partitioning:
– Slow retrievals across partitions
– Complexity
– Data duplication across partitions

Data Replication
“Denormalize” to create duplicate data
Purposely storing the same data in multiple
locations of the database
Improves performance by allowing multiple users
to access the same data at the same time with
minimum contention
Sacrifices data integrity due to data duplication
Best for data that is not updated often
Sometimes used for clients that are disconnected
from the system at times
Requires data to be synchronized periodically

Three-Level View of Database
External view (multiple): logical view of
part of the database made available to a user
group (subschema)
Conceptual view: logical view of entire
database (schema)
Internal view: physical view of database as
stored by the DBMS

4

Internal View: Physical Records
Physical Record: A group of fields stored in
adjacent memory locations and retrieved together
as a unit by the DBMS; may be one or more rows,
or part of a row
Page (Block): The amount of data read or written
in one I/O operation by the OS; may be one or
more physical records
Blocking Factor: The number of physical records
per page (block)

I/O Process
OS retrieves first page

OS passes first physical record in page to DBMS
DBMS processes rows in first physical record

OS passes next physical record in page to DBMS
DBMS processes rows in next physical record

Etc.
When there are no more physical records in

page, OS retrieves next page

Designing Physical Files
Physical File:
– A named portion of secondary memory allocated for the

purpose of storing physical records
Constructs to link two pieces of data:
– Sequential storage – one record physically follows

another on disk.
– Pointers – physical location (address) of record on disk.

File Organization:
– How the files are arranged on the disk.

Access Method:
– How the data can be retrieved based on the file

organization.

Sequential File Organization
Records physically stored in sequence usually
according to primary key
Records accessed in sequence
Accessing a specific record: all records that
physically come before the desired record must be
accessed first. Average access time = N/2
Inserting a new record requires rewriting the file
Deleting a record may require rewriting the file
Updating the key field of a record requires
rewriting the file

Figure 6-7 (a)
Sequential file
organization

If not sorted
Average time to find
desired record = n/2.

1

2

n

Records of the
file are stored in
sequence by the
primary key
field values.

If sorted –
every insert or
delete requires
resort

Indexed File Organization
Index – a separate table that contains location of
records based on a column or combination of
columns
Primary keys are automatically indexed
Oracle has a CREATE INDEX operation, and MS
ACCESS allows indexes to be created for most
field types
Indexing approaches:
– Basic concept – SQL Indexes slides
– Multi-level (tree) index, Fig. 6-7b
– B+ tree

5

Fig. 6-7b – Multi-level (tree) index

uses a tree search
Average time to find desired
record = depth of the tree

In this example:
Pointer points
to values <=
value to left of
pointer

Last level is page
with multiple
physical
records

Leaves of the tree
are all at same
level

consistent access
time

B+ Tree

B tree: A type of multiple level index (balanced
tree)
B+ tree: A type of B tree
Benefits:
– Each access requires the same amount of time
– Modifications of database require only changes in index

(data in database does not have to be rewritten)
– Modifications of database do not change access time

B+ Tree

Each index node consists of:
Ptr1 Key1 Ptr2 Key2 … KeyN PtrN+1

Ptr1 = pointer to index node for values <= Key1
Prt2 = pointer to index node for

values > Key1 and <= Key2
PtrN+1 = pointer to index node for values > KeyN
Last level contains pointers to physical records
See B+ tree transparency/handout

Hashed (Direct, Random)
File Organization

Address of each record determined by a
hashing (randomizing) algorithm that
converts the primary key into a disk address

Hashing Algorithm
Division remainder algorithm: Divide primary key

by nearest prime number to size of file and use
remainder to indicate disk address

Ex: File size = 5000 Nearest prime = 4999
PK = 85274 85274/4999 = 17 remainder 291
Store row with PK = 85274 as record 291 in

sequence from the beginning of file
Problem: two PKs can give same disk address
Ex: PK = 90273 90273 = 18 remainder 291
Called collision. Collision handling algorithm

needed

Fig 6-7c
Hashed file or
index
organization

Hash algorithm
Usually uses division-
remainder to determine
record position. Records
with same position are
grouped in lists.

6

Comparison of File
Organizations

BestOKCan’t be
done

Speed of
random
access

Can’t be
done

OKBestSpeed of
sequential
access

WorstIn betweenBestStorage
utilization

HashedIndexedSequential

Fig 6-9 Join Index – speeds up join operations

Rules for Using Indexes
Most DBMSs use some sort of indexed file structure

(B+ tree)
When to use indexes?
1. Use on larger tables
2. Index the primary key of each table (automatic in

Oracle)
3. Index frequently searched fields (fields frequently

in WHERE clause)
4. Fields in SQL ORDER BY and GROUP BY

commands
5. When there are a variety of values for a column;

>100 values but not when there are <30 values

Rules for Using Indexes
6. DBMS may have limit on number of indexes per

table and number of bytes per indexed field(s)
7. Null values will not be referenced from an index
8. Use indexes heavily for non-volatile databases;

limit the use of indexes for volatile databases
Why? Because modifications (e.g. inserts, deletes)
require updates to occur in index files

Query Optimization
Parallel Query Processing – specify extent
of parallelism
Override Automatic Query Optimization -
maybe
Data Block Size -- Performance tradeoffs:
– Block contention – smaller block better
– Random access speed – smaller block better
– Sequential access speed – larger block better
– Row size – block size should be multiple of row size
– Overhead – larger block size better

Query Optimization
Wise use of indexes
Compatible data types in comparisons
Simple queries
Avoid query nesting (subqueries)
Temporary tables for query groups
Select only needed columns
No sort without index

7

Database Implementation

Implement physical design of database
Result is the conceptual view of database
Code the conceptual view (schema) description

(CREATE TABLE commands in SQL)
Populate the database with test data (INSERT commands

in SQL)
Test the conceptual view of the database (data

manipulation commands in SQL)

Database Implementation

Implement external views
Code each external view (subschema) description

(CREATE VIEW commands in SQL)
Test the external views (data manipulation commands in

SQL)

Database Implementation

Enhance performance
Create indexes to improve database performance, if

necessary (CREATE INDEX commands in SQL)

Provide access for system developers
Grant privileges to analyst/programmers developing other

parts of information system (GRANT commands in
SQL)

Database implementation

Prepare for installation
(After all parts of information system have been

developed)
Populate database with actual ("live") data (INSERT

commands in SQL)
Grant privileges to users and user groups (GRANT

commands in SQL)

