
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-WesleyCopyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 6: Functions

Starting Out with C++

Early Objects

Seventh Edition

by Tony Gaddis, Judy Walters,

and Godfrey Muganda

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics

6.1 Modular Programming

6.2 Defining and Calling Functions

6.3 Function Prototypes

6.4 Sending Data into a Function

6.5 Passing Data by Value

6.6 The return Statement

6.7 Returning a Value from a Function

6.8 Returning a Boolean Value

6-2

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics (continued)

6.9 Using Functions in a Menu-Driven Program

6.10 Local and Global Variables

6.11 Static Local Variables

6.12 Default Arguments

6.13 Using Reference Variables as Parameters

6.14 Overloading Functions

6.15 The exit() Function

6.16 Stubs and Drivers

6-3

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.1 Modular Programming

• Modular programming: breaking a program

up into smaller, manageable functions or

modules

• Function: a collection of statements to

perform a specific task

• Motivation for modular programming

– Simplifies the process of writing programs

– Improves maintainability of programs

6-4

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.2 Defining and Calling Functions

• Function call: statement that causes a

function to execute

• Function definition: statements that make

up a function

6-5

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Definition

• Definition includes

name: name of the function. Function names

follow same rules as variable names

parameter list: variables that hold the values

passed to the function

body: statements that perform the function’s task

return type: data type of the value the function

returns to the part of the program that called it

6-6

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Definition

6-7

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Header

• The function header consists of

– the function return type

– the function name

– the function parameter list

• Example:

int main()

• Note: no ; at the end of the header

6-8

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Return Type

• If a function returns a value, the type of

the value must be indicated

int main()

• If a function does not return a value, its
return type is void
void printHeading()

{

cout << "\tMonthly Sales\n";

}

6-9

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Calling a Function

• To call a function, use the function name
followed by () and ;

printHeading();

• When a function is called, the program
executes the body of the function

• After the function terminates, execution
resumes in the calling module at the
point of call

6-10

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Calling a Function

• main is automatically called when the

program starts

• main can call any number of functions

• Functions can call other functions

6-11

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.3 Function Prototypes

The compiler must know the following

about a function before it is called

– name

– return type

– number of parameters

– data type of each parameter

6-12

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Prototypes

Ways to notify the compiler about a

function before a call to the function:

– Place function definition before calling

function’s definition

– Use a function prototype (similar to the

heading of the function

• Heading: void printHeading()

• Prototype: void printHeading();

6-13

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Prototype Notes

• Place prototypes near top of program

• Program must include either prototype or
full function definition before any call to the
function, otherwise a compiler error occurs

• When using prototypes, function definitions
can be placed in any order in the source
file. Traditionally, main is placed first.

6-14

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.4 Sending Data into a Function

• Can pass values into a function at time of call
c = sqrt(a*a + b*b);

• Values passed to function are arguments

• Variables in function that hold values passed
as arguments are parameters

• Alternate names:

– argument: actual argument, actual parameter

– parameter: formal argument, formal parameter

6-15

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Parameters, Prototypes,

and Function Headings

• For each function argument,

– the prototype must include the data type of each
parameter in its ()

void evenOrOdd(int); //prototype

– the heading must include a declaration, with variable
type and name, for each parameter in its ()

void evenOrOdd(int num) //heading

• The function call for the above function would
look like this: evenOrOdd(val); //call

6-16

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Function Call Notes

• Value of argument is copied into parameter
when the function is called

• Function can have > 1 parameter

• There must be a data type listed in the
prototype () and an argument declaration in
the function heading () for each parameter

• Arguments will be promoted/demoted as
necessary to match parameters

6-17

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Calling Functions with Multiple Arguments

When calling a function with multiple
arguments

– the number of arguments in the call must
match the function prototype and definition

– the first argument will be copied into the
first parameter, the second argument into
the second parameter, etc.

6-18

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Calling Functions with

Multiple Arguments Illustration

displayData(height, weight); // call

void displayData(int h, int w)// heading

{

cout << "Height = " << h << endl;

cout << "Weight = " << w << endl;

}

6-19

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.5 Passing Data by Value

• Pass by value: when argument is passed
to a function, a copy of its value is placed
in the parameter

• Function cannot access the original
argument

• Changes to the parameter in the function
do not affect the value of the argument in
the calling function

6-20

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Passing Data to Parameters by Value

• Example: int val = 5;
evenOrOdd(val);

• evenOrOdd can change variable num, but

it will have no effect on variable val

6-21

5

val

argument in

calling function

5

num

parameter in
evenOrOdd function

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.6 The return Statement

• Used to end execution of a function

• Can be placed anywhere in a function
– Any statements that follow the return

statement will not be executed

• Can be used to prevent abnormal
termination of program

• Without a return statement, the
function ends at its last }

6-22

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.7 Returning a Value From a Function

• return statement can be used to return a
value from the function to the module that
made the function call

• Prototype and definition must indicate data
type of return value (not void)

• Calling function should use return value, e.g.,
– assign it to a variable
– send it to cout
– use it in an arithmetic computation
– use it in a relational expression

6-23

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Returning a Value – the return

Statement

• Format: return expression;

• expression may be a variable, a literal
value, or an expression.

• expression should be of the same data
type as the declared return type of the
function (will be converted if not)

6-24

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.8 Returning a Boolean Value

• Function can return true or false

• Declare return type in function prototype
and heading as bool

• Function body must contain return

statement(s) that return true or false

• Calling function can use return value in a

relational expression

6-25

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Boolean return Example

bool isValid(int); // prototype

bool isValid(int val) // heading
{

int min = 0, max = 100;
if (val >= min && val <= max)

return true;
else

return false;
}

if (isValid(score)) // call
…

6-26

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.9 Using Functions in a Menu-Driven

Program

Functions can be used

• to implement user choices from menu

• to implement general-purpose tasks

- Higher-level functions can call general-purpose

functions

- This minimizes the total number of functions

and speeds program development time

6-27

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.10 Local and Global Variables

• local variable: defined within a function or

block; accessible only within the function or

block

• Other functions and blocks can define

variables with the same name

• When a function is called, local variables in

the calling function are not accessible from

within the called function

6-28

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Local and Global Variables

• global variable: a variable defined
outside all functions; it is accessible to
all functions within its scope

• Easy way to share large amounts of
data between functions

• Scope of a global variable is from its
point of definition to the program end

• Use sparingly

6-29

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Local Variable Lifetime

• A local variable only exists while its

defining function is executing

• Local variables are destroyed when the

function terminates

• Data cannot be retained in local

variables between calls to the function in

which they are defined

6-30

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Initializing Local and Global Variables

• Local variables must be initialized by the
programmer

• Global variables are initialized to 0

(numeric) or NULL (character) when the

variable is defined

6-31

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Global Variables – Why Use Sparingly?

Global variables make:

• Programs that are difficult to debug

• Functions that cannot easily be re-used in

other programs

• Programs that are hard to understand

6-32

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Local and Global Variable Names

• Local variables can have same names as
global variables

• When a function contains a local variable

that has the same name as a global

variable, the global variable is unavailable

from within the function. The local definition

"hides" or "shadows" the global definition.

6-33

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.11 Static Local Variables

• Local variables
– Only exist while the function is executing

– Are redefined each time function is called

– Lose their contents when function terminates

• static local variables
– Are defined with key word static

static int counter;

– Are defined and initialized only the first time the
function is executed

– Retain their contents between function calls

6-34

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.12 Default Arguments

• Values passed automatically if arguments
are missing from the function call

• Must be a constant declared in prototype

void evenOrOdd(int = 0);

• Multi-parameter functions may have default

arguments for some or all of them

int getSum(int, int=0, int=0);

6-35

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Default Arguments

• If not all parameters to a function have
default values, the ones without defaults
must be declared first in the parameter list
int getSum(int, int=0, int=0);// OK

int getSum(int, int=0, int); // wrong!

• When an argument is omitted from a function
call, all arguments after it must also be
omitted
sum = getSum(num1, num2); // OK

sum = getSum(num1, , num3); // wrong!

6-36

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.13 Using Reference Variables as

Parameters

• Mechanism that allows a function to work
with the original argument from the
function call, not a copy of the argument

• Allows the function to modify values
stored in the calling environment

• Provides a way for the function to ‘return’
more than 1 value

6-37

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reference Variables

• A reference variable is an alias for
another variable

• Defined with an ampersand (&)

void getDimensions(int&, int&);

• Changes to a reference variable are
made to the variable it refers to

• Use reference variables to implement
passing parameters by reference

6-38

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Pass by Reference Example

void squareIt(int &); //prototype

void squareIt(int &num)

{

num *= num;

}

int localVar = 5;

squareIt(localVar); // localVar now

// contains 25

6-39

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reference Variable Notes

• Each reference parameter must contain &

• Argument passed to reference parameter must
be a variable (cannot be an expression or
constant)

• Use only when appropriate, such as when the
function must input or change the value of the
argument passed to it

• Files (i.e., file stream objects) should be
passed by reference

6-40

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.14 Overloading Functions

• Overloaded functions are two or more

functions that have the same name, but different

parameter lists

• Can be used to create functions that perform the

same task, but take different parameter types or

different number of parameters

• Compiler will determine which version of function

to call by argument and parameter list

6-41

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloaded Functions Example

If a program has these overloaded functions,
void getDimensions(int); // 1

void getDimensions(int, int); // 2

void getDimensions(int, float); // 3

void getDimensions(double, double);// 4

then the compiler will use them as follows:
int length, width;

double base, height;

getDimensions(length); // 1

getDimensions(length, width); // 2

getDimensions(length, height); // 3

getDimensions(height, base); // 4

6-42

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.15 The exit() Function

• Terminates execution of a program

• Can be called from any function

• Can pass a value to operating system to
indicate status of program execution

• Usually used for abnormal termination of
program

• Requires cstdlib header file

• Use carefully

6-43

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

exit() – Passing Values to Operating

System

• Use an integer value to indicate program

status

• Often, 0 means successful completion,

non-zero indicates a failure condition

• Can use named constants defined in
cstdlib:

– EXIT_SUCCESS and

– EXIT_FAILURE

6-44

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.16 Stubs and Drivers

• Stub: dummy function in place of actual
function

• Usually displays a message indicating it
was called. May also display parameters

• Driver: function that tests a function by
calling it

• Stubs and drivers are useful for testing
and debugging program logic and design

6-45

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-WesleyCopyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 6: Functions

Starting Out with C++

Early Objects

Seventh Edition

by Tony Gaddis, Judy Walters,

and Godfrey Muganda

