

Cryptography and Network Security

Chapter 6 Electronic Mail Security

Lectured by Nguyễn Đức Thái

Outline

- Pretty Good Privacy
- S/MIME

Electronic Mail Security

- In virtually all distributed environments, <u>electronic</u> <u>mail</u> is the <u>most heavily used</u> network-based application.
- Users expect to be able to, and do, send e-mail to others who are connected directly or indirectly to the Internet, regardless of host operating system or communications suite
- With the explosively growing reliance on e-mail, there grows a <u>demand for authentication</u> and <u>confidentiality services</u>
- Two schemes in use: <u>Pretty Good Privacy</u> (PGP) and <u>S/MIME</u>

Electronic Mail Security

- Currently message contents are not secure
 - may be inspected either in transit
 - or by suitably privileged users on destination system
- PGP provides a <u>confidentiality</u> and <u>authentication</u> service that can be used for electronic mail and file storage applications

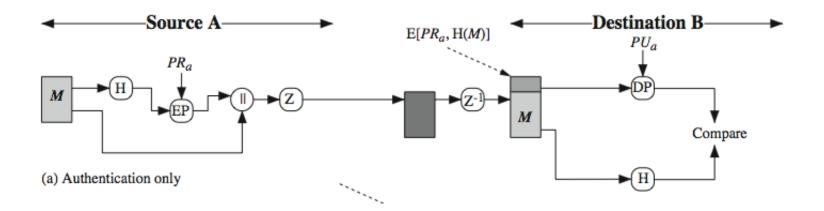
Email Security Enhancements

Confidentiality

protection from disclosure

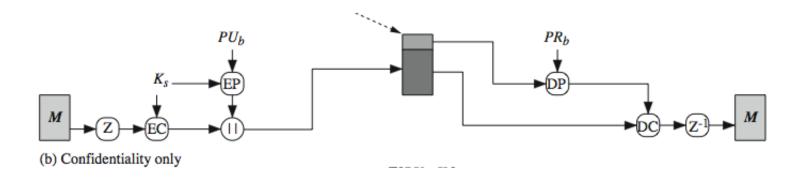
Authentication

- of sender of message
- Message integrity
 - protection from modification
- Non-repudiation of origin
 - protection from denial by sender


Pretty Good Privacy (PGP)

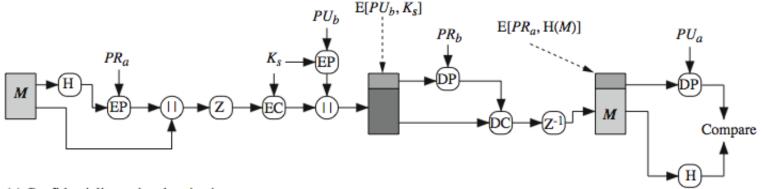
- widely used de facto secure email
- developed by Phil Zimmermann
- selected best available crypto <u>algorithm</u> to use
- integrated into a single program
- on Unix, PC, Macintosh and other systems
- originally free, now also have commercial versions available

PGP Operation - Authentication


- 1. sender creates message
- 2. make SHA-1160-bit hash of message
- 3. attached RSA signed hash to message
- 4. receiver decrypts & recovers hash code
- 5. receiver verifies received message hash

PGP Operation - Confidentiality

- 1. sender forms 128-bit random session key
- 2. encrypts message with session key
- 3. attaches session key encrypted with RSA
- 4. receiver decrypts & recovers session key
- 5. session key is used to decrypt message



PGP – Authentication & Confidentiality

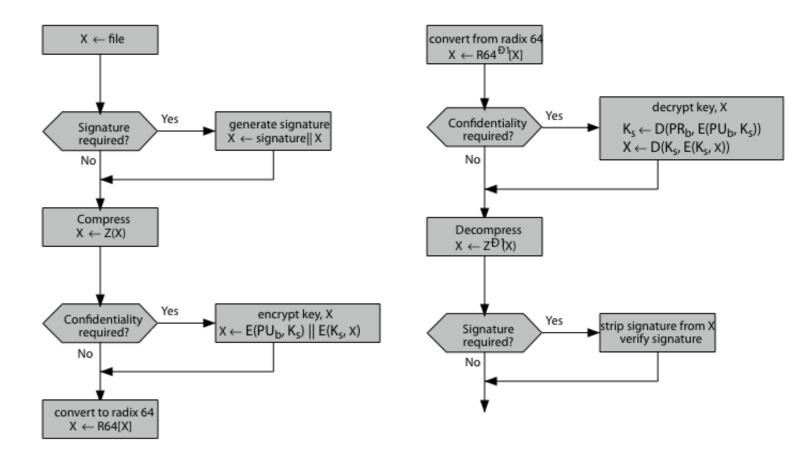
Can use both services on same message

- create signature & attach to message
- encrypt both message & signature
- attach RSA/ElGamal encrypted session key

(c) Confidentiality and authentication

PGP Operation - Compression

- by default PGP compresses message after signing but before encrypting
 - so can store uncompressed message & signature for later verification
 - & because compression is non deterministic
- uses ZIP compression algorithm



PGP Operation – Email Compatibility

- When PGP is used, at least part of the block to be transmitted is encrypted
- However email was designed only for text
- Hence PGP must <u>encode raw binary data</u> into printable ASCII characters
- Uses radix-64 algorithm
 - maps 3 bytes to 4 printable chars
 - also appends a CRC
- PGP also segments messages if too big

PGP Operation – Summary

(a) Generic Transmission Diagram (from A)

(b) Generic Reception Diagram (to B)

S/MIME

- Secure/Multipurpose Internet Mail Extensions
- security enhancement to MIME email
 - original Internet RFC822 email was text only
 - MIME provided support for varying content types and multi-part messages
 - with **encoding** of <u>binary data</u> **to** <u>textual form</u>
 - S/MIME added security enhancements
- have S/MIME support in many mail agents
 - eg MS Outlook, Mozilla, Mac Mail etc

S/MIME Functions

enveloped data

encrypted content and associated keys

signed data

- encoded message + signed digest
- clear-signed data
 - cleartext message + encoded signed digest
- signed & enveloped data
 - nesting of signed & encrypted entities

S/MIME Cryptographic Algorithms

- Digital signatures: DSS & RSA
- Hash functions: SHA-1 & MD5
- Session key encryption: ElGamal & RSA
- Message encryption: AES, Triple-DES, RC2/40 and others
- MAC: HMAC with SHA-1
- Have process to decide which algorithms to use

S/MIME Messages

- S/MIME secures a MIME entity with a <u>signature</u>, <u>encryption</u>, or <u>both</u>
- Forming a MIME wrapped PKCS object
- Have a range of content-types:
 - enveloped data
 - signed data
 - clear-signed data
 - registration request
 - certificate only message

S/MIME Certificate Processing

- S/MIME uses X.509 v3 certificates
- managed using a hybrid of a strict X.509 CA hierarchy & PGP's web of trust
- <u>each client</u> has a <u>list of trusted CA's certificates</u>
- and own public/private key pairs & certificates
- certificates must be signed by trusted CA's

Certificate Authorities

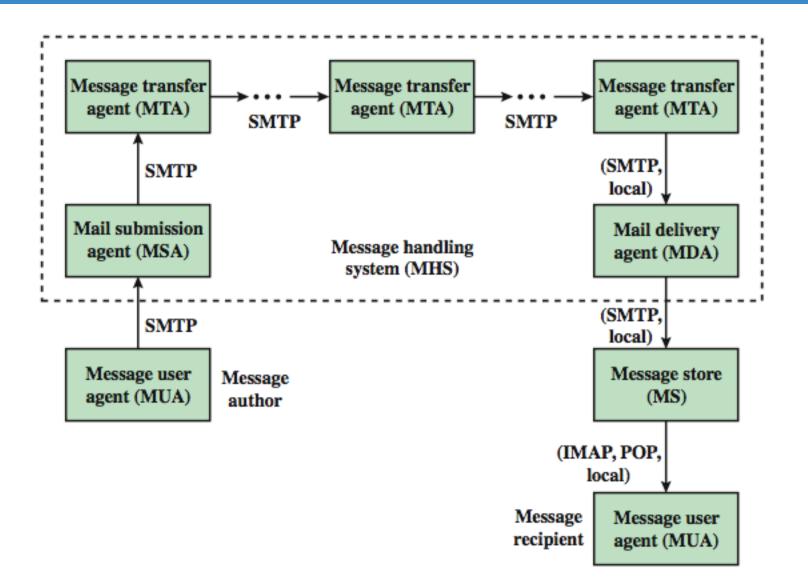
- have several well-known CA's
- Verisign one of most widely used
- Verisign issues several types of Digital IDs
- increasing levels of checks & hence trust

Class	Identity Checks	Usage
1	name/email check	web browsing/email
2	+ enroll/addr check	email, subs, s/w validate
3	+ ID documents	e-banking/service access

S/MIME Enhanced Security Services

3 proposed enhanced security services:

- signed receipts
- security labels
- secure mailing lists



Domain Keys Identified Mails

- a specification for cryptographically signing email messages
- so signing domain claims responsibility
- recipients / agents can verify signature
- proposed Internet Standard RFC 4871
- has been widely adopted

Internet Mail Architecture

Email Threats

- see RFC 4684- Analysis of Threats Motivating DomainKeys Identified Mail
- describes the problem space in terms of:
 - range: low end, spammers, fraudsters
 - capabilities in terms of where submitted, signed, volume, routing naming etc
 - outside located attackers

Summary

We have discussed:

- Pretty Good Privacy
- S/MIME

References

1. Cryptography and Network Security, Principles and Practice, William Stallings, Prentice Hall, Sixth Edition, 2013

