Chapter 6: Mechanical Properties II

Outline

- Elastic recovery during plastic deformation
- Compressive, shear, and torsional deformation
- Hardness
- Variability of material properties
- Design/safety factors

Concepts of stress and strain

Compression tests

Elastic Deformation

Plastic Deformation (Metals)

Elastic Strain Recovery

Other Elastic Properties

Chapter 6 - 6

Useful Linear Elastic Relationships

• Simple torsion:

• Simple tension:

- Material, geometric, and loading parameters all contribute to deflection.
- Larger elastic moduli minimize elastic deflection.

Chapter 6 -

Hardness

- Resistance to permanently indenting the surface.
- Large hardness means:
 - --resistance to plastic deformation or cracking in compression.
 - --better wear properties.

Hardness: Measurement

- Rockwell
 - No major sample damage
 - Each scale runs to 130 but only useful in range 20-100.
 - Minor load 10 kg
 - Major load 60 (A), 100 (B) & 150 (C) kg
 - A = diamond, B = 1/16 in. ball, C = diamond
- HB = Brinell Hardness
 - TS (psia) = 500 x HB
 - *TS* (MPa) = 3.45 x HB

Hardness: Measurement

Test	Indenter	Shape of Indentation			Formula for
		Side View	Top View	Load	Hardness Number ^a
Brinell	10-mm sphere of steel or tungsten carbide		_;= d <	Р	$HB = \frac{2P}{\pi D[D - \sqrt{D^2 - d^2}]}$
Vickers microhardness	Diamond pyramid			Р	$\mathrm{HV}=1.854 P/d_{1}^{2}$
Knoop microhardness	Diamond pyramid	<i>l/b</i> = 7.11 <i>b/t</i> = 4.00		Р	$\mathbf{H}\mathbf{K} = 14.2P/l^2$
Rockwell and Superficial Rockwell	$\begin{cases} Diamond \\ cone \\ \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2} in. \\ diameter \\ steel spheres \end{cases}$			$ \begin{array}{c} 60 & \text{kg} \\ 100 & \text{kg} \\ 150 & \text{kg} \\ 150 & \text{kg} \\ 30 & \text{kg} \\ 45 & \text{kg} \end{array} $ Superficial Rockwell	

Table 6.5 Hardness Testing Techniques

^a For the hardness formulas given, P (the applied load) is in kg, while D, d, d₁, and l are all in mm.

Source: Adapted from H. W. Hayden, W. G. Moffatt, and J. Wulff, *The Structure and Properties of Materials*, Vol. III, *Mechanical Behavior*. Copyright © 1965 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

Hardness tests (continued)

- Rockwell and superficial rockwell
- 20<hardness<100

Table 6.5a	Rockwell Hardness Scales				
Scale Symbol	Indenter	Major Load (kg)			
А	Diamond	60			
В	$\frac{1}{16}$ in. ball	100			
С	Diamond	150			
D	Diamond	100			
Е	$\frac{1}{8}$ in. ball	100			
F	$\frac{1}{16}$ in. ball	60			
G	$\frac{1}{16}$ in. ball	150			
Н	$\frac{1}{8}$ in. ball	60			
K	$\frac{1}{8}$ in. ball	150			

Table 6.5b Superficial Rockwell Hardness Scales

Scale Symbol	Indenter	Major Load (kg)
15N	Diamond	15
30N	Diamond	30
45N	Diamond	45
15T	$\frac{1}{16}$ in. ball	15
30T	$\frac{1}{16}$ in. ball	30
45T	$\frac{1}{16}$ in. ball	45
15W	$\frac{1}{8}$ in. ball	15
30W	$\frac{1}{8}$ in. ball	30
45W	$\frac{1}{8}$ in. ball	45

Hardness tests

- Brinell: 10-mm sphere of steel or tungsten carbide
- Knoop and Vickers microhardness
- Hardness
 conversion

Correlation between hardness and tensile strength

- Relations between hardness and tensile strength for steel, brass, and cast iron.
- For most steels: TS (MPa)=3.45xHB TS (psi)=500xHB

Example

• Estimate the Brinell and Rockwell hardness for brass

FIGURE 6.12 The stress-strain behavior for the brass specimen

Errors and Measurements (lab)

Error in a scientific measurement usually does not mean a mistake or blunder. Instead, the terms "error" and "uncertainty" both refer to unavoidable imprecision in measurements.

Error analysis may seem tedious; however, without proper error analysis, no valid scientific conclusions can be drawn.

http://phys.columbia.edu/ ~tutorial/

Variability in Material Properties

- Elastic modulus is material property
- Critical properties depend largely on sample flaws (defects, etc.). Large sample to sample variability.
- Statistics

where *n* is the number of data points

Example

• Determine the average and standard deviation of tensile strength

Chapter 6 -

Design or Safety Factors

- Design uncertainties mean we do not push the limit.
- Factor of safety, N $\sigma_{working} = \frac{\sigma_y}{N}$ Often N is between 1.2 and 4
- Example: Calculate a diameter, *d*, to ensure that yield does not occur in the 1045 carbon steel rod below. Use a factor of safety of 5.

Summary

- Stress and strain: These are size-independent measures of load and displacement, respectively.
- Elastic behavior: This reversible behavior often shows a linear relation between stress and strain. To minimize deformation, select a material with a large elastic modulus (*E* or *G*).
- Plastic behavior: This permanent deformation behavior occurs when the tensile (or compressive) uniaxial stress reaches σ_v .
- Toughness: The energy needed to break a unit volume of material.
- Ductility: The plastic strain at failure.
- Hardness: Resistance to permanently indenting the surface.
- Safety: Design uncertainties mean we do not push the limit

