
CHAPTER	6	
NAVIER-STOKES	SOLUTION	FOR	BLASIUS	
	
We	are	discussion	about	2-D	laminar	boundary	layer.	
From	previous	lesson,	we	could	write	the	x-component	Navier-Stokes	equation	as:	
	

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦 + 𝑤

𝜕𝑢
𝜕𝑧 = 𝑔! −

1
𝜌
𝜕𝑃
𝜕𝑥 + 𝜈 a

𝜕"𝑢
𝜕𝑥" +

𝜕"𝑢
𝜕𝑦" +

𝜕"𝑢
𝜕𝑧"b	

	

Flow	is	laminar	(steady	flow)	 𝜕𝑢
𝜕𝑡 = 0	

2-D	flow,	𝑧	axis	is	not	existing	 𝑤 = 0	

Gravity	is	not	acting	in	x-axis	 𝑔! = 0	

2-D	flow,	𝑧	axis	is	not	existing	 𝜕"𝑢
𝜕𝑧" = 0	

	
Then,	Navier-Stokes	equation	becomes:	
	

𝑢
𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦 = −

1
𝜌
𝜕𝑃
𝜕𝑥 + 𝜈 a

𝜕"𝑢
𝜕𝑥" +

𝜕"𝑢
𝜕𝑦"b	

	 	



It	can	write	as:	
	

𝑢
𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦 = −

1
𝜌
𝜕𝑃
𝜕𝑥 + 𝜈

𝜕"𝑢
𝜕𝑥" + 𝜈

𝜕"𝑢
𝜕𝑦"	

	
Here	;	

𝜈 = kinematic	viscosity	
	
We	substitute	these	nondimensional	variables:	
	

𝑥∗ =
𝑥
𝐿	

𝑦∗ =
𝑦
𝛿	 𝑢∗ =

𝑢
𝑈	 𝑣∗ =

𝑣𝐿
𝑈𝛿	

𝑃∗ =
𝑃 − 𝑃$
𝜌𝑈" 	

	
	 	



<	Note	>	

	
	
From	the	continuity	equation,	we	know	that	;	
	

𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 = 0	

	
We	can	make	an	equivalence	relation	as	;	
	

𝑈
𝐿 ~

𝑣
𝛿	

	
Read	as,	equivalence	relation	between		%

&
		and		'

(
	.	

	 	



	
Nondimensional	means	unity	(or	one).	
	
Then,	we	could	have	the	nondimensional	variable	for		𝑣		as	:	
	

𝑣∗ =
𝑣𝐿
𝑈𝛿	

	
	
	 	



	

𝑢	 𝜕𝑢
𝜕𝑥	

+	 𝑣	
𝜕𝑢
𝜕𝑦	 =	 −

1
𝜌
𝜕𝑃
𝜕𝑥	 +	 𝜈

𝜕"𝑢
𝜕𝑥"	

+	 𝜈
𝜕"𝑢
𝜕𝑦"	

𝑢∗𝑈	 𝜕
𝜕𝑥∗

𝑢∗𝑈
𝐿 	 +	 𝑢∗

𝑈𝛿
𝐿 	

𝜕
𝜕𝑦∗

𝑢∗𝑈
𝛿 	 =	 −

1
𝜌
𝜕
𝜕𝑥∗

𝑃∗𝜌𝑈"

𝐿 	 +	 𝜈
𝜕"

𝜕𝑥∗"
𝑢∗𝑈
𝐿" 	

+	 𝜈
𝜕"

𝜕𝑦∗"
𝑢∗𝑈
𝛿" 	

	
Rearrange	the	terms,	and	multiplying	each	term	by			 &

%!
			,	we	can	get	;	

	

𝑢∗
𝜕𝑢∗

𝜕𝑥∗ + 𝑣
∗ 𝜕𝑢

∗

𝜕𝑦∗ = −
𝜕𝑃∗

𝜕𝑥∗ + p
𝜈
𝑈𝐿q

𝜕"𝑢∗

𝜕𝑥∗" + p
𝜈
𝑈𝐿q r

𝐿
𝛿s

" 𝜕"𝑢∗

𝜕𝑦∗" 	

	
We	focus	on	the	last	term.	Because	above	parameters	are	nondimensional	(or	unity),	the	extra	term	
must	also	be	of	order	unity.	We	can	write	as	;	
	

p
𝜈
𝑈𝐿q r

𝐿
𝛿s

"
	~		1	

	
	
	 	



Reynolds	number	can	be	written	as	;	
	

𝑅𝑒 =
𝑈𝐿
𝜈 	

	
We	could	get	;	
	

𝛿
𝐿 		~		

1
√𝑅𝑒

	

	
Or	
	

𝛿		~		
1 × 𝐿
√𝑅𝑒

	

	
	 	



Pressure	in	the	boundary	layer	
	

	

The	pressure	across	boundary	layer	(y-
direction)	is	nearly	constant.	
	

𝜕𝑃
𝜕𝑦 ≈ 0	

However,	pressure	across	the	x-direction	of	the	
boundary	layer	cannot	be	assumed	as	zero.	The	
value	of	the	pressure	can	be	calculated	but	it	is	

make	the	equation	more	complicated.	

	
	
	 	



	

	

The	pressure	at	the	outer	edge	of	a	boundary	
layer	can	be	measured	experimentally	by	a	
static	pressure	tap	at	the	wall	directly	beneath	
the	boundary	layer	
	
Potential	flow	analysis	and	Bernoulli	equation	
may	also	be	used	to	calculate	the	pressure	of	
the	boundary	layer.	

	
From	Bernoulli	equation:	

𝑃
𝜌 +

1
2𝑈

" = constant	

	
Then,		

1
𝜌
𝑑𝑃
𝑑𝑥 = −𝑈

𝑑𝑈
𝑑𝑥	

	 	



Boundary	layer	equation	from	Navier-Stokes	equation	
	

𝑢
𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦 = −

1
𝜌
𝜕𝑃
𝜕𝑥 + 𝜈

𝜕"𝑢
𝜕𝑥" + 𝜈

𝜕"𝑢
𝜕𝑦"	

	

1
𝜌
𝜕𝑃
𝜕𝑥	

This	term	can	be	replaced	by:	

−𝑈
𝑑𝑈
𝑑𝑥	

𝜈
𝜕"𝑢
𝜕𝑥"	

This	term	can	be	ignored.	Since,	

kinematic	viscosity,	𝜈	,	is	too	small.		

The	changes	of	velocity,	𝑢	,	along	the	𝑥-

direction	also	too	small.	The	sum	will	

be	too	small.	

	
	
	 	



The	boundary	layer	equations	become:	
	
	

𝜕𝑢
𝜕𝑥 +

𝜕𝑢
𝜕𝑦 = 0	

	
	

𝑢
𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦 = 𝑈

𝑑𝑈
𝑑𝑥 + 𝜈

𝜕!𝑢
𝜕𝑦!	

	
	 	



Boundary	condition	
	
	

	
	 	



	
There	are	three	boundary	conditions	that	can	be	specified	from	the	boundary	layer	phenomenon:	
	

𝑢 = 𝑣 = 0						𝑎𝑡						𝑦 = 0	
	

𝑢 = 𝑈(𝑥)						𝑎𝑠						𝑦	 → 	∞	
	

𝑢 = 𝑢)*+,*-./(𝑦)						𝑎𝑡						𝑥 = 𝑥)*+,*-./	
	

where		𝑥)*+,*-./		may	or	may	not	be	zero	
	
	
	
	 	



Blasius	solution	
	
Assumption	for	Blasius	solution:	
	
1. The	flow	is	steady,	incompressible	and	two-dimensional	in	the	xy-plane.		
2. The	Reynolds	number	is	high	enough	that	the	boundary	layer	approximation	is	reasonable.	
3. The	boundary	layer	remains	laminar	over	the	range	of	interest.		
4. No	pressure	gradient	remain	in	the	x-direction	boundary	layer.		

	
So	that,	boundary	layer	equations	become:	

𝜕𝑢
𝜕𝑥 +

𝜕𝑢
𝜕𝑦 = 0	

	

𝑢
𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦 = 𝜈

𝜕"𝑢
𝜕𝑦"	

(1)	

Boundary	conditions:	
	

𝑢 = 0				𝑎𝑡				𝑦 = 0	 𝑢 = 𝑈				𝑎𝑠				𝑦 → ∞	

𝑣 = 0				𝑎𝑡				𝑦 = 0	 𝑢 = 𝑈				𝑓𝑜𝑟	𝑎𝑙𝑙			𝑦			𝑎𝑡			𝑥 = 0	

	
	 	



Blasius	 used	 the	 idea	 of	 similarity	 to	 solve	 these	 equations.	 In	 similarity	 terms,	 there	 is	 no	
characteristic	length	scale	in	the	geometry	of	the	problem.	This	means	that	we	will	see	the	same	
flow	pattern	no	matter	how	much	we	zoom	in	or	zoom	out.	
	
Blasius	 introduced	a	 similarity	variable	 called	 “eta”,	written	as	 	 	𝜂		 ,	 that	 combines	 independent	
variables		𝑥		and		𝑦		into	one	nondimensional	independent	variable.	

𝜂 = 𝑦�
𝑈
𝜈𝑥	

(2)	

	
	
And	Blasius	solved	for	a	nondimensionalized	form	of	the	x-component	of	velocity,	

𝑓0 =
𝑢
𝑈 = function	of			𝜂	 (3)	

	
	 	



	
Blasius	substitutes	Eq.(2)	and	Eq.(3)	into	Eq.(1),	subjected	to	the	boundary	conditions.	
	
He	gets	an	ordinary	differential	equation	for	nondimensional	speed	
	

𝑓0(𝜂) =
𝑢
𝑈	

	
as	a	function	of	similarity	variable	of			𝜂		.	
	
Blasius	used	 the	popular	Runge–Kutta	numerical	 technique	 to	obtain	 the	 results	 shown	 in	 table	
below.	
	
	 	



	
	

	
	
𝜂	is	the	similarity	variable	defined	in	Eq.(2).	
Function	𝑓(𝜂)	is	solved	using	the	Runge-Kutta	numerical	technique.	
𝑓	is	proportional	to	the	stream	function.	
𝑓0	is	proportional	to	the	x-component	of	velocity	in	the	boundary	layer		𝑓0 = 1

%
	

𝑓00	is	proportional	to	the	shear	stress		𝜏	.	
	
	



	
𝑓0	is	plotted	as	a	function	of		𝜂		as	shown	in	the	figure.	
	

	
The	Blasius	profile	in	similarity	variables	for	the	boundary	layer	growing	on	a	semi-infinite	flat	
plate.	Experimental	data	(show	as	circles)	are	at		𝑅𝑒 = 3.64 × 102	.	
	
	 	



Calculation	of	the	boundary	layer	thickness,		𝛿	
	
From	above	mention	table,	we	find	that		1

%
= 𝑓0 = 0.99 = 99%		occur	at		𝜂 = 4.91	.	

	

𝜂 = 4.91 = �𝑈
𝜐𝑥 𝛿						 ⇒ 						

𝛿
𝑥 =

4.91
√𝑅𝑒

	

	
	
Calculation	of	the	shear	stress,		𝜏3	
	

𝜏3 =
0.332𝜌𝑈"

√𝑅𝑒
	

	
	
	
Calculation	of	the	local	drag	coefficient,		𝐶4	
	

𝐶4 =
𝜏3

1
2𝜌𝑈

"
=
0.664
√𝑅𝑒

	

	
	
	
	


