
CMPS375 Class Notes (Chap06) Page 1 / 17 by Kuo-pao Yang

CHAPTER 6

Memory

6.1 Memory 281
6.2 Types of Memory 281
6.3 The Memory Hierarchy 283

6.3.1 Locality of Reference 285
6.4 Cache Memory 285

6.4.1 Cache Mapping Schemes 287
6.4.2 Replacement Policies 295
6.4.3 Effective Access Time and Hit Ratio 296
6.4.4 When Does Caching Break Down? 297
6.4.5 Cache Write Policies 297
6.4.6 Instruction and Data Caches 300
6.4.7 Levels of Cache 301

6.5 Virtual Memory 302
6.5.1 Paging 303
6.5.2 Effective Access Time Using Paging 310
6.5.3 Putting It All Together: Using Cache, TLBs, and Paging 311
6.5.4 Advantages and Disadvantages of Paging and Virtual Memory 313
6.5.5 Segmentation 314
6.5.6 Paging Combined with Segmentation 315

6.6 A Real-World Example of Memory Management 316
Chapter Summary 317

CMPS375 Class Notes (Chap06) Page 2 / 17 by Kuo-pao Yang

6.1 Memory 281

• In this chapter we examine the various types of memory and how each is part of

memory hierarchy system
• We then look at cache memory (a special high-speed memory) and a method that

utilizes memory to its fullest by means of virtual memory implemented via paging.

6.2 Types of Memory 281

• There are two kinds of main memory: random access memory, RAM, and read-only-

memory, ROM.
• There are two types of RAM, dynamic RAM (DRAM) and static RAM (SRAM).
• DRAM
• Dynamic RAM consists of capacitors that slowly leak their charge over time. Thus

they must be refreshed every few milliseconds to prevent data loss.
o DRAM is “cheap” memory owing to its simple design.
o It is used to build main memory.

• SRAM
o SRAM consists of circuits similar to the D flip-flop.
o SRAM is very fast memory and it doesn’t need to be refreshed like DRAM

does.
o It is used to build cache memory.

• ROM
o ROM also does not need to be refreshed, either. In fact, it needs very little

charge to retain its memory.
o ROM is used to store permanent or semi-permanent data that persists even

while the system is turned off.
• Types of DRAM (Basic operations of all DRAM memories are the same)

o MDRAM (Multibank DRAM)
o FPM RAM (Fast-Page Mode DRAM)
o SDRAM (Synchronous DRAM)
o DDR SDRAM (Double Data Rate Synchronous DRAM)

• Types of ROMs
o ROM (Read-Only Memory)
o PROM (Programmable Read-Only Memory)
o EPROM (Erasable PROM)
o EEPROM (Electrically Erasable PROM)

CMPS375 Class Notes (Chap06) Page 3 / 17 by Kuo-pao Yang

6.3 The Memory Hierarchy 283

• Generally speaking, faster memory is more expensive than slower memory.
• To provide the best performance at the lowest cost, memory is organized in a

hierarchical fashion.
• Small, fast storage elements are kept in the CPU, larger, slower main memory is

accessed through the data bus.
• Larger, (almost) permanent storage in the form of disk and tape drives is still further

from the CPU.

FIGURE 6.1 The Memory Hierarchy

6.3.1 Locality of Reference 285

• An entire blocks of data is copied after a hit because the principle of locality tells us

that once a byte is accessed, it is likely that a nearby data element will be needed soon.
• There are three forms of locality:

o Temporal locality: Recently-accessed data elements tend to be accessed again
in the near future.

o Spatial locality - Accesses tend to be clustered in the address space (for
example, as in array or loops).

o Sequential locality - Instructions tend to be accessed sequentially.

CMPS375 Class Notes (Chap06) Page 4 / 17 by Kuo-pao Yang

6.4 Cache Memory 285

• The purpose of cache memory is to speed up accesses by storing recently used data

closer to the CPU, instead of storing it in main memory.
• Although cache is much smaller than main memory, its access time is a fraction of

that of main memory.
• The computer uses the locality principle and transfers an entire block from main

memory into cache whenever it has to make a main memory access.
• Unlike main memory, which is accessed by address, cache is typically accessed by

content; hence, it is often called content addressable memory or CAM.
• A single large cache memory isn’t always desirable-- it takes longer to search.

6.4.1 Cache Mapping Schemes 287

• The CPU uses a specific mapping scheme that “converts” the main memory address

into a cache location.
• Many blocks of main memory map to a single block of cache.
• Direct Mapped Cache

o In a direct mapped cache consisting of N blocks of cache, block X of main
memory maps to cache block Y = X mod N.

o Thus, if we have 10 blocks of cache, block 7 of cache may hold blocks 7, 17,
27, 37, . . . of main memory.

FIGURE 6.2 Direct Mapping of Main Memory Blocks to Cache Blocks

CMPS375 Class Notes (Chap06) Page 5 / 17 by Kuo-pao Yang

o A tag field in the cache block distinguishes one cached memory block from

another.

FIGURE 6.3 A Closer Look at Cache

o Block 0 contains multiple words from main memory, identified with the tag
00000000. Block 1 contains words identified with the tag 11110101.

o The other two blocks are not valid.

o The size of each field into which a memory address is divided depends on the
size of the cache.

o Suppose our memory consists of 214 words, cache has 16 = 24 blocks, and
each block holds 8 words.

o Thus memory is divided into 214 / 23 = 211 blocks.
o For our field sizes, we know we need 4 bits for the block, 3 bits for the word,

and the tag is what’s left over:

o As an example, suppose a program generates the address 1AA. In 14-bit
binary, this number is: 00000110101010.

o The first 7 bits of this address go in the tag field, the next 4 bits go in the
block field, and the final 3 bits indicate the word within the block

.
o If subsequently the program generates the address 1AB, it will find the data it

is looking for in block 0101, word 011.

CMPS375 Class Notes (Chap06) Page 6 / 17 by Kuo-pao Yang

o However, if the program generates the address, 3AB, instead, the block loaded
for address 1AA would be evicted from the cache, and replaced.

• Fully Associative Cache
o Instead of placing memory blocks in specific cache locations based on

memory address, we could allow a block to go anywhere in cache.
o In this way, cache would have to fill up before any blocks are evicted.
o A memory address is partitioned into only two fields: the tag and the word.
o Suppose, as before, we have 14-bit memory addresses and a cache with 16

blocks, each block of size 8. The field format of a memory reference is:

FIGURE 6.8 The Main Memory Address Format for Associative Mapping

o The tag must be stored with each block in cache.
o When the cache is searched, all tags are searched in parallel to retrieve the

data quickly. This requires special, costly hardware.
o You will recall that direct mapped cache evicts a block whenever another

memory reference needs that block.
o With fully associative cache, we have no such mapping, thus we must devise

an algorithm to determine which block to evict from the cache.
o The block that is evicted is the victim block.

• Set Associative Cache
o Set associative cache combines the ideas of direct mapped cache and fully

associative cache.
o An N-way set associative cache mapping is like direct mapped cache in that a

memory reference maps to a particular location in cache.
o Unlike direct mapped cache, a memory reference maps to a set of several

cache blocks, similar to the way in which fully associative cache works.
o Instead of mapping anywhere in the entire cache, a memory reference can

map only to the subset of cache slots.
o The number of cache blocks per set in set associative cache varies according

to overall system design.
o For example, a 2-way set associative cache can be conceptualized as shown

in the schematic below.
o Each set contains two different memory blocks.

FIGURE 6.9 A Two-Way Set Associative Cache

CMPS375 Class Notes (Chap06) Page 7 / 17 by Kuo-pao Yang

o Suppose we have a main memory of 214 bytes.
o This memory is mapped to a 2-way set associative cache having 16 blocks

where each block contains 8 words.
o Since this is a 2-way cache, each set consists of 2 blocks, and there are 8 sets.
o Thus, we need 3 bits for the set, 3 bits for the word, giving 8 leftover bits for

the tag:

FIGURE 6.10 Format for Set Associative Mapping

6.4.2 Replacement Policies 295

• The existing block is kicked out of cache to make roon for the new block. This

process is called replacement.
• With direct mapping, there is no need for a replacement policy.
• LRU

o A least recently used (LRU) algorithm keeps track of the last time that a
block was assessed and evicts the block that has been unused for the longest
period of time.

o The disadvantage of this approach is its complexity: LRU has to maintain an
access history for each block, which ultimately slows down the cache.

• FIFO
o First-in, first-out (FIFO) is a popular cache replacement policy.
o In FIFO, the block that has been in the cache the longest, regardless of when it

was last used.
• Random

o A random replacement policy does what its name implies: It picks a block at
random and replaces it with a new block.

o Random replacement can certainly evict a block that will be needed often or
needed soon, but it never thrashes (constantly throw out a block, then bring it
back, then throw out it out, then bring it back, repeatedly).

6.4.3 Effective Access Time and Hit Ratio 296

• The performance of hierarchical memory is measured by its effective access time

(EAT).
• EAT is a weighted average that takes into account the hit ratio and relative access

times of successive levels of memory.
The EAT for a two-level memory is given by:

CMPS375 Class Notes (Chap06) Page 8 / 17 by Kuo-pao Yang

 EAT = H × AccessC + (1-H) × AccessMM.

where H is the cache hit rate and AccessC and AccessMM are the access times
for cache and main memory, respectively.

• For example, consider a system with a main memory access time of 200ns supported
by a cache having a 10ns access time and a hit rate of 99%.

The EAT is:
 0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns.

6.4.4 When Does Caching Break Down? 297

• In particular, object-oriented programming can cause programs to exhibit less than

optimal locality.
• Another example of bad locality can be seen in two dimensional array access. Arrays

are typically stored in row-major order.
o 5 X 4 array. If a program accesses the array in row-major order. So 5 X 4

array would produce 5 misses and 15 hits over 20 accesses.
o If a program accesses the array in column-major order. So 5 X 4 array

would produce 20 misses on 20 accesses.
• A third example would be a program that loops through a linear array that does not

fit in cache. There would be a significant reduction in the locality when memory is
used in this fashion.

6.4.5 Cache Write Policies 297

• Cache replacement policies must also take into account dirty blocks, those blocks that

have been updated while they were in the cache.
• Dirty blocks must be written back to memory. A write policy determines how this

will be done.
• There are two types of write policies, write through and write back.

o Write through updates cache and main memory simultaneously on every write.
o Write back (also called copyback) updates memory only when the block is

selected for replacement.
• The disadvantage of write through is that memory must be updated with each cache

write, which slows down the access time on updates. This slowdown is usually
negligible, because the majority of accesses tend to be reads, not writes.

• The advantage of write back is that memory traffic is minimized, but its
disadvantage is that memory does not always agree with the value in cache, causing
problems in systems with many concurrent users.

CMPS375 Class Notes (Chap06) Page 9 / 17 by Kuo-pao Yang

6.4.6 Instruction and Data Caches 300

• The cache we have been discussing is called a unified or integrated cache where

both instructions and data are cached.
• Harvard cache: Many modern systems employ separate caches for data and

instructions.
• The separation of data from instructions provides better locality, at the cost of greater

complexity.
• Cache performance can also be improved by adding a small associative cache to hold

blocks that have been evicted recently. This is called a victim cache.
• A trace cache is a variant of an instruction cache that holds decoded instructions for

program branches, giving the illusion that noncontiguous instructions are really
contiguous.

6.4.7 Levels of Cache 301

• Most of today’s small systems employ multilevel cache hierarchies.
• The levels of cache form their own small memory hierarchy.
• Level1 cache (8KB to 64KB) is situated on the processor itself.

o Access time is typically about 4ns.
• Level 2 cache (64KB to 2MB) is typically located external to the processor, may be

on the motherboard, or on an expansion card.
o Access time is usually around 15 - 20ns.

• In systems that employ three levels of cache, the Level 2 cache is placed on the same
die as the CPU (reducing access time to about 10ns)

• Accordingly, the Level 3 cache (2MB to 256MB) refers to cache that is situated
between the processor and main memory.

• Once the number of cache levels is determined, the next thing to consider is whether
data (or instructions) can exist in more than one cache level.

• If the cache system used an inclusive cache, the same data may be present at multiple
levels of cache. For example, in the Intel Pentium family, data found in L1 may also
exist in L2

• Strictly inclusive caches guarantee that all data in a smaller cache also exists at the
next higher level.

• Exclusive caches permit only one copy of the data.
• Separate data and instruction caches: For example, the Intel Celeron uses two

separate L1 caches, one for instructions and one for data.

CMPS375 Class Notes (Chap06) Page 10 / 17 by Kuo-pao Yang

6.5 Virtual Memory 302

• Cache memory enhances performance by providing faster memory access speed.
• Virtual memory enhances performance by providing greater memory capacity,

without the expense of adding main memory.
• Instead, a portion of a disk drive serves as an extension of main memory.
• If a system uses paging, virtual memory partitions main memory into individually

managed page frames that are written (or paged) to disk when they are not
immediately needed.

• Virtual address: The logical or program address that the process uses. Whenever the
CPU generates an address, it is always in terms of virtual address space.

• Physical address: The real address in physical memory.
• Page frames: The equal-size chunks or blocks into which main memory (physical

memory) is divided.
• Pages: The chunks or blocks into which virtual memory (the logical address) is

divided, each equal in size to a page frame.
• Paging: The process of copying a virtual page from disk to a page frame in main

memory.
• Fragmentation: Memory that becomes unusable.
• Page fault: An event that occurs when a requested page is not in main memory and

must be copied int memory from disk.
• We need not have all of the process in main memory at once. The entire address

space required by a process need not be in memory at once. Some parts can be on
disk, while others are in main memory.

CMPS375 Class Notes (Chap06) Page 11 / 17 by Kuo-pao Yang

6.5.1 Paging 303

• The basic idea behind paging is quite simple: Allocate physical memory to processes

in fixed size chucks (page frames) and keep track of where various pages of the
process reside by recording information in a page table.

• Every process has its own page table that typically resides in main memory.
• If the page is in main memory the valid bit is set to 1.
• Process memory is divided into these fixed size pages, resulting in potential internal

fragmentation when the last page is copied into memory.
• The operating system must dynamically translate this virtual address into the

physical address in memory at which the data actually resides.
• The newly retrieved page can be placed in any of those free frames.
• For example,

o Suppose we have a virtual address space of 28 words for a given process, and
physical memory of 4 page frames.

o Assume also that pages are 32 words in length.

FIGURE 6.11 Current State Using Paging and the Associated Page

FIGURE 6.12 Format for an 8-Bit Virtual Address with 25 = 32 Word Page Size.

FIGURE 6.13 Format for Virtual Address 000011012 = 1310

FIGURE 6.14 Format for Physical address 10011012 = 7710

CMPS375 Class Notes (Chap06) Page 12 / 17 by Kuo-pao Yang

6.5.2 Effective Access Time Using Paging 310

• We said earlier that effective access time (EAT) takes all levels of memory into

consideration.
• Thus, virtual memory is also a factor in the calculation, and we also have to consider

page table access time.
• Suppose a main memory access takes 200ns, the page fault rate is 1%, and it takes

10ms to load a page from disk. We have:

EAT = 0.99(200ns + 200ns) + 0.01(10ms) = 100, 396ns

• Even if we had no page faults, the EAT would be 400ns because memory is always
read twice: First to access the page table (the page itself is stored in main memory),
and second to load the page from memory.

• Because page tables are read constantly, it makes sense to keep them in a special
cache called a translation look-aside buffer (TLB).

• Typically, the TLB is a special associative cache that stores the mapping of virtual
pages to physical pages.

TABLE 6.2 Current State of the TLB for Figure 6.16

CMPS375 Class Notes (Chap06) Page 13 / 17 by Kuo-pao Yang

6.5.3 Putting It All Together: Using Cache, TLBs, and Paging 311

FIGURE 6.17 Using the TLB

CMPS375 Class Notes (Chap06) Page 14 / 17 by Kuo-pao Yang

FIGURE 6.18 Putting it All Together: The TLB, Page Table, Cache and Main Memory

6.5.4 Advantages and Disadvantages of Paging and Virtual Memory 313

• Programs are no longer restricted by the amount of physical memory that is available.

Virtual address space is larger than physical memory.
• Because each program requires less physical memory, virtual memory also permits us

to run more programs at the same time.
• Increase in CPU utilization and system throughput.

6.5.5 Segmentation 314

• Instead of dividing memory into equal-sized pages, virtual address space is divided

into variable-length segments, often under the control of the programmer.
• A segment is located through its entry in a segment table, which contains the

segment’s memory location and a bounds limit that indicates its size.
• This segment table is simply a collection of the base/bounds pairs for each segment.
• Both paging and segmentation can cause fragmentation.

o Paging is subject to internal fragmentation because a process may not need
the entire range of addresses contained within the page. Thus, there may be
many pages containing unused fragments of memory.

o Segmentation is subject to external fragmentation, which occurs when
contiguous chunks of memory become broken up as segments are allocated
and deallocated over time.

CMPS375 Class Notes (Chap06) Page 15 / 17 by Kuo-pao Yang

o To combat external fragmentation, system use some sort of garbage
collection.

6.5.6 Paging Combined with Segmentation 315

• Paging and segmentation can be combined to take advantage of the best features of

both by assigning fixed-size pages within variable-sized segments.
• Pages are typically smaller than segments.
• Each segment has a page table, which means every program has multiple page tables.

This means that a memory address will have three fields:
o The first field is the segment field, which points the system to the appropriate

page table.
o The second field is the page number, which is used as an offset into this page

table.
o The third field is the offset within the page

CMPS375 Class Notes (Chap06) Page 16 / 17 by Kuo-pao Yang

6.6 A Real-World Example of Memory Management 316

• The Pentium architecture allows for 32-bit virtual addresses and 32-bit physical

addresses.
• It uses either 4KB or 4MB page size, when using paging.
• The Pentium architecture supports both paging and segmentation, and they can be

used in various combinations including unpaged unsegmented, segmented unpaged,
and unsegmented paged.

• The processor supports two levels of cache (L1 and L2), both having a block size of
32 bytes.

• The L1 cache is next to the processor, and the L2 cache sits between the processor
and memory.

• The L1 cache is in two parts: and instruction cache (I-cache) and a data cache (D-
cache).

FIGURE 6.19 Pentium Memory Hierarchy

CMPS375 Class Notes (Chap06) Page 17 / 17 by Kuo-pao Yang

Chapter Summary 317

• Computer memory is organized in a hierarchy, with the smallest, fastest memory at

the top and the largest, slowest memory at the bottom.
• Cache memory gives faster access to main memory, while virtual memory uses disk

storage to give the illusion of having a large main memory.
• Cache maps blocks of main memory to blocks of cache memory. Virtual memory

maps page frames to virtual pages.
• There are three general types of cache: Direct mapped, fully associative and set

associative. With fully associative and set associative cache, as well as with virtual
memory, replacement policies must be established.

• All virtual memory must deal with fragmentation, internal for paged memory,
external for segmented memory.

• Replacement policies include LRU, FIFO, or some other placement policy to
determine the block to remove from cache to make room for a new block, if cache is
full.

• Virtual memory allows us to run programs whose virtual address is larger than
physical memory. It also allows more processes to run concurrently.

• TLB is a cache
• Cache improves the effective access time to main memory whereas paging extends

the size of memory.

