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6.1 Modular Programming

• Modular programming: breaking a program 

up into smaller, manageable functions or 

modules

• Function: a collection of statements to 

perform a specific task

• Motivation for modular programming

– Simplifies the process of writing programs

– Improves maintainability of programs
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6.2 Defining and Calling Functions

• Function call: statement that causes a 

function to execute

• Function definition: statements that make 

up a function
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Function Definition

• Definition includes 

name: name of the function.  Function names 

follow same rules as variable names

parameter list: variables that hold the values 

passed to the function

body: statements that perform the function’s task

return type: data type of the value the function 

returns to the part of the program that called it
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Function Definition
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Function Header

• The function header consists of 

– the function return type

– the function name

– the function parameter list

• Example:

int main()

• Note: no ; at the end of the header
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Function Return Type

• If a function returns a value, the type of 

the value must be indicated

int main()

• If a function does not return a value, its 
return type is void
void printHeading()

{

cout << "\tMonthly Sales\n";

}
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Calling a Function

• To call a function, use the function name 
followed by () and ;

printHeading();

• When a function is called, the program  
executes the body of the function

• After the function terminates, execution 
resumes in the calling module at the 
point of call
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Calling a Function

• main is automatically called when the 

program starts 

• main can call any number of functions

• Functions can call other functions
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6.3 Function Prototypes

The compiler must know the following 

about a function before it is called

– name

– return type

– number of parameters

– data type of each parameter
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Function Prototypes

Ways to notify the compiler about a 

function before a call to the function: 

– Place function definition before calling 

function’s definition

– Use a function prototype (similar to the 

heading of the function

• Heading: void printHeading()

• Prototype: void printHeading();
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Prototype Notes

• Place prototypes near top of program 

• Program must include either prototype or 
full function definition before any call to the 
function, otherwise a compiler error occurs

• When using prototypes, function definitions 
can be placed in any order in the source 
file.  Traditionally, main is placed first.
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6.4 Sending Data into a Function

• Can pass values into a function at time of call
c = sqrt(a*a + b*b);

• Values passed to function are arguments

• Variables in function that hold values passed 
as arguments are parameters

• Alternate names:

– argument: actual argument, actual parameter

– parameter: formal argument, formal parameter
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Parameters, Prototypes, 

and Function Headings

• For each function argument,

– the prototype must include the data type of each 
parameter in its () 

void evenOrOdd(int); //prototype

– the heading must include a declaration, with variable 
type and name, for each parameter in its ()

void evenOrOdd(int num) //heading

• The function call for the above function would 
look like this:  evenOrOdd(val);  //call
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Function Call Notes

• Value of argument is copied into parameter 
when the function is called

• Function can have > 1 parameter

• There must be a data type listed in the 
prototype () and an argument declaration in 
the function heading () for each parameter

• Arguments will be promoted/demoted as 
necessary to match parameters
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Calling Functions with Multiple Arguments

When calling a function with multiple 
arguments

– the number of arguments in the call must 
match the function prototype and definition

– the first argument will be copied into the 
first parameter, the second argument into 
the second parameter, etc.
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Calling Functions with 

Multiple Arguments Illustration

displayData(height, weight);  // call

void displayData(int h, int w)// heading

{

cout << "Height = " << h << endl;

cout << "Weight = " << w << endl;

}
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6.5 Passing Data by Value

• Pass by value: when argument is passed 
to a function, a copy of its value is placed 
in the parameter

• Function cannot access the original 
argument

• Changes to the parameter in the function 
do not affect the value of the argument in 
the calling function
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Passing Data to Parameters by Value

• Example:  int val = 5;
evenOrOdd(val);

• evenOrOdd can change variable num, but 

it will have no effect on variable val
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6.6 The return Statement

• Used to end execution of a function

• Can be placed anywhere in a function
– Any statements that follow the return

statement will not be executed

• Can be used to prevent abnormal 
termination of program 

• Without a return statement, the 
function ends at its last }
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6.7 Returning a Value From a Function

• return statement can be used to return a 
value from the function to the module that 
made the function call

• Prototype and definition must indicate data 
type of return value (not void)

• Calling function should use return value, e.g., 
– assign it to a variable
– send it to cout
– use it in an arithmetic computation
– use it in a relational expression
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Returning a Value – the return

Statement

• Format:  return expression;

• expression may be a variable, a literal 
value, or an expression.

• expression should be of the same data 
type as the declared return type of the 
function (will be converted if not)
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6.8 Returning a Boolean Value

• Function can return true or false

• Declare return type in function prototype 
and heading as bool

• Function body must contain return

statement(s) that return true or false

• Calling function can use return value in a 

relational expression
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Boolean return Example

bool isValid(int);        // prototype

bool isValid(int val)     // heading
{  

int min = 0, max = 100;
if (val >= min && val <= max)

return true;
else

return false;
}

if (isValid(score))       // call
…
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6.9 Using Functions in a Menu-Driven 

Program

Functions can be used 

• to implement user choices from menu

• to implement general-purpose tasks

- Higher-level functions can call general-purpose 

functions 

- This minimizes the total number of functions

and speeds program development time
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6.10 Local and Global Variables

• local variable: defined within a function or 

block; accessible only within the function or 

block

• Other functions and blocks can define 

variables with the same name

• When a function is called, local variables in 

the calling function are not accessible from 

within the called function
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Local and Global Variables

• global variable: a variable defined 
outside all functions; it is accessible to 
all functions within its scope

• Easy way to share large amounts of 
data between functions

• Scope of a global variable is from its 
point of definition to the program end

• Use sparingly
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Local Variable Lifetime

• A local variable only exists while its 

defining function is executing

• Local variables are destroyed when the 

function terminates

• Data cannot be retained in local 

variables between calls to the function in 

which they are defined
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Initializing Local and Global Variables

• Local variables must be initialized by the 
programmer

• Global variables are initialized to 0

(numeric) or NULL (character) when the 

variable is defined
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Global Variables – Why Use Sparingly?

Global variables make:

• Programs that are difficult to debug

• Functions that cannot easily be re-used in 

other programs

• Programs that are hard to understand
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Local and Global Variable Names

• Local variables can have same names as 
global variables

• When a function contains a local variable 

that has the same name as a global 

variable, the global variable is unavailable 

from within the function.  The local definition 

"hides" or "shadows" the global definition.
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6.11 Static Local Variables

• Local variables
– Only exist while the function is executing

– Are redefined each time function is called

– Lose their contents when function terminates

• static local variables
– Are defined with key word static

static int counter;

– Are defined and initialized only the first time the 
function is executed

– Retain their contents between function calls
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6.12 Default Arguments

• Values passed automatically if arguments 
are missing from the function call

• Must be a constant declared in prototype

void evenOrOdd(int = 0);

• Multi-parameter functions may have default 

arguments for some or all of them

int getSum(int, int=0, int=0);
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Default Arguments

• If not all parameters to a function have 
default values, the ones without defaults 
must be declared first in the parameter list
int getSum(int, int=0, int=0);// OK

int getSum(int, int=0, int);  // wrong!

• When an argument is omitted from a function 
call, all arguments after it must also be 
omitted
sum = getSum(num1, num2);    // OK

sum = getSum(num1, , num3);  // wrong!
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6.13 Using Reference Variables as 

Parameters

• Mechanism that allows a function to work 
with the original argument from the 
function call, not a copy of the argument

• Allows the function to modify values 
stored in the calling environment

• Provides a way for the function to ‘return’ 
more than 1 value
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Reference Variables

• A reference variable is an alias for 
another variable

• Defined with an ampersand (&)

void getDimensions(int&, int&);

• Changes to a reference variable are 
made to the variable it refers to

• Use reference variables to implement 
passing parameters by reference
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Pass by Reference Example

void squareIt(int &); //prototype

void squareIt(int &num)

{

num *= num;

}

int localVar = 5;

squareIt(localVar);  // localVar now

// contains 25
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Reference Variable Notes

• Each reference parameter must contain &

• Argument passed to reference parameter must 
be a variable (cannot be an expression or 
constant)

• Use only when appropriate, such as when the 
function must input or change the value of the 
argument passed to it

• Files (i.e., file stream objects) should be 
passed by reference
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6.14 Overloading Functions

• Overloaded functions are two or more 

functions that have the same name, but different 

parameter lists

• Can be used to create functions that perform the 

same task, but take different parameter types or 

different number of  parameters

• Compiler will determine which version of function 

to call by argument and parameter list
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Overloaded Functions Example

If a program has these overloaded functions,
void getDimensions(int);           // 1

void getDimensions(int, int);      // 2

void getDimensions(int, float);    // 3

void getDimensions(double, double);// 4

then the compiler will use them as follows:
int length, width; 

double base, height;

getDimensions(length);             // 1

getDimensions(length, width);      // 2

getDimensions(length, height);     // 3

getDimensions(height, base);       // 4
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6.15 The exit() Function

• Terminates execution of a program

• Can be called from any function

• Can pass a value to operating system to 
indicate status of program execution

• Usually used for abnormal termination of 
program

• Requires cstdlib header file

• Use carefully
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exit() – Passing Values to Operating 

System

• Use an integer value to indicate program 

status

• Often, 0 means successful completion, 

non-zero indicates a failure condition

• Can use named constants defined in 
cstdlib:

– EXIT_SUCCESS and 

– EXIT_FAILURE
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6.16 Stubs and Drivers

• Stub: dummy function in place of actual 
function

• Usually displays a message indicating it 
was called.  May also display parameters

• Driver: function that tests a function by 
calling it

• Stubs and drivers are useful for testing 
and debugging program logic and design
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