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ObjectivesObjectives
Master the concepts of hierarchical memory 

i iorganization.
Understand how each level of memory 
contributes to system performance, and 
how the performance is measured.
Master the concepts behind cache memory, 
virtual memory  memory segmentation  
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virtual memory, memory segmentation, 
paging and address translation.

IntroductionIntroduction
Memory lies at the heart of the stored-
program computer (Von Neumann model)program computer (Von Neumann model).
In previous chapters, we studied the ways 
in which memory is accessed by various 
ISAs.
In this chapter, we focus on memory 
organization or memory hierarchy systems.  
A clear understanding of these ideas is 
essential for the analysis of system 
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essential for the analysis of system 
performance.

6.2 Types of Memory6.2 Types of Memory
There are two kinds of main memory: 

random access memory, RAM random access memory, RAM 
read-only-memory, ROM.

There are two types of RAM, 
dynamic RAM (DRAM) 
static RAM (SRAM).

DRAM consists of capacitors that slowly leak their 
charge over time.  Thus they must be refreshed every 
few milliseconds to prevent data loss.
DRAM is “cheap” memory owing to its simple design
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DRAM is cheap  memory owing to its simple design.
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6.2 Dynamic RAM6.2 Dynamic RAM
FPM RAM (Fast Page Mode RAM) -- 30 MHz
 allows faster access to data in the same row or page   allows faster access to data in the same row or page. 
 works by eliminating the need for a row address if data 

is located in the row previously accessed. 
EDO RAM (enhanced data-out RAM) -- 66 MHz
 can start fetching the next block of memory at the 

same time that it sends the previous block to the CPU
BEDO RAM (burst enhanced data-out RAM)
 can process four memory addresses in one burst
 can only stay synchronized with the CPU clock for short 
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 can only stay synchronized with the CPU clock for short 
periods

 can't keep up with processors whose buses run faster 
than 66 MHz

6.2 Dynamic RAM6.2 Dynamic RAM
SDRAM (synchronous dynamic RAM) -- 100 MHz
 can run at much higher clock speeds than conventional  can run at much higher clock speeds than conventional 

memory
 synchronizes itself with the CPU's bus and is capable of 

running at 133 MHz, about three times faster than 
conventional FPM RAM, and about twice as fast EDO 
DRAM and BEDO DRAM

DDR RAM (double data rate SDRAM) – 200MHz
 a type of SDRAM that supports data transfers on both 

edges of each clock cycle (the rising and falling edges), 
ff l d bl h h ' d h h
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effectively doubling the memory chip's data throughput 
 DDR-SDRAM also consumes less power

6.2 Static RAM6.2 Static RAM
SRAM consists of circuits similar to the D 
flip-flop  flip flop. 
SRAM is very fast memory and it doesn’t 
need to be refreshed like DRAM does.  It is 
used to build cache memory.
ROM also does not need to be refreshed, 
either.  In fact, it needs very little charge to 
retain its memory.
O d
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ROM is used to store permanent, or semi-
permanent data that persists even while 
the system is turned off.

6.2 Static RAM6.2 Static RAM
RAM chip primary for special 

high-speed memory called 
level-1 cache memorylevel 1 cache memory
SRAM (static RAM) --
 faster and more 

expensive than DRAM
 speeds between 8 and 

12 ns
 synchronous or 

asynchronous
 does not require a 

refresh operation
PBSRAM (pipeline burst 
SRAM) 
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SRAM) --
 collect and send multiple 

request for memory as a 
single pipelined request



3

6.3 The Memory Hierarchy6.3 The Memory Hierarchy
Generally speaking, faster memory is more 
expensive than slower memoryexpensive than slower memory.
To provide the best performance at the 
lowest cost, memory is organized in a 
hierarchical fashion.
Small, fast storage elements are kept in the 
CPU, larger, slower main memory is 
accessed through the data bus.

( l ) h
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Larger, (almost) permanent storage in the 
form of disk and tape drives is still further 
from the CPU.

6.3 The Memory Hierarchy6.3 The Memory Hierarchy
This storage organization can be 
thought of as a pyramid:
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Storage HierarchyStorage Hierarchy
On-line storage (primary storage):

A storage that is actively accessible by the computer without g y y p
human interaction
Hard drive

Near-on-line storage (secondary storage)
A storage that can be accessible by the computer human 
interaction 
floppy disk
CD-R
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Off-line storage (archival storage)
Use as a backup
magnetic tapes

6.3 The Memory Hierarchy6.3 The Memory Hierarchy
To access a particular piece of data, the 
CPU fi  d     i   CPU first sends a request to its nearest 
memory, usually cache.  
If the data is not in cache, then main 
memory is queried.  If the data is not in 
main memory, then the request goes to 
disk.
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disk.
Once the data is located, then the data, 
and a number of its nearby data elements 
are fetched into cache memory.
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6.3 The Memory Hierarchy6.3 The Memory Hierarchy
This leads us to some definitions.

A hit is when data is found at a given memory level.A hit is when data is found at a given memory level.
A miss is when it is not found.
The hit rate is the percentage of time data is found at a 
given memory level.
The miss rate is the percentage of time it is not. 
Miss rate = 1  hit rate.
The hit time is the time required to access data at a 
given memory level.
The miss penalty is the time required to process a miss, 
i l di  th  ti  th t it t k  t  l   bl k f 
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including the time that it takes to replace a block of 
memory plus the time it takes to deliver the data to the 
processor.

6.3.1 Locality of Reference6.3.1 Locality of Reference
An entire blocks of data is copied after a hit 
because the principle of locality tells us that because the principle of locality tells us that 
once a byte is accessed, it is likely that a 
nearby data element will be needed soon.
There are three forms of locality:

Temporal locality- Recently-accessed data 
elements tend to be accessed again.
Spatial locality - Accesses tend to cluster (arrays 
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Spatial locality Accesses tend to cluster (arrays 
or loops).
Sequential locality - Instructions tend to be 
accessed sequentially.

6.4 Cache Memory6.4 Cache Memory
The purpose of cache memory is to speed up accesses 
by storing recently used data closer to the CPU, y g y ,
instead of storing it in main memory.
Although cache is much smaller than main memory, 
its access time is a fraction of that of main memory.
Unlike main memory, which is accessed by address, 
cache is typically accessed by content; hence, it is 
often called content addressable memory.
Because of this, a single large cache memory isn’t 
always desirable-- it takes longer to search.
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6.4 Cache Memory6.4 Cache Memory
The “content” that is addressed in content 
addressable cache memory is a subset of addressable cache memory is a subset of 
the bits of a main memory address called a 
field.
The fields into which a memory address is 
divided provide a many-to-one mapping 
between larger main memory and the 
smaller cache memory.
Many blocks of main memory map to a 
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Many blocks of main memory map to a 
single block of cache.  A tag field in the 
cache block distinguishes one cached 
memory block from another.



5

6.4.1 Cache Mapping Schemes6.4.1 Cache Mapping Schemes
The simplest cache mapping scheme is direct mapped 
cache.
In a direct mapped cache consisting of N blocks of 
cache, block X of main memory maps to cache block Y 
= X mod N.
Thus, if we have 10 blocks of cache, block 7 of cache 
may hold blocks 7, 17, 27, 37, . . . of main memory.
Once a block of memory is copied into its slot in 
cache, a valid bit is set for the cache block to let the 
system know that the block contains valid data.
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What could happen without having a valid bit? 

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
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6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
The diagram below is a schematic of what cache looks 
like.

Block 0 contains multiple words from main memory, 
identified with the tag 00000000.  Block 1 contains 
words identified with the tag 11110101
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words identified with the tag 11110101.
The other two blocks are not valid.

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
The size of each field into which a memory address is 
divided depends on the size of the cache.p
Suppose our memory consists of 214 words, cache has 
16 = 24 blocks, and each block holds 8 words.

Thus memory is divided into 214 / 23 = 211 blocks.
For our field sizes, we know we need 4 bits for the 
block, 3 bits for the word, and the tag is what’s left 
over:
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6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
As an example, suppose a system using direct 
mapping with 16 words of main memory divided into pp g y
8 blocks, 4 blocks cache. 
Main memory consists of 24 words, cache has 4 = 22

blocks
For our field sizes, we know we need 2 bits for the 
block, 1 bit for the word, and 1 bit for the tag
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6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme

Main Memory Maps to Cachey p
Block 0 (addresses 0, 1) Block 0

Block 1 (addresses 2, 3) Block 1

Block 2 (addresses 4, 5) Block 2

Block 3 (addresses 6, 7) Block 3

Block 4 (addresses 8, 10) Block 0
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Block 5 (addresses 10, 11) Block 1

Block 6 (addresses 12, 13) Block 2

Block 7 (addresses 14, 15) Block 3

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
As an example, suppose a program 
generates the address 1AA  In 14-bit generates the address 1AA. In 14 bit 
binary, this number is: 00000110101010.
The first 7 bits of this address go in the tag 
field, the next 4 bits go in the block field, 
and the final 3 bits indicate the word within 
the block.
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6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
If subsequently the program generates the address 
1AB, it will find the data it is looking for in block 0101, , g ,
word 011.

However, if the program generates the address, 3AB, 
instead  the block loaded for address 1AA would be 

CS 2401 Comp. Org. & 
Assembly 

Memory -- Chapter 6 24

instead, the block loaded for address 1AA would be 
evicted from the cache, and replaced by the blocks 
associated with the 3AB reference.
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ExampleExample
1. Suppose a computer using 15-bit main 

memory addresses and 64 blocks of 
cache, each block contains 8 words. 
a)How many blocks of main memory are there?
b)What is the format of a memory address as 

seen by the cache, i.e., what are the sizes of 
the tag  block  and word fields?the tag, block, and word fields?

c)To which cache block will the memory 
reference 1028 map?
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Problem 1 on Problem 1 on Page 320Page 320
1. Suppose a computer using direct 

d h  h  220 d  f i  mapped cache has 220 words of main 
memory, and a cache of 32 blocks, 
where each cache block contains 16 
words.
a)How many blocks of main memory are there?
b)What is the format of a memory address as 

 b  th  h  i  h t  th  i  f seen by the cache, i.e., what are the sizes of 
the tag, block, and word fields?

c)To which cache block will the memory 
reference 0DB6316 map?

CS 2401 Comp. Org. & 
Assembly 

Memory -- Chapter 6 26

6.4.1 Direct Mapping Scheme6.4.1 Direct Mapping Scheme
Suppose a program generates a series of 
memory references such as: 1AB  3AB  memory references such as: 1AB, 3AB, 
1AB, 3AB, . . . The cache will continually 
evict and replace blocks.
The theoretical advantage offered by the 
cache is lost in this extreme case.
This is the main disadvantage of direct 
mapped cache.
O h h h
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Other cache mapping schemes are 
designed to prevent this kind of thrashing.

6.4.1 Fully Associate Cache6.4.1 Fully Associate Cache
Instead of placing memory blocks in 
specific cache locations based on memory specific cache locations based on memory 
address, we could allow a block to go 
anywhere in cache.
In this way, cache would have to fill up 
before any blocks are evicted.
This is how fully associative cache works.  

dd d l
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A memory address is partitioned into only 
two fields: the tag and the word.
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6.4.1 Fully Associate Cache6.4.1 Fully Associate Cache
Suppose, as before, we have 14-bit memory 
addresses and a cache with 16 blocks, each block of ,
size 8.  The field format of a memory reference is:

When the cache is searched, all tags are searched in 
parallel to retrieve the data quickly.
This requires special  costly hardware
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This requires special, costly hardware.

Problem 3 on Problem 3 on Page 320Page 320
3. Suppose a computer using fully 

associative cache has 216 words of main associative cache has 2 words of main 
memory and a cache of 64 blocks, 
where each cache block contains 32 
words.
a) How many blocks of main memory are 

there?
b) What is the format of a memory address as 

 b  th  h  i  h t  th  i  f seen by the cache, i.e., what are the sizes of 
the tag and word fields? 

c) To which cache block will the memory 
reference F8C9 map?
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6.4.1 Cache Mapping Schemes6.4.1 Cache Mapping Schemes
You will recall that direct mapped cache 
evicts a block whenever another memory evicts a block whenever another memory 
reference needs that block.
With fully associative cache, we have no 
such mapping, thus we must devise an 
algorithm to determine which block to evict 
from the cache.
The block that is evicted is the victim block.
h b f k
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There are a number of ways to pick a 
victim we will discuss that later.

6.4.1 Set Associate Cache6.4.1 Set Associate Cache
Set associative cache combines the ideas of direct 
mapped cache and fully associative cache.pp y
An N-way set associative cache mapping is like direct 
mapped cache in that a memory reference maps to a 
particular location in cache.
Unlike direct mapped cache, a memory reference 
maps to a set of several cache blocks, similar to the 
way in which fully associative cache works.
Instead of mapping anywhere in the entire cache, a 
memory reference can map only to the subset of 

h  l t

CS 2401 Comp. Org. & 
Assembly 

Memory -- Chapter 6 32

cache slots.
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6.4.1 Set Associate Cache6.4.1 Set Associate Cache
The number of cache blocks per set in set associative 
cache varies according to overall system design.g y g
For example, a 2-way set associative cache can be 
conceptualized as shown in the schematic below.
Each set contains two different memory blocks.
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6.4.1 Set Associate Cache6.4.1 Set Associate Cache
In set associative cache mapping, a memory 
reference is divided into three fields: tag, set, and g, ,
word, as shown below.
As with direct-mapped cache, the word field chooses 
the word within the cache block, and the tag field 
uniquely identifies the memory address.
The set field determines the set to which the memory 
block maps.
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6.4.1 Set Associate Cache6.4.1 Set Associate Cache
Suppose we have a main memory of 214 bytes.
This memory is mapped to a 2-way set associative cache y pp y
having 16 blocks where each block contains 8 words.
Since this is a 2-way cache, each set consists of 2 blocks, 
and there are 8 sets.
Thus, we need 3 bits for the set, 3 bits for the word, giving 
8 leftover bits for the tag:
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Problem 7 Page 321Problem 7 Page 321
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6.4.2  Replacement Policies6.4.2  Replacement Policies
With fully associative and set associative cache, a 
replacement policy is invoked when it becomes p p y
necessary to evict a block from cache.
An optimal replacement policy would be able to look 
into the future to see which blocks won’t be needed 
for the longest period of time.
Although it is impossible to implement an optimal 
replacement algorithm, it is instructive to use it as a 
benchmark for assessing the efficiency of any other 
scheme we come up with.
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6.4.2  Replacement Policies6.4.2  Replacement Policies
The replacement policy that we choose depends upon 
the locality that we are trying to optimize-- usually, y y g p y,
we are interested in temporal locality.
A least recently used (LRU) algorithm keeps track of 
the last time that a block was accessed and evicts the 
block that has been unused for the longest period of 
time.
The disadvantage of this approach is its complexity: 
LRU has to maintain an access history for each block, 
which ultimately slows down the cache.
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6.4.2  Replacement Policies6.4.2  Replacement Policies
First-in, first-out (FIFO) is a popular cache 
replacement policyreplacement policy.
In FIFO, the block that has been in the 
cache the longest, regardless of when it 
was last used.
A random replacement policy does what its 
name implies: It picks a block at random 
and replaces it with a new block.

d l l
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Random replacement can certainly evict a 
block that will be needed often or needed 
soon, but it never thrashes.

6.4.3  Effective Access Time and 6.4.3  Effective Access Time and 
Hit RatioHit Ratio

The performance of hierarchical memory is 
measured by its effective access time measured by its effective access time 
(EAT).
EAT is a weighted average that takes into 
account the hit ratio and relative access 
times of successive levels of memory.
The EAT for a two-level memory is given 
by:

( )
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EAT = H  AccessC + (1-H)  AccessMM.
where H is the cache hit rate and AccessC and 

AccessMM are the access times for cache and main 
memory, respectively.
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6.4.3  Effective Access Time and 6.4.3  Effective Access Time and 
Hit RatioHit Ratio

For example, consider a system with a main memory 
access time of 200ns supported by a cache having a access time of 200ns supported by a cache having a 
10ns access time and a hit rate of 99%.
The EAT is:

0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns.
This equation for determining the effective access 
time can be extended to any number of memory 
levels, as we will see in later sections.
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Problem 9 Page 321Problem 9 Page 321
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6.4.5  Cache Write Policies6.4.5  Cache Write Policies
Cache replacement policies must also take 
into account dirty blocks  those blocks that into account dirty blocks, those blocks that 
have been updated while they were in the 
cache.
Dirty blocks must be written back to 
memory.  A write policy determines how 
this will be done.
There are two types of write policies, write 
through and write back
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through and write back.
Write through updates cache and main 
memory simultaneously on every write.

6.4.5  Cache Write Policies6.4.5  Cache Write Policies
Write back (also called copyback) updates memory 
only when the block is selected for replacement.y p
The disadvantage of write through is that memory 
must be updated with each cache write, which slows 
down the access time on updates. This slowdown is 
usually negligible, because the majority of accesses 
tend to be reads, not writes.
The advantage of write back is that memory traffic is 
minimized, but its disadvantage is that memory does 
not always agree with the value in cache, causing 
problems in systems with many concurrent users
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problems in systems with many concurrent users.
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6.5 Virtual Memory6.5 Virtual Memory
Cache memory enhances performance by providing 
faster memory access speed.y p
Virtual memory enhances performance by providing 
greater memory capacity, without the expense of 
adding main memory.
Instead, a portion of a disk drive serves as an 
extension of main memory.
If a system uses paging, virtual memory partitions 
main memory into individually managed page frames, 
that are written (or paged) to disk when they are not 
i di t l  d d
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immediately needed.

6.5 Virtual Memory6.5 Virtual Memory
Virtual address -- The logical or program address that the process 
uses. The CPU generates an address in terms of virtual address.
Ph i l dd Th  l dd  i  h i l Physical address -- The real address in physical memory.
Mapping -- The mechanism by which virtual addresses are 
translated into physical ones.
Page frames -- The equal-size blocks into which main memory is 
divided.
Pages -- The blocks into which virtual memory is divided, each 
equal in size to page frame.
Paging -- The process of coping a virtual page from disk to page 
frame in main memory.
Fragmentation -- Memory that becomes unsuable.
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g y
Page fault -- An event that occurs when a requested page is not in 
main memory and must be copied into memory fromdisk. 

6.5.1 Paging6.5.1 Paging
A physical address is the actual memory 
address of physical memoryaddress of physical memory.
Programs create virtual addresses that are 
mapped to physical addresses by the 
memory manager.
Page faults occur when a logical address 
requires that a page be brought in from 
disk.

f h h
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Memory fragmentation occurs when the 
paging process results in the creation of 
small, unusable clusters of memory 
addresses.

6.5.1 Paging6.5.1 Paging
Main memory and virtual memory are divided into 
equal sized pages.equal sized pages.
The entire address space required by a process need 
not be in memory at once. Some parts can be on disk, 
while others are in main memory.
Further, the pages allocated to a process do not need 
to be stored contiguously-- either on disk or in 
memory.
In this way, only the needed pages are in memory at 
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y, y p g y
any time, the unnecessary pages are in slower disk 
storage.
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6.5.1 Paging6.5.1 Paging
Information concerning the location of each page, 
whether on disk or in memory, is maintained in a data y,
structure called a page table (shown below).
There is one page table for each active process.
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6.5.1 Paging6.5.1 Paging
When a process generates a virtual address, the 
operating system translates it into a physical memory p g y p y y
address.
To accomplish this, the virtual address is divided into 
two fields: A page field, and an offset field.
The page field determines the page location of the 
address, and the offset indicates the location of the 
address within the page.
The logical page number is translated into a physical 
page frame through a lookup in the page table.
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6.5.1 Paging6.5.1 Paging
If the valid bit is zero in the page table entry for the 
logical address, this means that the page is not in g , p g
memory and must be fetched from disk.

This is a page fault.
If necessary, a page is evicted from memory and is 
replaced by the page retrieved from disk, and the valid 
bit is set to 1.

If the valid bit is 1, the virtual page number is 
replaced by the physical frame number.
The data is then accessed by adding the offset to the 
physical frame number
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physical frame number.

6.5.1 Paging6.5.1 Paging
Example: suppose a system has a virtual address space of 
28 words and a physical address space of 4 page frames of 
32 d  h f32 words each frame.

We have 28/25 = 23 virtual pages.
A virtual address has 8 bits (28) with 5 bits for the page 
field and 3 for the offset.
A physical memory address requires 7 bits (2225), the first 
two bits for the page frame and the trailing 5 bits the 
offset.
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6.5.1 Paging6.5.1 Paging
1. Extract the page number from the virtual address
2. Extract the offset from the virtual address
3. Translate the page number into physical page frame number by 

accessing the page table.
a) Look up the page number in the page table using the virtual page 

number as an index
b) Check the valid bit for the page 

If the valid bit = 0, the system generates a page fault and the 
operating system must intervene to
i. Locate the desired page on disk
ii. Find a free page frame. This may necessitate removing a “victim” page from 

memory and copying it back to disk if memory is full.
iii. Copy the desired page into the free page frame in main memory.
iv Update the page table  This virtual page just brought in must have its frame 
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iv. Update the page table. This virtual page just brought in must have its frame 
number and valid bit in the page table modified. If there was a “victim” page, 
its valid bit must be set to zero.

v. Resume execution of the process causing the page fault, cotinuing to step 2.
If the valid bit = 1, the page is in memory.
1. Replace the virtual page number with the actual frame number.
2. Access data at offset in physical page frame by adding the offset to the frame 

number for the given virtual page.

6.5.1 Paging6.5.1 Paging
Suppose CPU generates the virtual address 

13 0 000011011310 = 0D16 = 000011012
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6.5.1 Paging6.5.1 Paging
Example: suppose a 

program is 16 bytes 
l hlong, has access to an 8-
byte memory that use 
byte addressing and a 
page is 2 bytes in length. 
The program generates 
the following address 
reference strings: 
0,1,2,3,4,6,7,10,11.
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6.5.1 Paging6.5.1 Paging
Example: suppose a system has a virtual address space of 
8K and a physical address space of 4K with a 1k page, and 
th  t   b t  dd ithe system uses byte addressing.

We have 213/210 = 23 virtual pages.
A virtual address has 13 bits (8K = 213) with 3 bits for the 
page field and 10 for the offset, because the page size is 
1024.
A physical memory address requires 12 bits, the first two 
bits for the page frame and the trailing 10 bits the offset.
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6.5.1 Paging6.5.1 Paging
Suppose we have the page table shown below.
What happens when CPU generates address 545910 = What happens when CPU generates address 545910  
10101010100112?
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6.5.1 Paging6.5.1 Paging
The address 10101010100112 is converted to physical 
address 010101010011 because the page field 101 is p g
replaced by frame number 01 through a lookup in the 
page table.
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6.5.1 Paging6.5.1 Paging
The address 205010 = 0100000000102 is converted to 
physical address 00000000010 because the page field p y p g
010 is replaced by frame number 00 through a lookup 
in the page table.
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6.5.1 Paging6.5.1 Paging
What happens when the CPU 
generates address 10000000001002?
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6.5.2 Effective Access Time Using 6.5.2 Effective Access Time Using 
PagingPaging

We said earlier that effective access time 
(EAT) takes all levels of memory into (EAT) takes all levels of memory into 
consideration.
Thus, virtual memory is also a factor in the 
calculation, and we also have to consider 
page table access time.
Suppose a main memory access takes 
200ns, the page fault rate is 1%, and it 
takes 10ms to load a page from disk   We 
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takes 10ms to load a page from disk.  We 
have:

EAT = 0.99(200ns + 200ns)  0.01(10ms) = 100, 
396ns.

6.5.2 Effective Access Time 6.5.2 Effective Access Time 
Using PagingUsing Paging

Even if we had no page faults, the EAT would be 400ns 
because memory is always read twice: First to access the 

 t bl  d d t  l d th   f  page table, and second to load the page from memory.
Because page tables are read constantly, it makes sense to 
keep them in a special cache called a translation look-aside 
buffer (TLB).
TLBs are a special associative cache that stores the 
mapping of virtual pages to physical pages.

CS 2401 Comp. Org. & 
Assembly 

Memory -- Chapter 6 62

6.5.2 Translation look6.5.2 Translation look--aside bufferaside buffer
1. Extract the page number from the virtual 

addressaddress.
2. Extract the offset from the virtual address.
3. Search for the virtual page number in the TLB.
4. If the (virtual page #, page frame #) pair is 

found in the TLB, add the offset to the physical 
frame number and access the memory location.

5. If there is a TLB miss, go to the page table to 
get the necessary frame number and add the 
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get the necessary frame number and add the 
offset to yield the physical address.

6. If the page is not in main memory, generate a 
page fault and restart the access when the page 
fault is complete.

6.5.2 Translation look6.5.2 Translation look--aside bufferaside buffer
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6.5.3 Using Cache, TLBs, and 6.5.3 Using Cache, TLBs, and 
PagingPaging
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6.5.4  Pros and Cons of Paging and 6.5.4  Pros and Cons of Paging and 
Virtual MemoryVirtual Memory

Cons:
Time for memory referencing
More time needed if using TLB to cache table 
entries
Memory overhead for storing page tables 
Require special hardware and operating system 
support

CS 2401 Comp. Org. & 
Assembly 

Memory -- Chapter 6 66

Pros:
Programs are not restricted by the amount of 
physical memory
Run more programs

6.5.5  Segmentation6.5.5  Segmentation
Another approach to virtual memory is the use of 
segmentation.g
Instead of dividing memory into equal-sized pages, 
virtual address space is divided into variable-length 
segments, often under the control of the programmer.
A segment is located through its entry in a segment 
table, which contains the segment’s memory location 
and a bounds limit that indicates its size.  
After a page fault, the operating system searches for 
a location in memory large enough to hold the 

t th t i  t i d f  di k
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segment that is retrieved from disk.

6.5.5  Segmentation6.5.5  Segmentation
Both paging and segmentation can cause 
fragmentation.g
Paging is subject to internal fragmentation because a 
process may not need the entire range of addresses 
contained within the page.  Thus, there may be many 
pages containing unused fragments of memory. 
Segmentation is subject to external fragmentation, 
which occurs when contiguous chunks of memory 
become broken up as segments are allocated and 
deallocated over time.

CS 2401 Comp. Org. & 
Assembly 

Memory -- Chapter 6 68



18

6.5.6 Paging Combined with  6.5.6 Paging Combined with  
SegmentationSegmentation

Large page tables are cumbersome and slow, but with 
its uniform memory mapping, page operations are y pp g, p g p
fast.  Segmentation allows fast access to the segment 
table, but segment loading is labor-intensive.
Paging and segmentation can be combined to take 
advantage of the best features of both by assigning 
fixed-size pages within variable-sized segments.
Each segment has a page table. This means that a 
memory address will have three fields, one for the 
segment, another for the page, and a third for the 
offset
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offset.

6.4 Cache Memory6.4 Cache Memory
The cache we have been discussing is 
called a unified or integrated cache where called a unified or integrated cache where 
both instructions and data are cached.
Many modern systems employ separate 
caches for data and instructions.

This is called a Harvard cache.
The separation of data from instructions 
provides better locality, at the cost of 
g eate  comple it
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greater complexity.
Simply making the cache larger provides about 
the same performance improvement without the 
complexity.

6.4 Cache Memory6.4 Cache Memory
Cache performance can also be 
improved by adding a small improved by adding a small 
associative cache to hold blocks that 
have been evicted recently.

This is called a victim cache.
A trace cache is a variant of an 
instruction cache that holds decoded 
i t ti  f   b h  
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instructions for program branches, 
giving the illusion that noncontiguous 
instructions are really contiguous.

6.4 Cache Memory6.4 Cache Memory
Most of today’s small systems employ 
multilevel cache hierarchiesmultilevel cache hierarchies.
The levels of cache form their own small 
memory hierarchy.
Level1 cache (8KB to 64KB) is situated on 
the processor itself.

Access time is typically about 4ns.
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Level 2 cache (64KB to 2MB) may be on the 
motherboard, or on an expansion card.

Access time is usually around 15 - 20ns.
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6.4 Cache Memory6.4 Cache Memory
In systems that employ three levels of 
cache  the Level 2 cache is placed on the cache, the Level 2 cache is placed on the 
same die as the CPU (reducing access time 
to about 10ns)
Accordingly, the Level 3 cache (2MB to 
256MB) refers to cache that is situated 
between the processor and main memory.
Once the number of cache levels is 
determined  the next thing to consider is 

CS 2401 Comp. Org. & 
Assembly 

Memory -- Chapter 6 73

determined, the next thing to consider is 
whether data (or instructions) can  exist in 
more than one cache level.

6.4 Cache Memory6.4 Cache Memory
If the cache system used an inclusive 
cache  the same data may be present at cache, the same data may be present at 
multiple levels of cache. 
Strictly inclusive caches guarantee that all 
data in a smaller cache also exists at the 
next higher level.
Exclusive caches permit only one copy of 
the data.
h d ff h h
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The tradeoffs in choosing one over the 
other involve weighing the variables of 
access time, memory size, and circuit 
complexity.

6.6 A Real6.6 A Real--World ExampleWorld Example
The Pentium architecture supports both paging and segmentation, and they 
can be used in various combinations including unpaged unsegmented, 
segmented unpaged, and unsegmented paged.segmented unpaged, and unsegmented paged.
The processor supports two levels of cache (L1 and L2), both having a block 
size of 32 bytes.
The L1 cache is next to the processor, and the L2 cache sits between the 
processor and memory.
The L1 cache is in two parts: and instruction cache (I-cache) and a data 
cache (D-cache).
MESI cache coherency protocol: Every cache line is marked with one of the 
four following states:

M - Modified: The cache line is present only in the current cache, and is dirty; it 
has been modified from the value in main memory. The cache is required to write 
the data back to main memory at some time in the future, before permitting any 
other read of the (no longer valid) main memory state  
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other read of the (no longer valid) main memory state. 
E - Exclusive: The cache line is present only in the current cache, but is clean; it 
matches main memory. 
S - Shared: Indicates that this cache line/block may be stored in other caches of 
the machine. 
I - Invalid: Indicates that this cache line/block is invalid.

6.6 A Real6.6 A Real--World ExampleWorld Example
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6.6 A Real6.6 A Real--World ExampleWorld Example
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ConclusionConclusion
Computer memory is organized in a hierarchy, with 
the smallest, fastest memory at the top and the the smallest, fastest memory at the top and the 
largest, slowest memory at the bottom.
Cache memory gives faster access to main memory, 
while virtual memory uses disk storage to give the 
illusion of having a large main memory.
Cache maps blocks of main memory to blocks of 
cache memory. Virtual memory maps page frames to 
virtual pages.
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There are three general types of cache: Direct 
mapped, fully associative and set associative.

ConclusionConclusion
With fully associative and set associative 

h   ll  i h i l  cache, as well as with virtual memory, 
replacement policies must be established.
Replacement policies include LRU, FIFO, or 
LFU (least frequently used). These policies 
must also take into account what to do with 
dirty blocks.
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dirty blocks.
All virtual memory must deal with 
fragmentation, internal for paged memory, 
external for segmented memory.


