
1

MemoryMemoryyy

CS 2401 Comp. Org.
& Assembly

Memory -- Chapter 6 1

ObjectivesObjectives
Master the concepts of hierarchical memory

i iorganization.
Understand how each level of memory
contributes to system performance, and
how the performance is measured.
Master the concepts behind cache memory,
virtual memory memory segmentation

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 2

virtual memory, memory segmentation,
paging and address translation.

IntroductionIntroduction
Memory lies at the heart of the stored-
program computer (Von Neumann model)program computer (Von Neumann model).
In previous chapters, we studied the ways
in which memory is accessed by various
ISAs.
In this chapter, we focus on memory
organization or memory hierarchy systems.
A clear understanding of these ideas is
essential for the analysis of system

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 3

essential for the analysis of system
performance.

6.2 Types of Memory6.2 Types of Memory
There are two kinds of main memory:

random access memory, RAM random access memory, RAM
read-only-memory, ROM.

There are two types of RAM,
dynamic RAM (DRAM)
static RAM (SRAM).

DRAM consists of capacitors that slowly leak their
charge over time. Thus they must be refreshed every
few milliseconds to prevent data loss.
DRAM is “cheap” memory owing to its simple design

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 4

DRAM is cheap memory owing to its simple design.

2

6.2 Dynamic RAM6.2 Dynamic RAM
FPM RAM (Fast Page Mode RAM) -- 30 MHz
 allows faster access to data in the same row or page allows faster access to data in the same row or page.
 works by eliminating the need for a row address if data

is located in the row previously accessed.
EDO RAM (enhanced data-out RAM) -- 66 MHz
 can start fetching the next block of memory at the

same time that it sends the previous block to the CPU
BEDO RAM (burst enhanced data-out RAM)
 can process four memory addresses in one burst
 can only stay synchronized with the CPU clock for short

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 5

 can only stay synchronized with the CPU clock for short
periods

 can't keep up with processors whose buses run faster
than 66 MHz

6.2 Dynamic RAM6.2 Dynamic RAM
SDRAM (synchronous dynamic RAM) -- 100 MHz
 can run at much higher clock speeds than conventional can run at much higher clock speeds than conventional

memory
 synchronizes itself with the CPU's bus and is capable of

running at 133 MHz, about three times faster than
conventional FPM RAM, and about twice as fast EDO
DRAM and BEDO DRAM

DDR RAM (double data rate SDRAM) – 200MHz
 a type of SDRAM that supports data transfers on both

edges of each clock cycle (the rising and falling edges),
ff l d bl h h ' d h h

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 6

effectively doubling the memory chip's data throughput
 DDR-SDRAM also consumes less power

6.2 Static RAM6.2 Static RAM
SRAM consists of circuits similar to the D
flip-flop flip flop.
SRAM is very fast memory and it doesn’t
need to be refreshed like DRAM does. It is
used to build cache memory.
ROM also does not need to be refreshed,
either. In fact, it needs very little charge to
retain its memory.
O d

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 7

ROM is used to store permanent, or semi-
permanent data that persists even while
the system is turned off.

6.2 Static RAM6.2 Static RAM
RAM chip primary for special

high-speed memory called
level-1 cache memorylevel 1 cache memory
SRAM (static RAM) --
 faster and more

expensive than DRAM
 speeds between 8 and

12 ns
 synchronous or

asynchronous
 does not require a

refresh operation
PBSRAM (pipeline burst
SRAM)

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 8

SRAM) --
 collect and send multiple

request for memory as a
single pipelined request

3

6.3 The Memory Hierarchy6.3 The Memory Hierarchy
Generally speaking, faster memory is more
expensive than slower memoryexpensive than slower memory.
To provide the best performance at the
lowest cost, memory is organized in a
hierarchical fashion.
Small, fast storage elements are kept in the
CPU, larger, slower main memory is
accessed through the data bus.

(l) h

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 9

Larger, (almost) permanent storage in the
form of disk and tape drives is still further
from the CPU.

6.3 The Memory Hierarchy6.3 The Memory Hierarchy
This storage organization can be
thought of as a pyramid:

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 10

Storage HierarchyStorage Hierarchy
On-line storage (primary storage):

A storage that is actively accessible by the computer without g y y p
human interaction
Hard drive

Near-on-line storage (secondary storage)
A storage that can be accessible by the computer human
interaction
floppy disk
CD-R

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 11

Off-line storage (archival storage)
Use as a backup
magnetic tapes

6.3 The Memory Hierarchy6.3 The Memory Hierarchy
To access a particular piece of data, the
CPU fi d i CPU first sends a request to its nearest
memory, usually cache.
If the data is not in cache, then main
memory is queried. If the data is not in
main memory, then the request goes to
disk.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 12

disk.
Once the data is located, then the data,
and a number of its nearby data elements
are fetched into cache memory.

4

6.3 The Memory Hierarchy6.3 The Memory Hierarchy
This leads us to some definitions.

A hit is when data is found at a given memory level.A hit is when data is found at a given memory level.
A miss is when it is not found.
The hit rate is the percentage of time data is found at a
given memory level.
The miss rate is the percentage of time it is not.
Miss rate = 1 hit rate.
The hit time is the time required to access data at a
given memory level.
The miss penalty is the time required to process a miss,
i l di th ti th t it t k t l bl k f

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 13

including the time that it takes to replace a block of
memory plus the time it takes to deliver the data to the
processor.

6.3.1 Locality of Reference6.3.1 Locality of Reference
An entire blocks of data is copied after a hit
because the principle of locality tells us that because the principle of locality tells us that
once a byte is accessed, it is likely that a
nearby data element will be needed soon.
There are three forms of locality:

Temporal locality- Recently-accessed data
elements tend to be accessed again.
Spatial locality - Accesses tend to cluster (arrays

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 14

Spatial locality Accesses tend to cluster (arrays
or loops).
Sequential locality - Instructions tend to be
accessed sequentially.

6.4 Cache Memory6.4 Cache Memory
The purpose of cache memory is to speed up accesses
by storing recently used data closer to the CPU, y g y ,
instead of storing it in main memory.
Although cache is much smaller than main memory,
its access time is a fraction of that of main memory.
Unlike main memory, which is accessed by address,
cache is typically accessed by content; hence, it is
often called content addressable memory.
Because of this, a single large cache memory isn’t
always desirable-- it takes longer to search.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 15

6.4 Cache Memory6.4 Cache Memory
The “content” that is addressed in content
addressable cache memory is a subset of addressable cache memory is a subset of
the bits of a main memory address called a
field.
The fields into which a memory address is
divided provide a many-to-one mapping
between larger main memory and the
smaller cache memory.
Many blocks of main memory map to a

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 16

Many blocks of main memory map to a
single block of cache. A tag field in the
cache block distinguishes one cached
memory block from another.

5

6.4.1 Cache Mapping Schemes6.4.1 Cache Mapping Schemes
The simplest cache mapping scheme is direct mapped
cache.
In a direct mapped cache consisting of N blocks of
cache, block X of main memory maps to cache block Y
= X mod N.
Thus, if we have 10 blocks of cache, block 7 of cache
may hold blocks 7, 17, 27, 37, . . . of main memory.
Once a block of memory is copied into its slot in
cache, a valid bit is set for the cache block to let the
system know that the block contains valid data.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 17

What could happen without having a valid bit?

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 18

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
The diagram below is a schematic of what cache looks
like.

Block 0 contains multiple words from main memory,
identified with the tag 00000000. Block 1 contains
words identified with the tag 11110101

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 19

words identified with the tag 11110101.
The other two blocks are not valid.

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
The size of each field into which a memory address is
divided depends on the size of the cache.p
Suppose our memory consists of 214 words, cache has
16 = 24 blocks, and each block holds 8 words.

Thus memory is divided into 214 / 23 = 211 blocks.
For our field sizes, we know we need 4 bits for the
block, 3 bits for the word, and the tag is what’s left
over:

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 20

6

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
As an example, suppose a system using direct
mapping with 16 words of main memory divided into pp g y
8 blocks, 4 blocks cache.
Main memory consists of 24 words, cache has 4 = 22

blocks
For our field sizes, we know we need 2 bits for the
block, 1 bit for the word, and 1 bit for the tag

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 21

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme

Main Memory Maps to Cachey p
Block 0 (addresses 0, 1) Block 0

Block 1 (addresses 2, 3) Block 1

Block 2 (addresses 4, 5) Block 2

Block 3 (addresses 6, 7) Block 3

Block 4 (addresses 8, 10) Block 0

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 22

Block 5 (addresses 10, 11) Block 1

Block 6 (addresses 12, 13) Block 2

Block 7 (addresses 14, 15) Block 3

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
As an example, suppose a program
generates the address 1AA In 14-bit generates the address 1AA. In 14 bit
binary, this number is: 00000110101010.
The first 7 bits of this address go in the tag
field, the next 4 bits go in the block field,
and the final 3 bits indicate the word within
the block.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 23

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
If subsequently the program generates the address
1AB, it will find the data it is looking for in block 0101, , g ,
word 011.

However, if the program generates the address, 3AB,
instead the block loaded for address 1AA would be

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 24

instead, the block loaded for address 1AA would be
evicted from the cache, and replaced by the blocks
associated with the 3AB reference.

7

ExampleExample
1. Suppose a computer using 15-bit main

memory addresses and 64 blocks of
cache, each block contains 8 words.
a)How many blocks of main memory are there?
b)What is the format of a memory address as

seen by the cache, i.e., what are the sizes of
the tag block and word fields?the tag, block, and word fields?

c)To which cache block will the memory
reference 1028 map?

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 25

Problem 1 on Problem 1 on Page 320Page 320
1. Suppose a computer using direct

d h h 220 d f i mapped cache has 220 words of main
memory, and a cache of 32 blocks,
where each cache block contains 16
words.
a)How many blocks of main memory are there?
b)What is the format of a memory address as

 b th h i h t th i f seen by the cache, i.e., what are the sizes of
the tag, block, and word fields?

c)To which cache block will the memory
reference 0DB6316 map?

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 26

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
Suppose a program generates a series of
memory references such as: 1AB 3AB memory references such as: 1AB, 3AB,
1AB, 3AB, . . . The cache will continually
evict and replace blocks.
The theoretical advantage offered by the
cache is lost in this extreme case.
This is the main disadvantage of direct
mapped cache.
O h h h

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 27

Other cache mapping schemes are
designed to prevent this kind of thrashing.

6.4.1 Fully Associate Cache6.4.1 Fully Associate Cache
Instead of placing memory blocks in
specific cache locations based on memory specific cache locations based on memory
address, we could allow a block to go
anywhere in cache.
In this way, cache would have to fill up
before any blocks are evicted.
This is how fully associative cache works.

dd d l

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 28

A memory address is partitioned into only
two fields: the tag and the word.

8

6.4.1 Fully Associate Cache6.4.1 Fully Associate Cache
Suppose, as before, we have 14-bit memory
addresses and a cache with 16 blocks, each block of ,
size 8. The field format of a memory reference is:

When the cache is searched, all tags are searched in
parallel to retrieve the data quickly.
This requires special costly hardware

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 29

This requires special, costly hardware.

Problem 3 on Problem 3 on Page 320Page 320
3. Suppose a computer using fully

associative cache has 216 words of main associative cache has 2 words of main
memory and a cache of 64 blocks,
where each cache block contains 32
words.
a) How many blocks of main memory are

there?
b) What is the format of a memory address as

 b th h i h t th i f seen by the cache, i.e., what are the sizes of
the tag and word fields?

c) To which cache block will the memory
reference F8C9 map?

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 30

6.4.1 Cache Mapping Schemes6.4.1 Cache Mapping Schemes
You will recall that direct mapped cache
evicts a block whenever another memory evicts a block whenever another memory
reference needs that block.
With fully associative cache, we have no
such mapping, thus we must devise an
algorithm to determine which block to evict
from the cache.
The block that is evicted is the victim block.
h b f k

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 31

There are a number of ways to pick a
victim we will discuss that later.

6.4.1 Set Associate Cache6.4.1 Set Associate Cache
Set associative cache combines the ideas of direct
mapped cache and fully associative cache.pp y
An N-way set associative cache mapping is like direct
mapped cache in that a memory reference maps to a
particular location in cache.
Unlike direct mapped cache, a memory reference
maps to a set of several cache blocks, similar to the
way in which fully associative cache works.
Instead of mapping anywhere in the entire cache, a
memory reference can map only to the subset of

h l t

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 32

cache slots.

9

6.4.1 Set Associate Cache6.4.1 Set Associate Cache
The number of cache blocks per set in set associative
cache varies according to overall system design.g y g
For example, a 2-way set associative cache can be
conceptualized as shown in the schematic below.
Each set contains two different memory blocks.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 33

6.4.1 Set Associate Cache6.4.1 Set Associate Cache
In set associative cache mapping, a memory
reference is divided into three fields: tag, set, and g, ,
word, as shown below.
As with direct-mapped cache, the word field chooses
the word within the cache block, and the tag field
uniquely identifies the memory address.
The set field determines the set to which the memory
block maps.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 34

6.4.1 Set Associate Cache6.4.1 Set Associate Cache
Suppose we have a main memory of 214 bytes.
This memory is mapped to a 2-way set associative cache y pp y
having 16 blocks where each block contains 8 words.
Since this is a 2-way cache, each set consists of 2 blocks,
and there are 8 sets.
Thus, we need 3 bits for the set, 3 bits for the word, giving
8 leftover bits for the tag:

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 35

Problem 7 Page 321Problem 7 Page 321

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 36

10

6.4.2 Replacement Policies6.4.2 Replacement Policies
With fully associative and set associative cache, a
replacement policy is invoked when it becomes p p y
necessary to evict a block from cache.
An optimal replacement policy would be able to look
into the future to see which blocks won’t be needed
for the longest period of time.
Although it is impossible to implement an optimal
replacement algorithm, it is instructive to use it as a
benchmark for assessing the efficiency of any other
scheme we come up with.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 37

6.4.2 Replacement Policies6.4.2 Replacement Policies
The replacement policy that we choose depends upon
the locality that we are trying to optimize-- usually, y y g p y,
we are interested in temporal locality.
A least recently used (LRU) algorithm keeps track of
the last time that a block was accessed and evicts the
block that has been unused for the longest period of
time.
The disadvantage of this approach is its complexity:
LRU has to maintain an access history for each block,
which ultimately slows down the cache.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 38

6.4.2 Replacement Policies6.4.2 Replacement Policies
First-in, first-out (FIFO) is a popular cache
replacement policyreplacement policy.
In FIFO, the block that has been in the
cache the longest, regardless of when it
was last used.
A random replacement policy does what its
name implies: It picks a block at random
and replaces it with a new block.

d l l

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 39

Random replacement can certainly evict a
block that will be needed often or needed
soon, but it never thrashes.

6.4.3 Effective Access Time and 6.4.3 Effective Access Time and
Hit RatioHit Ratio

The performance of hierarchical memory is
measured by its effective access time measured by its effective access time
(EAT).
EAT is a weighted average that takes into
account the hit ratio and relative access
times of successive levels of memory.
The EAT for a two-level memory is given
by:

()

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 40

EAT = H AccessC + (1-H) AccessMM.
where H is the cache hit rate and AccessC and

AccessMM are the access times for cache and main
memory, respectively.

11

6.4.3 Effective Access Time and 6.4.3 Effective Access Time and
Hit RatioHit Ratio

For example, consider a system with a main memory
access time of 200ns supported by a cache having a access time of 200ns supported by a cache having a
10ns access time and a hit rate of 99%.
The EAT is:

0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns.
This equation for determining the effective access
time can be extended to any number of memory
levels, as we will see in later sections.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 41

Problem 9 Page 321Problem 9 Page 321

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 42

6.4.5 Cache Write Policies6.4.5 Cache Write Policies
Cache replacement policies must also take
into account dirty blocks those blocks that into account dirty blocks, those blocks that
have been updated while they were in the
cache.
Dirty blocks must be written back to
memory. A write policy determines how
this will be done.
There are two types of write policies, write
through and write back

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 43

through and write back.
Write through updates cache and main
memory simultaneously on every write.

6.4.5 Cache Write Policies6.4.5 Cache Write Policies
Write back (also called copyback) updates memory
only when the block is selected for replacement.y p
The disadvantage of write through is that memory
must be updated with each cache write, which slows
down the access time on updates. This slowdown is
usually negligible, because the majority of accesses
tend to be reads, not writes.
The advantage of write back is that memory traffic is
minimized, but its disadvantage is that memory does
not always agree with the value in cache, causing
problems in systems with many concurrent users

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 44

problems in systems with many concurrent users.

12

6.5 Virtual Memory6.5 Virtual Memory
Cache memory enhances performance by providing
faster memory access speed.y p
Virtual memory enhances performance by providing
greater memory capacity, without the expense of
adding main memory.
Instead, a portion of a disk drive serves as an
extension of main memory.
If a system uses paging, virtual memory partitions
main memory into individually managed page frames,
that are written (or paged) to disk when they are not
i di t l d d

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 45

immediately needed.

6.5 Virtual Memory6.5 Virtual Memory
Virtual address -- The logical or program address that the process
uses. The CPU generates an address in terms of virtual address.
Ph i l dd Th l dd i h i l Physical address -- The real address in physical memory.
Mapping -- The mechanism by which virtual addresses are
translated into physical ones.
Page frames -- The equal-size blocks into which main memory is
divided.
Pages -- The blocks into which virtual memory is divided, each
equal in size to page frame.
Paging -- The process of coping a virtual page from disk to page
frame in main memory.
Fragmentation -- Memory that becomes unsuable.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 46

g y
Page fault -- An event that occurs when a requested page is not in
main memory and must be copied into memory fromdisk.

6.5.1 Paging6.5.1 Paging
A physical address is the actual memory
address of physical memoryaddress of physical memory.
Programs create virtual addresses that are
mapped to physical addresses by the
memory manager.
Page faults occur when a logical address
requires that a page be brought in from
disk.

f h h

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 47

Memory fragmentation occurs when the
paging process results in the creation of
small, unusable clusters of memory
addresses.

6.5.1 Paging6.5.1 Paging
Main memory and virtual memory are divided into
equal sized pages.equal sized pages.
The entire address space required by a process need
not be in memory at once. Some parts can be on disk,
while others are in main memory.
Further, the pages allocated to a process do not need
to be stored contiguously-- either on disk or in
memory.
In this way, only the needed pages are in memory at

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 48

y, y p g y
any time, the unnecessary pages are in slower disk
storage.

13

6.5.1 Paging6.5.1 Paging
Information concerning the location of each page,
whether on disk or in memory, is maintained in a data y,
structure called a page table (shown below).
There is one page table for each active process.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 49

6.5.1 Paging6.5.1 Paging
When a process generates a virtual address, the
operating system translates it into a physical memory p g y p y y
address.
To accomplish this, the virtual address is divided into
two fields: A page field, and an offset field.
The page field determines the page location of the
address, and the offset indicates the location of the
address within the page.
The logical page number is translated into a physical
page frame through a lookup in the page table.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 50

6.5.1 Paging6.5.1 Paging
If the valid bit is zero in the page table entry for the
logical address, this means that the page is not in g , p g
memory and must be fetched from disk.

This is a page fault.
If necessary, a page is evicted from memory and is
replaced by the page retrieved from disk, and the valid
bit is set to 1.

If the valid bit is 1, the virtual page number is
replaced by the physical frame number.
The data is then accessed by adding the offset to the
physical frame number

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 51

physical frame number.

6.5.1 Paging6.5.1 Paging
Example: suppose a system has a virtual address space of
28 words and a physical address space of 4 page frames of
32 d h f32 words each frame.

We have 28/25 = 23 virtual pages.
A virtual address has 8 bits (28) with 5 bits for the page
field and 3 for the offset.
A physical memory address requires 7 bits (2225), the first
two bits for the page frame and the trailing 5 bits the
offset.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 52

14

6.5.1 Paging6.5.1 Paging
1. Extract the page number from the virtual address
2. Extract the offset from the virtual address
3. Translate the page number into physical page frame number by

accessing the page table.
a) Look up the page number in the page table using the virtual page

number as an index
b) Check the valid bit for the page

If the valid bit = 0, the system generates a page fault and the
operating system must intervene to
i. Locate the desired page on disk
ii. Find a free page frame. This may necessitate removing a “victim” page from

memory and copying it back to disk if memory is full.
iii. Copy the desired page into the free page frame in main memory.
iv Update the page table This virtual page just brought in must have its frame

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 53

iv. Update the page table. This virtual page just brought in must have its frame
number and valid bit in the page table modified. If there was a “victim” page,
its valid bit must be set to zero.

v. Resume execution of the process causing the page fault, cotinuing to step 2.
If the valid bit = 1, the page is in memory.
1. Replace the virtual page number with the actual frame number.
2. Access data at offset in physical page frame by adding the offset to the frame

number for the given virtual page.

6.5.1 Paging6.5.1 Paging
Suppose CPU generates the virtual address

13 0 000011011310 = 0D16 = 000011012

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 54

6.5.1 Paging6.5.1 Paging
Example: suppose a

program is 16 bytes
l hlong, has access to an 8-
byte memory that use
byte addressing and a
page is 2 bytes in length.
The program generates
the following address
reference strings:
0,1,2,3,4,6,7,10,11.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 55

6.5.1 Paging6.5.1 Paging
Example: suppose a system has a virtual address space of
8K and a physical address space of 4K with a 1k page, and
th t b t dd ithe system uses byte addressing.

We have 213/210 = 23 virtual pages.
A virtual address has 13 bits (8K = 213) with 3 bits for the
page field and 10 for the offset, because the page size is
1024.
A physical memory address requires 12 bits, the first two
bits for the page frame and the trailing 10 bits the offset.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 56

15

6.5.1 Paging6.5.1 Paging
Suppose we have the page table shown below.
What happens when CPU generates address 545910 = What happens when CPU generates address 545910
10101010100112?

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 57

6.5.1 Paging6.5.1 Paging
The address 10101010100112 is converted to physical
address 010101010011 because the page field 101 is p g
replaced by frame number 01 through a lookup in the
page table.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 58

6.5.1 Paging6.5.1 Paging
The address 205010 = 0100000000102 is converted to
physical address 00000000010 because the page field p y p g
010 is replaced by frame number 00 through a lookup
in the page table.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 59

6.5.1 Paging6.5.1 Paging
What happens when the CPU
generates address 10000000001002?

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 60

16

6.5.2 Effective Access Time Using 6.5.2 Effective Access Time Using
PagingPaging

We said earlier that effective access time
(EAT) takes all levels of memory into (EAT) takes all levels of memory into
consideration.
Thus, virtual memory is also a factor in the
calculation, and we also have to consider
page table access time.
Suppose a main memory access takes
200ns, the page fault rate is 1%, and it
takes 10ms to load a page from disk We

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 61

takes 10ms to load a page from disk. We
have:

EAT = 0.99(200ns + 200ns) 0.01(10ms) = 100,
396ns.

6.5.2 Effective Access Time 6.5.2 Effective Access Time
Using PagingUsing Paging

Even if we had no page faults, the EAT would be 400ns
because memory is always read twice: First to access the

 t bl d d t l d th f page table, and second to load the page from memory.
Because page tables are read constantly, it makes sense to
keep them in a special cache called a translation look-aside
buffer (TLB).
TLBs are a special associative cache that stores the
mapping of virtual pages to physical pages.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 62

6.5.2 Translation look6.5.2 Translation look--aside bufferaside buffer
1. Extract the page number from the virtual

addressaddress.
2. Extract the offset from the virtual address.
3. Search for the virtual page number in the TLB.
4. If the (virtual page #, page frame #) pair is

found in the TLB, add the offset to the physical
frame number and access the memory location.

5. If there is a TLB miss, go to the page table to
get the necessary frame number and add the

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 63

get the necessary frame number and add the
offset to yield the physical address.

6. If the page is not in main memory, generate a
page fault and restart the access when the page
fault is complete.

6.5.2 Translation look6.5.2 Translation look--aside bufferaside buffer

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 64

17

6.5.3 Using Cache, TLBs, and 6.5.3 Using Cache, TLBs, and
PagingPaging

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 65

6.5.4 Pros and Cons of Paging and 6.5.4 Pros and Cons of Paging and
Virtual MemoryVirtual Memory

Cons:
Time for memory referencing
More time needed if using TLB to cache table
entries
Memory overhead for storing page tables
Require special hardware and operating system
support

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 66

Pros:
Programs are not restricted by the amount of
physical memory
Run more programs

6.5.5 Segmentation6.5.5 Segmentation
Another approach to virtual memory is the use of
segmentation.g
Instead of dividing memory into equal-sized pages,
virtual address space is divided into variable-length
segments, often under the control of the programmer.
A segment is located through its entry in a segment
table, which contains the segment’s memory location
and a bounds limit that indicates its size.
After a page fault, the operating system searches for
a location in memory large enough to hold the

t th t i t i d f di k

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 67

segment that is retrieved from disk.

6.5.5 Segmentation6.5.5 Segmentation
Both paging and segmentation can cause
fragmentation.g
Paging is subject to internal fragmentation because a
process may not need the entire range of addresses
contained within the page. Thus, there may be many
pages containing unused fragments of memory.
Segmentation is subject to external fragmentation,
which occurs when contiguous chunks of memory
become broken up as segments are allocated and
deallocated over time.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 68

18

6.5.6 Paging Combined with 6.5.6 Paging Combined with
SegmentationSegmentation

Large page tables are cumbersome and slow, but with
its uniform memory mapping, page operations are y pp g, p g p
fast. Segmentation allows fast access to the segment
table, but segment loading is labor-intensive.
Paging and segmentation can be combined to take
advantage of the best features of both by assigning
fixed-size pages within variable-sized segments.
Each segment has a page table. This means that a
memory address will have three fields, one for the
segment, another for the page, and a third for the
offset

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 69

offset.

6.4 Cache Memory6.4 Cache Memory
The cache we have been discussing is
called a unified or integrated cache where called a unified or integrated cache where
both instructions and data are cached.
Many modern systems employ separate
caches for data and instructions.

This is called a Harvard cache.
The separation of data from instructions
provides better locality, at the cost of
g eate comple it

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 70

greater complexity.
Simply making the cache larger provides about
the same performance improvement without the
complexity.

6.4 Cache Memory6.4 Cache Memory
Cache performance can also be
improved by adding a small improved by adding a small
associative cache to hold blocks that
have been evicted recently.

This is called a victim cache.
A trace cache is a variant of an
instruction cache that holds decoded
i t ti f b h

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 71

instructions for program branches,
giving the illusion that noncontiguous
instructions are really contiguous.

6.4 Cache Memory6.4 Cache Memory
Most of today’s small systems employ
multilevel cache hierarchiesmultilevel cache hierarchies.
The levels of cache form their own small
memory hierarchy.
Level1 cache (8KB to 64KB) is situated on
the processor itself.

Access time is typically about 4ns.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 72

Level 2 cache (64KB to 2MB) may be on the
motherboard, or on an expansion card.

Access time is usually around 15 - 20ns.

19

6.4 Cache Memory6.4 Cache Memory
In systems that employ three levels of
cache the Level 2 cache is placed on the cache, the Level 2 cache is placed on the
same die as the CPU (reducing access time
to about 10ns)
Accordingly, the Level 3 cache (2MB to
256MB) refers to cache that is situated
between the processor and main memory.
Once the number of cache levels is
determined the next thing to consider is

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 73

determined, the next thing to consider is
whether data (or instructions) can exist in
more than one cache level.

6.4 Cache Memory6.4 Cache Memory
If the cache system used an inclusive
cache the same data may be present at cache, the same data may be present at
multiple levels of cache.
Strictly inclusive caches guarantee that all
data in a smaller cache also exists at the
next higher level.
Exclusive caches permit only one copy of
the data.
h d ff h h

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 74

The tradeoffs in choosing one over the
other involve weighing the variables of
access time, memory size, and circuit
complexity.

6.6 A Real6.6 A Real--World ExampleWorld Example
The Pentium architecture supports both paging and segmentation, and they
can be used in various combinations including unpaged unsegmented,
segmented unpaged, and unsegmented paged.segmented unpaged, and unsegmented paged.
The processor supports two levels of cache (L1 and L2), both having a block
size of 32 bytes.
The L1 cache is next to the processor, and the L2 cache sits between the
processor and memory.
The L1 cache is in two parts: and instruction cache (I-cache) and a data
cache (D-cache).
MESI cache coherency protocol: Every cache line is marked with one of the
four following states:

M - Modified: The cache line is present only in the current cache, and is dirty; it
has been modified from the value in main memory. The cache is required to write
the data back to main memory at some time in the future, before permitting any
other read of the (no longer valid) main memory state

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 75

other read of the (no longer valid) main memory state.
E - Exclusive: The cache line is present only in the current cache, but is clean; it
matches main memory.
S - Shared: Indicates that this cache line/block may be stored in other caches of
the machine.
I - Invalid: Indicates that this cache line/block is invalid.

6.6 A Real6.6 A Real--World ExampleWorld Example

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 76

20

6.6 A Real6.6 A Real--World ExampleWorld Example

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 77

ConclusionConclusion
Computer memory is organized in a hierarchy, with
the smallest, fastest memory at the top and the the smallest, fastest memory at the top and the
largest, slowest memory at the bottom.
Cache memory gives faster access to main memory,
while virtual memory uses disk storage to give the
illusion of having a large main memory.
Cache maps blocks of main memory to blocks of
cache memory. Virtual memory maps page frames to
virtual pages.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 78

There are three general types of cache: Direct
mapped, fully associative and set associative.

ConclusionConclusion
With fully associative and set associative

h ll i h i l cache, as well as with virtual memory,
replacement policies must be established.
Replacement policies include LRU, FIFO, or
LFU (least frequently used). These policies
must also take into account what to do with
dirty blocks.

CS 2401 Comp. Org. &
Assembly

Memory -- Chapter 6 79

dirty blocks.
All virtual memory must deal with
fragmentation, internal for paged memory,
external for segmented memory.

