

G I A N C O L I

Lecture PowerPoints

Chapter 6
Physics for Scientists and Engineers, with Modern Physics, $4^{\text {th }}$ edition

Giancoli

© 2009 Pearson Education, Inc.
This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using
the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Chapter 6

Gravitation and Newton's Synthesis

Units of Chapter 6

- Newton's Law of Universal Gravitation
- Vector Form of Newton's Law of Universal Gravitation
- Gravity Near the Earth's Surface; Geophysical Applications
- Satellites and "Weightlessness"
- Kepler's Laws and Newton's Synthesis
- Gravitational Field

Opening Question

A space station revolves around the Earth as a satellite, 100 km above the Earth's surface. What is the net force on an astronaut at rest inside the space station?
(a) Equal to her weight on Earth.
(b) A little less than her weight on Earth.
(c) Less than half her weight on Earth.
(d) Zero (she is weightless).
(e) Somewhat larger than her weight on earth.

In fact only about 3\% less

6-1 Newton's Law of Universal Gravitation

If the force of gravity is being exerted on objects on Earth, what is the origin of that force?

Newton's realization was that the force must come from the Earth.

He further realized that this force must be what keeps the Moon in its orbit.

6-1 Newton's Law of Universal Gravitation

The gravitational force on you is one-half of a third law pair: the Earth exerts a downward force on you, and you exert an upward force on the Earth.

When there is such a disparity in masses, the reaction force is undetectable, but for bodies more equal in mass it can be significant.

exerted on Earth
by the Moon

6-1 Newton's Law of Universal Gravitation

Therefore, the gravitational force must be proportional to both masses.

By observing planetary orbits, Newton also concluded that the gravitational force must decrease as the inverse of the square of the distance between the masses.

In its final form, the law of universal gravitation reads:

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

where

$$
G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2} .
$$

6-1 Newton's Law of Universal Gravitation

Example 6-1: Can you attract another person gravitationally?

A 50 kg person and a 70 kg person are sitting on a bench about 0.5 m apart. Estimate the magnitude of the gravitational force each exerts on the other.

$$
\begin{aligned}
& F=\frac{G m_{1} m_{2}}{r^{2}} \\
& =\frac{6.67 \times 10^{-11} \times 50 \times 70}{0.5^{2}}=9.3 \times 10^{-7} \approx 10^{-6} \mathrm{~N}
\end{aligned}
$$

This could not be detected without extremely sensitive instruments

6-1 Newton's Law of Universal Gravitation

Example 6-2: Spacecraft at $2 r_{\text {E }}$.
What is the force of gravity acting on a 2000 kg spacecraft when it orbits two Earth radii from the Earth's center (that is, a distance $r_{\mathrm{E}}=6380 \mathrm{~km}$ above the Earth's surface)? The mass of the Earth is $m_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}$.

Example 6-2: Spacecraft at $2 r_{\text {E }}$.

What is the force of gravity acting on a 2000 kg spacecraft when it orbits two Earth radii from the Earth's center (that is, a distance $r_{\mathrm{E}}=6380 \mathrm{~km}$ above the Earth's surface)? The mass of the Earth is $m_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}$.

Hard Way: $\quad F=\frac{G m_{E} m_{S}}{r_{S}^{2}} \quad\left(r_{S}=2 r_{E}\right)$

$$
=\frac{6.67 \times 10^{-11} \times 5.980 \times 10^{24} \times 2000}{\left(2 \times 6.380 \times 10^{6}\right)^{2}}=4900 \mathrm{~N}
$$

Easy Way: Since $F \propto \frac{1}{r^{2}}$

$$
\begin{aligned}
& \text { If } r \rightarrow 2 r \Rightarrow F \rightarrow \frac{1}{2^{2}}=\frac{1}{4} \\
& \therefore \quad F=\frac{1}{4} m g=\frac{2000 \times 9.8}{4}=4900 \mathrm{~N}
\end{aligned}
$$

6-1 Newton's Law of Universal Gravitation

(2) Earth

Example 6-3: Force on the Moon.
Find the net force on the Moon ($m_{\mathrm{M}}=7.35 \times 10^{22} \mathrm{~kg}$) due to the gravitational attraction of both the Earth ($m_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}$) and the Sun ($m_{\mathrm{S}}=1.99 \times 10^{30} \mathrm{~kg}$), assuming they are at right angles to each other.

6-1 Newton's Law of Universal Gravitation

(2) Earth Example 6-3: Force on the Moon.

$$
m_{\mathrm{M}}=7.35 \times 10^{22} \mathrm{~kg} ; r_{\mathrm{ME}}=3.84 \times 10^{8} \mathrm{~m}
$$

$m_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}$
$m_{\mathrm{S}}=1.99 \times 10^{30} \mathrm{~kg} ; r_{\mathrm{MS}}=1.50 \times 10^{11} \mathrm{~m}$
Sun $F_{\mathrm{ME}}=\frac{G m_{\mathrm{M}} m_{\mathrm{E}}}{r_{\mathrm{ME}}^{2}}=\frac{6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 5.98 \times 10^{24}}{\left(3.84 \times 10^{8}\right)^{2}}=1.99 \times 10^{20} \mathrm{~N}$

$$
\begin{aligned}
& F_{\mathrm{MS}}=\frac{G m_{\mathrm{M}} m_{\mathrm{S}}}{r_{\mathrm{MS}}^{2}}=\frac{6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 1.99 \times 10^{30}}{\left(1.50 \times 10^{11}\right)^{2}}=4.34 \times 10^{20} \mathrm{~N} \\
& F=\sqrt{F_{\mathrm{ME}}^{2}+F_{\mathrm{MS}}^{2}}=\sqrt{1.99 \times 10^{20}+4.34 \times 10^{20}}=4.77 \times 10^{20} \mathrm{~N} \\
& \theta=\tan ^{-1}\left(\frac{F_{\mathrm{ME}}}{F_{\mathrm{MS}}}\right)=\tan ^{-1}\left(\frac{1.99 \times 10^{20}}{4.34 \times 10^{20}}\right)=24.6^{\circ}
\end{aligned}
$$

6-1 Newton's Law of Universal Gravitation

Using calculus, you can show:
Particle outside a thin spherical shell: gravitational force is the same as if all mass were at center of shell

Particle inside a thin spherical shell: gravitational force is zero

Can model a sphere as a series of thin shells; outside any spherically symmetric mass, gravitational force acts as though all mass is at center of sphere

6-2 Vector Form of Newton's Universal Gravitation

In vector form,

$$
\overrightarrow{\mathbf{F}}_{12}=-G \frac{m_{1} m_{2}}{r_{21}^{2}} \hat{\mathbf{r}}_{21} .
$$

This figure gives the directions of the displacement and force vectors.

6-2 Vector Form of Newton's Universal Gravitation

If there are many particles, the total force is the vector sum of the individual forces:

$$
\overrightarrow{\mathbf{F}}_{1}=\overrightarrow{\mathbf{F}}_{12}+\overrightarrow{\mathbf{F}}_{13}+\overrightarrow{\mathbf{F}}_{14}+\cdots+\overrightarrow{\mathbf{F}}_{1 n}=\sum_{i=2}^{n} \overrightarrow{\mathbf{F}}_{1 i} .
$$

6-3 Gravity Near the Earth's Surface; Geophysical Applications

Now we can relate the gravitational constant to the local acceleration of gravity. We know that, on the surface of the Earth:

$$
m g=G \frac{m m_{\mathrm{E}}}{r_{\mathrm{E}}^{2}}
$$

Solving for g gives: $g=G \frac{m_{\mathrm{E}}}{r_{\mathrm{E}}^{2}}$.
Now, knowing g and the radius of the Earth, the mass of the Earth can be calculated:

$$
m_{\mathrm{E}}=\frac{g r_{\mathrm{E}}^{2}}{G}=\frac{9.80 \times\left(6.38 \times 10^{6}\right)^{2}}{6.67 \times 10^{-11}}=5.98 \times 10^{24} \mathrm{~kg}
$$

6-3 Gravity Near the Earth's Surface; Geophysical Applications

Example 6-4: Gravity on Everest.
Mt. Everest: $h=8850 \mathrm{~m}=8.85 \times 10^{3} \mathrm{~m}$ above sea level.
$r_{\mathrm{E}}=6380 \mathrm{~km}=6.380 \times 10^{6} \mathrm{~m}$
$r=r_{\mathrm{E}}+h=6.380 \times 10^{6}+8.85 \times 10^{3}=6.389 \times 10^{6} \mathrm{~m}$
From previous example: $g=\frac{G m_{\mathrm{E}}}{r^{2}}$

$$
=\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{\left(6.389 \times 10^{6}\right)^{2}}=9.77 \mathrm{~m} / \mathrm{s}^{2}
$$

6-3 Gravity Near the Earth's Surface; Geophysical Applications

TABLE 6-1
Acceleration Due to Gravity at Various Locations on Earth

Location	Elevation (\mathbf{m})	\boldsymbol{g} $\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$
New York	0	9.803
San Francisco	0	9.800
Denver	1650	9.796
Pikes Peak	4300	9.789
Sydney, Australia	0	9.798
Equator	0	9.780
North Pole (calculated)	0	9.832

The acceleration due to gravity varies over the Earth's surface due to altitude, local geology, and the shape of the Earth, which is not quite spherical.

6-3 Gravity Near the Earth's Surface; Geophysical Applications

Example 6-5: Effect of Earth's rotation on g.

Assuming the Earth is a perfect sphere, determine how the Earth's rotation affects the value of g at the equator compared to its value at the poles.

Example 6-5: Effect of Earth's rotation on g

At the pole there are two forces acting on the person: $\overrightarrow{\mathbf{w}}$ and $\overrightarrow{\mathbf{F}}_{\mathbf{G}}=\mathrm{m} \overrightarrow{\mathbf{g}}$ where $\overrightarrow{\mathbf{w}}$ is the reaction of the scales on the person. As there is no rotation $w=m g$
At the equator there is a radial acceleration as the earth is rotating: $\left(a_{R}=\frac{m v^{2}}{r}\right)$

The magnitude of $F_{G}=m g$ is unchanged
The scale pushes upwards with a force w^{\prime} which is equal to the force of the person on the scale.

North Pole

Earth
Equator

South Pole From Newton's 2nd law:

$$
m g-w^{\prime}=a R=\frac{m v^{2}}{r_{E}}
$$

$$
\text { solving for } w^{\prime} \text { gives : } w^{\prime}=m\left(g-\frac{v^{2}}{r_{E}}\right)
$$

Example 6-5: Effect of Earth's rotation on g

Next calculate velocity:
$v=\frac{\text { Circ }}{\text { time }}=\frac{2 \pi r_{E}}{1 \text { day }}=\frac{2 \pi \times 6.38 \times 10^{6}(\mathrm{~m})}{8.64 \times 10^{4}(\mathrm{~s})}=464.0 \mathrm{~m} / \mathrm{s}$ As $w^{\prime}=m\left(g-\frac{v^{2}}{r_{E}}\right) \quad$ The effective weight $w^{\prime}=m g^{\prime}$ where g^{\prime} is the effective value of g $\rightarrow g^{\prime}=\frac{w^{\prime}}{m}=g-\frac{v^{2}}{r_{E}}$

The change in $g: \Delta g=g-g^{\prime}=\frac{v^{2}}{r_{E}}$ $=\frac{464}{6.38 \times 10^{6}}=0.0337 \mathrm{~m} / \mathrm{s}^{2}$ or about 0.3%
Note that as $\Delta \mathrm{g}$ is positive $\rightarrow \mathrm{g}$ is negative
$\rightarrow \mathrm{g}$ is slightly smaller at the equator compared to the poles.

6-4 Satellites and "Weightlessness"

Satellites are routinely put into orbit around the Earth. The tangential speed must be high enough so that the satellite does not return to Earth, but not so high that it escapes Earth's gravity altogether.

6-4 Satellites and "Weightlessness"
The satellite is kept in orbit by its speed-it is continually falling, but the Earth curves from underneath it.

Example 6-6: Geosynchronous satellite.

(a) Relation between v and $r\left[r=r_{E}+h\right.$; where $h=$ altitude $]$

For circular orbit : $F_{C}=\frac{m v^{2}}{r}=\frac{G m m_{E}}{r_{2}} \rightarrow \therefore \quad v^{2}=\frac{G m_{E}}{r}$ For geosynchronous orbit:
$v=\frac{\text { Circ }}{\text { time }}=\frac{2 \pi r}{t}=\frac{2 \pi r}{86400} \quad(1$ day $=86400 \mathrm{~s})$
Substitute into above equation and solve for r
$r=\frac{G m_{E}}{v^{2}}=\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times 86400^{2}}{4 \pi^{2} r^{2}}=\frac{7.542 \times 10^{22}}{r^{2}}$
$\therefore \quad r=\sqrt[3]{7.542 \times 10^{22}}=4.23 \times 10^{7} \mathrm{~m}=42300 \mathrm{~km}$
$\therefore \quad h=r-r_{E}=42300-6380=35920 \mathrm{~km}(\approx 36000 \mathrm{~km})$

Example 6-6: Geosynchronous satellite.

(b) the satellite's speed.

From previous slide:

$$
v=\sqrt{\frac{G m_{E}}{r}}=\sqrt{\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{4.23 \times 10^{7}}}=3070 \mathrm{~m} / \mathrm{s}
$$

(c) Compare to the speed of a satellite orbiting 200 km above Earth's surface.

From part (b) we see that $v \propto \sqrt{1 / r}$
$v^{\prime}=v \sqrt{\frac{r}{r^{\prime}}}=3070 \sqrt{\frac{42300}{6380+200}}=7780 \mathrm{~m} / \mathrm{s}$

6-4 Satellites and "Weightlessness"

Conceptual Example 6-7: Catching a satellite.
You are an astronaut in the space shuttle pursuing a satellite in need of repair. You find yourself in a circular orbit of the same radius as the satellite, but 30 km behind it. How will you catch up with it?

As $r=\frac{G m_{E}}{v^{2}} \quad \begin{aligned} & \text { If } v \text { increases }-r \text { must decrease } \\ & \text { or if } v \text { decreases }-r \text { must increase }\end{aligned}$
You have to drop into a lower orbit to speed up; when you get ahead of the satellite you need to slow down and get back into the higher orbit.

6-4 Satellites and "Weightlessness"
Objects in orbit are said to experience weightlessness. They do have a gravitational force acting on them, though!
The satellite and all its contents are in free fall, so there is no normal force. This is what leads to the experience of weightlessness.

6-4 Satellites and "Weightlessness"
More properly, this effect is called apparent weightlessness, because the gravitational force still exists. It can be experienced on Earth as well, but only briefly:

6-5 Kepler’s Laws and Newton's Synthesis

Kepler's laws describe planetary motion.

1. The orbit of each planet is an ellipse, with the Sun at one focus.

6-5 Kepler’s Laws and Newton's Synthesis

2. An imaginary line drawn from each planet to the Sun sweeps out equal areas in equal times.

6-5 Kepler's Laws and Newton's Synthesis

3. The square of a planet's orbital period is proportional to the cube of its mean distance from the Sun.

TABLE 6-2 Planetary Data
Applied to Kepler's Third Law

Planet	Mean Distance from Sun, s ($10^{6} \mathrm{~km}$)	Period, T (Earth yr)	$\begin{gathered} s^{3} / T^{2} \\ \left(10^{24} \frac{\mathrm{~km}^{3}}{\mathrm{yr}^{2}}\right) \end{gathered}$
Mercury	57.9	0.241	3.34
Venus	108.2	0.615	3.35
Earth	149.6	1.0	3.35
Mars	227.9	1.88	3.35
Jupiter	778.3	11.86	3.35
Saturn	1427	29.5	3.34
Uranus	2870	84.0	3.35
Neptune	4497	165	3.34
Pluto	5900	248	3.34

[^0]
6-5 Kepler's Laws and Newton's Synthesis

Kepler's laws can be derived from Newton's laws. In particular, Kepler's third law follows directly from the law of universal gravitation -equating the gravitational force with the centripetal force shows that, for any two planets (assuming circular orbits, and that the only gravitational influence is the Sun):

$$
\left(\frac{T_{1}}{T_{2}}\right)^{2}=\left(\frac{s_{1}}{s_{2}}\right)^{3} .
$$

6-5 Kepler's Laws and Newton's Synthesis

Example 6-8: Where is Mars?
Mars' period (its "year") was first noted by Kepler to be about 687 days (Earth-days),
which is ($687 \mathrm{~d} / 365 \mathrm{~d}$) $=1.88 \mathrm{yr}$ (Earth years). Determine the mean distance of Mars from the Sun using the Earth as a reference.
$\left(r_{\text {ES }}=1.50 \times 10^{11} \mathrm{~m}\right)$
$\left(\frac{T_{1}}{T_{2}}\right)^{2}=\left(\frac{r_{1}}{r_{2}}\right)^{3}$
$\therefore \quad \frac{r_{M S}}{r_{E S}}=\left(\frac{T_{M}}{T_{E}}\right)^{\frac{2}{3}}=\left(\frac{1.88}{1}\right)^{\frac{2}{3}}=1.52$
$\therefore \quad r_{M S}=1.52 \times 1.50 \times 10^{11}=2.28 \times 10^{11} \mathrm{~m}$

6-5 Kepler's Laws and Newton's Synthesis

 Example 6-9: The Sun's mass determined.Determine the mass of the Sun given the Earth's distance from the Sun as $r_{E S}=1.5 \times 10^{11} \mathrm{~m}$.
(Note: This an easier approach than Giancoli without having to prove Kepler's 3rd law.)

$$
\begin{aligned}
F_{C} & =\frac{m_{E} v_{E}^{2}}{r_{E S}}=\frac{G m_{E} m_{S}}{\left(r_{E S}\right)^{2}} \\
\text { and } \quad v_{E} & =\frac{2 \pi r_{E S}}{t}=\frac{2 \pi \times 1.5 \times 10^{11}}{365 \times 24 \times 60 \times 60}=3.00 \times 10^{4} \mathrm{~m} / \mathrm{s} \\
\therefore \quad m_{S} & =\frac{r_{E S} v_{E}^{2}}{G}=\frac{1.5 \times 10^{11} \times\left(3.00 \times 10^{4}\right)^{2}}{6.67 \times 10^{-11}} \\
& =2.0 \times 10^{30} \mathrm{~kg}
\end{aligned}
$$

6-5 Kepler's Laws and Newton's Synthesis Irregularities in planetary motion led to the discovery of Neptune, and irregularities in stellar motion have led to the discovery of many planets outside our solar system.

6-6 Gravitational Field

The gravitational field is the gravitational force per unit mass:

$$
\overrightarrow{\mathbf{g}}=\frac{\overrightarrow{\mathbf{F}}}{m}
$$

The gravitational field due to a single mass M is given by:

$$
\overrightarrow{\mathbf{g}}=-\frac{G M}{r^{2}} \hat{\mathbf{r}} .
$$

Summary of Chapter 6

- Newton's law of universal gravitation:

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

- Total force is the vector sum of individual forces.
- Satellites are able to stay in Earth orbit because of their large tangential speed.
- Newton's laws provide a theoretical base for Kepler's laws.

[^0]: Copyright © 2009 Pearson Education, Inc.

