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6.1 Introduction

Part of modeling—what input probability distributions to use asinput to ssimulation

for:

Interarriva times
Service/machining times
Demand/batch sizes
Machine up/down times

Inappropriate input distribution(s) can lead to incorrect output, bad decisions

Usualy, have observed data on input quantities—options for use:

tribution (exponential, uni-
form, Poisson, etc.)

Use Pros Cons
Trace-driven Vdid visavisred Not generdizable
Use actua datavaluestodrive |  world
smulation Direct
Empirical distribution Farly vdid May limit range of
Usedatavauesto definea | Simple generated variates
“connect-the-dots” distribu- | Fairly direct (depending on
tion (several specific ways) form)
Fitted “ standard” distribution | Generdizable—fillsin | May not be vdid
Use datato fit aclassical dis- “holes’ in data May be difficult
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6.2 Useful Probability Distributions

Many distributions exist, found useful for smulation input modeling

6.2.1 Parameterization of Continuous Distributions

Alternative ways to parameterize most distributions; not consistently done
Typicaly, parameters can be classified as one of:

Location parameter g (also called shift parameter): specifies an abscissa (x
axis) location point of adistribution’s range of values, often some kind of
midpoint of the distribution.

o0 Example mfor normal distribution

0 Asgchanges, distribution just shifts Ieft or right without changing its
spread or shape

o0 If X haslocation parameter O, then X + g haslocation parameter g

Scale parameter b: determines scale, or units of measurement, or spread, of
adigtribution.

0 Examples. s for normal distribution, b for exponential distribution

0 Asb changes, the distribution is compressed or expanded without
changing its shape

0 If X has scale parameter 1, then bX has scale parameter b

Shape parameter a: determines, separately from location and scale, the
basic form or shape of a distribution

0 Examples: norma and exponentia distribution do not have shape
parameter; a for gammaand Weibull distributions

0 May have more than one shape parameter (beta distribution has two
shape parameters)

0 Change in shape parameter(s) alters distribution’ s shape more
fundamentally than changes in scale or location parameters
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6.2.2 Continuous Distributions

Compendium of 13 continuous distributions

Possible applications

Density and distribution functions (where applicable)

Parameter definitions and ranges

Range of possible values

Mean, variance, mode

Maximum-likelihood estimator formula or method

General comments, including relationships to other distributions
Plots of densities

6.2.3 Discrete Distributions

Compendium of 6 discrete distributions, with similar information as for continuous
distributions
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6.2.4 Empirical Distributions

Use observed data themsealves to specify directly an empirica distribution; maybe
no standard distribution fits the data adequately

There are many different ways to specify empirica distributions, resulting in
different distributions with different properties

Continuous Empirical Distributions

If original individual data points are available (i.e., data are not grouped)

Sort data X;, X, ..., X, into increasing order: X isith smallest

Define F(X;) = (i — 1)/(n — 1), approximately (for large n) the proportion of
the data less than X;, and interpolate linearly between observed data
points:

10 if Xx<Xg

F(x):.!- -1, X=X

in-1 (n-D(Xiy - Xi)

i1 if X £X

if X(i) £ X< X(iﬂ) fori=12,...,.n-1

F(x)A

—

Rises most steeply
over regions where
observations are
dense, as desired.

= wiN ww ws

L
Xy X2 X3y X X5 X6)

=Y

Potentia disadvantages
Generated data will be within range of observed data

Expected value of this distribution is not the sample mean

Other ways to define continuous empirical distributions, including putting an
exponentid tail on the right to make the range infinite on the right
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If only grouped data are available

Don’t know individua data values, but counts of observations in adjacent
intervas

Define empirica distribution function G(x) with properties smilar to F(X)
above for individua data points (details in text)

Discrete Empirical Distributions

If original individual data points are available (i.e., data are not grouped)

For each possible value x, define p(x) = proportion of the data values that are
equal to x

If only grouped data are available

Define a probability mass function such that the sum of the p(x)'sfor the X's
inaninterva isequa to the proportion of the datain that interva

Allocation of p(x)'sfor X' sin aninterva is arbitrary
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6.3 Techniquesfor Assessing Sample
| ndependence

Most methods to specify input distributions assume observed data Xy, X, ..., X,
are and independent (random) sample from some underlying distribution

If not, most methods are invdid
Need away to check data empirically for independence
Heuristic plots vs. formal statistica tests for independence

Correlation plot: If data are observed in atime sequence, compute sample
correlation 1, (see Sec. 4.4 for formula) and plot as a function of thelag
If data are independent then the correlations should be near zero for al lags
Keep in mind that these are just estimates

Scatter diagram: Plot pairs (X, Xi+1)
If data are independent the pairs should be scattered randomly

If data are positively (negatively) correlated the pairs will lie dong a positively
(negatively) doping line

Independent draws from expo(1) distribution (independent by construction):
Correlation plot Scatter diagram

04 cortelating

-0sF erTelaon
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Ddaysin queue from M/M/1 queue with utilization factor r = 0.8 (positively
correlated):

Corrélation plot Scatter diagram

#
135

S eosrelation
"

-5 comalation

1
o 151

Formal statistical tests for independence:
Nonparametric tests. rank von Neumann ratio
Runs tests
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6.4 Activity |I: Hypothesizing Families of
Distributions

First, need to decide what form or family to use—exponential, gamma, or what?
L ater, need to estimate parameters and assess goodness of fit
Sometimes have some prior knowledge of random variable€ srole in smulation
Requires no data
Use theoretical knowledge of random variable srole in smulation

Seldom have enough prior knowledge to specify a distribution completely;
exceptions:

Arrivals one-at-a-time, constant mean rate, independent: exponential
interarriva times

Sum of many independent pieces. normal
Product of many independent pieces. lognormal

Often use prior knowledge to rule out distributions on basis of range:
Servicetimes. not norma (normal range always goes negative)

Still should be supported by data (e.g., for parameter-value estimation)
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6.4.1 Summary Statistics

Compare smple sample statistics with theoretical population versions for some
distributions to get a hint

Bear in mind that we get only estimates subject to uncertainty

If sample mean X (n) and sample median %, (n) are close, suggests a symmetric
distribution

Coefficient of variation of a distribution: cv = s/m estimate viac® = S(n)/ X(n):
sometimes useful for discriminating between continuous distributions
cv < 1 suggests gamma or Weibull with shape parameter a < 1
cv = 1 suggests exponential
cv > 1 suggests gamma or Weibull with shape parameter a > 1

Lexisratio of adistribution: t = s%/n1 estimate via ' = S?(n)/ X (n) ; sometimes
useful for discriminating between discrete distributions
t <1 suggests binomial
t = 1 suggests Poisson
t > 1 suggests negative binomial or geometric

Other summary statistics: range, skewness, kurtosis
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6.4.2 Histograms

Continuous Data Set

Basically an unbiased estimate of Db f(x), where f(X) is the true (unknown)
underlying density of the observed data and Db is a constant

Break range of datainto k intervals of width Db each
k, Db are basically trial and error
Onerule of thumb, Siurges'srule: k = @+ log, n{j= &+ 3.3321og,, n{j

Compute proportion h; of datafalling in jth interval; plot a constant of height h;
above the jth interval

Shape of plot should resemble density of underlying distribution; compare shape of
histogram to density shapesin Sec. 6.2.2

Discrete Data Set

Basically an unbiased estimate of the (unknown) underlying probability mass
function of the data

For each possible value x; that can be assumed by the data, let h; be the proportion
of the data that are equal to x; plot abar of height h; above X

Shape of plot should resemble mass function of underlying distribution; compare
shape of histogram to mass-function shapesin Sec. 6.2.3

Multimodal Data

Histogram might have multiple local modes, rather than just one; no single
“standard” distribution adequately represents this

Possibility: data can be separated on some context-dependent basis (e.g., observed
machine downtimes are classified as minor vs. mgor)

Separate data on this basis, fit separately, recombine as a mixture (details in text)

6-12



6.4.3 Quantile Summariesand Box Plots

Quantile Summaries

Numerical synopsis of sample quantiles useful for detecting whether underlying
density or mass function is symmetric or skewed one way or the other

Definition of quantiles. Suppose the CDF F(X) is continuous and strictly increasing
whenever 0 < F(X) < 1, and let g be strictly between O and 1. Then the g-
quantile of F(X) isthe number x, such that F(x;) = q. If Fistheinverse of F,
then x, = F(q)

g =0.5: median
g=0.250r 0.75; quartiles
g =0.125, 0.875: octiles
q=0, 1. extremes

Quantile summary: List median, average of quartiles, average of octiles, and avg. of
extremes

If distribution is symmetric, then median, avg. of quartiles, avg. of octiles, and
avg. of extremes should be approximately equal

If distribution is skewed right, then

median < avg. of quartiles < avg. of octiles < avg. of extremes
If distribution is skewed |eft, then

median > avg. of quartiles > avg. of octiles > avg. of extremes

Box Plots
Graphicd display of quantile summary

On horizontal axis, plot median, extremes, octiles, and a box ending at quartiles
Symmetry or asymmetry of plot indicates symmetry or skewness of distribution
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Hypothesizing a Family of Distributions: Example with Continuous Data

Sample of n =219 interarrival times of carsto a drive-up bank over a 90-minute
peak-load period
Number of cars arriving in each of the six 15-minute periods was
approximately equal, suggesting stationarity of arriva rate

Sample mean = 0.399 (al times in minutes) > median = 0.270, skewness = +1.458,
all suggesting right skewness

cv = 0.953, closeto 1, suggesting exponential

Histograms (for different choices of interval width Db) suggest exponential:
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Hypothesizing a Family of Distributions: Example with Discrete Data

Sample of n = 156 observations on number of items demanded per week from an
inventory over athree-year period

Range 0 through 11

Sample mean = 1.891 > median = 1.00, skewness = +1.655, all suggesting right
skewness

Lexisratio = 5.285/1.891 = 2.795 > 1, suggesting negative binomia or geometric
(specid case of negative binomial)

Histogram suggests geometric:
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6.5 Activity I1: Estimation of Parameters

Have: Hypothesized distribution
Need: Numerical estimates of its parameter(sy—this constitutes the “fit”

Many methods to estimate distribution parameters
Method of moments
Unbiased
Least squares
Maximum likelihood (MLE)

In some sense, MLE is the preferred method for our purposes
Good statistical properties
Somewhat justifies chi-square goodness-of-fit test
Intuitive
Allows estimates of error in the parameters—sengitivity analyss

Ideafor MLES:
Have observed sample X1, Xo, ..., Xn
Came from some true (unknown) parameter(s) of the distribution form

Pick the parameter(s) that make it most likely that you would get what you did
get (or close to what you got in the continuous case)

An optimization (mathematical-programming) problem, often messy
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ML Esfor Discrete Distributions

Have hypothesized family with PMF pq (X)) =Po(X = X))
Single (for now) unknown parameter g to be estimated

For any trial value of g, the probability of getting the aready-observed sampleis
P(Getting X, X,,...,X,,) = P(X))P(X,)---P(X.,)
=P(X=X)P(X =X,)---P(X=X,)
= Pq (X1) Py (X3)++ Py (X))

LikelihoodfunctionL (q)

Task: Findthe (legd) value of g that makes L(q) asbig asit can be

How?. Differentid calculus, take logarithm (turns products into sums), nonlinear
programming methods, tabled values, staring at it, ...

ML Esfor Continuous Distributions

Change “getting” above to “getting close to” for motivation (see Prob. 6.26)

Wind up just replacing PMF p, by density f, and proceed the same way

ML Esfor Multiple-Parameter Distributions

Same idea, but have optimization problem in dimensionality of number of
parameters to be estimated
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ML Es and Confidence I ntervals on Distribution Parameters

Have MLE estimate q of q

Would aso like a confidence interva on g for sengitivity analysis of simulation
output to parameter

Asymptotic normality property of MLES:

-9 596 NODasn® ¥, where d(q) =- n

Jd@)/n ¢ L@
u

EA
&g’

Thus, by the usua confidence-interval manipulations, an approximate 100(1-a )%
confidenceinterval for q is

- d@Q)

qgxz. oAl
1-a n

where z, _,» iISthe 1 —a/2 critica point of N(O, 1)

Usein smulation;

Question: Isthe estimate g of ¢ good enough?
Approach:

Get c.i. on g as above
Run smulation with input parameter set at |eft, then right end

If smulation output changes significantly, then need better d
If not, this g is good enough
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Example of Continuous MLE: Interarrival-Time Data for Drive-Up Bank

11 x/b;
if x>0
b ©

§ Otherwise

Hypothesized exponential family: densty functionis f,(x) =
Likelihood function is

L(b) =B enm@L gl B i
& ° Zv- 5 &

Want value of b that maximizesL(b) overal b >0

—b ”expgaeéén‘ X, 3

i=1

QIIO
Q-0

Equivaent (and easier) to maximize the log-likelihood function I(b) =In L(b) since
In is amonotonically increasing function

Inthiscase, I(b) =-ninb - Elgr{ X_ , which can be maximized by smple
i=1

differential caculus:

a X
dl - n 1 i=1 \va
= 2a X, =0 and solvefor b = = X(n)
d b b -1
Check second-order sufficient conditions for a maximizer:
2
(;jblz = an - b23 a X, ,whichisnegativewhen b = X(n) sincethe X/'sare
positive
Thus, the MLE is b = X (n) =0.399 from the observed sample of n =219
points
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Example of Discrete MLE: Demand-Size Data from | nventory

Hypothesized geometric family: mass functionis p (x) = p(1- p)* for x=012,.
Likelihood function is L(p) = p" (L- p)2+"

In this case, log-likdihood functionis I(p) =niln p + é X, In(L- p), which can be
i=1
maximized by smple differential caculus:

0 and solvefor p=
dp p 1-p

X(n)+1
Check second-order sufficient conditions for a maximizer:
& X
d’l _ n ia;l '

, which is negative for any valid p
dp*  p* @ p)’°

SoMLEis p= L =0.346 from the observed sample of n = 156 points
1.891+1

Confidence interva for true p:

Eaedzlgz_ n _ia:1E(Xi):_ n nl-p/p_ _n
o’y p° - p? pr @ P P p)

Thus, d(p) = p*(1 — p) and for large n, an approximate 90% confidence interval
forpis

I\2 ~
1e45 [P L= D)
n
2 -
0-34611.645\/0.346 (1- 0.346)

156
0.346 + 0.037

[0.309, 0.383]

I+

p
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6.6 Activity I11: Determining How
Representative the Fitted Distributions Are

Have: Hypothesized family, have estimated parameters
Question: Does the fitted distribution agree with the observed data?
Approaches. Heuristic and formal statistical hypothesis tests

6.6.1 Heuristic Procedures

Density/Histogram Overplots and Frequency Comparisons

Continuous Data

Density/histogram overplot:
Plot Db f (x) over the histogram h(x); look for similarities (recall that the area
under h(x) isDb and f isthe density of the fitted distribution)

Interarrival-time data for drive-up bank and fitted exponential:

h(x), fx) A
0.30 -

0.25 %
0.20

0.15 &K
0.10 \

0.05 0.35 0.65 0.95 1.25 1.55 1.85 x
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Frequency comparison
Histogram intervalsinterval [bj_4, bj] for j = 1, 2, ..., k, each of width Db
L et h; = the observed proportion of datain jth interval
Letr, = g‘;j f (x) dx, the expected proportion of datain jthinterva if the

fitted distribution is correct
Plot h; and r; together, look for smilarities

Discrete Data

Freguency comparison
Let h; = the observed proportion of data that are equal to the jth possible
vaue x

Let r; = p(X;), the expected proportion of the data equal to x; if the fitted
probability mass function p is correct

Plot h; and r; together, look for smilarities

Demand-size data for inventory and fitted geometric:

13 Key
.40 S

£ Il}.

| T
.35
B
0.30
0.25
0.20 |
| i
0,15} b
010 - | [
| |

o0s | | H |
000 - L | |_l | | r—l =] |_|_.| it |
i e 4 6 3 10
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Distribution Function Differ ences Plots

Above density/histogram overplots are comparisons of individual probabilities of
fitted distribution with observed individual probabilities

Instead of individua probabilities, could compare cumulative probabilities viafitted
CDF F(X) against a (new) empirical CDF

number of X, 's£ x

F.(X)= = proportion of datathat are £ x

Could plot F(x) with F,(x) and look for similarities, but it is harder to see such
smilarities for cumulative than for individua probabilities

Alternatively, plot F(x) - F_(x) againg the range of x values and look for
closeness to aflat horizontal line at height O
Interarrival-time data for drive-up bank and fitted exponential:

0.20

0.15

0.10 -

0.05

F(x) = Fy(0)
(=]
8
?v

Lo

e e 2o

G o &
T

-0.20 1 1 ! L i I 1
0.01 0.26 0.51 0.76 1.01 1.26 1.51 1.76
X

Demand-size data for inventory and fitted geometric:

0.20

0.15 |

0.10

0.05 -

0.00 /\

—0.05 -

F() — F(2)

=0.10

=0.15

—0.20 1 1 1 L I
0
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Probability Plots

Another class of ways to compare CDF of fitted distribution with an empirical
directly from the data

Sort datainto increasing order: X, X2, ..., Xy (caled the order statistics of the
data)

Another empirical CDF definition, defined only at the order statistics: F, (X () ) is

the observed proportion of data £ X(j), which isi/n (adjust to (i — 0.5)/n since
it'sinconvenient to hit O or 1)

If F(X) isthe true (unknown) CDF of the datathen F(X) = P(X £ X) for any X, so
taking X = X(j), F(Xj)) = P(X £ X(j)), which is estimated by (i — 0.5)/n
Thus, we should have F(X(j)) » (i —0.5)/n,fordl i=1,2,..,n

P-P Plot: If thefitted distribution (with CDF F ) is correct, i.e. close to the true
unknown F, we should have

F(X,)»(@i- 05)/n,fordli=1,2 ..n
so plotting the pairs ((i - 0.5)/n, F (X)), foral i =1, 2, ..., nshould resuit in

an approximately straight line from (0, 0) to (1, 1) if F is correct
Valid for both continuous and discrete data
Sengitive to misfits in the center of the range of the distribution

Q-Q Plot: Taking F* across the above,
(F4(G-05)/n), X, ). fordli=1,2..,n

so plotting the pairs ((i - 05)/n, If(X(i))),foraII I=1,2, .., nshouldresultin

an approximately straight line from (X, X)) t0 (X, X) if F is correct

Valid only for continuous data

Depending on the form of the fitted distribution, there may not be a closed-form
formulafor F-*

Sengitive to misfits in the tails of the distributions
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Q-Q plot of interarrival-time data for fitted exponentia distribution:

243

Expomeniisl quantiles

141

P-P plot of interarrival-time data for fitted exponentia distribution:

R

Exponeniisl protesbilioes

nnzs

s {Faerved probobiines L9

P-P plot of demand-size data for fitted geometric distribution:

L

Geomeirk peobabiliiles

U:"-lﬁ Cizsereed probabilicies own
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6.6.2 Goodness-of-Fit Tests

Forma statistical hypothesis tests for

Ho: Theobserved data X, X, ..., X, arelID random variables with
distribution function F

Caution: Failure to rgect Hy does not constitute “proof” that the fit is good
Power of some goodness-of-fit testsis low, particularly for small sample size n
Also, large n creates high power, so tests will nearly always reject H,

Keep in mind that null hypotheses are seldom literally true, and we are looking
for an “adequate” fit of the distribution
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Chi-Square Tests

Very old (Karl Pearson, 1900), and genera (continuous or discrete data)
Formalization of frequency comparisons
Divide range of datainto k intervals, not necessarily of equa width:

[a0, 1), [a1, @), ..., [Aa, &
ay could be =¥ or a, could be +¥

Compare actual amount of observed data in each interval with what the fitted
distribution would predict

Let Nj = the number of observed data points in the jth interval
Let p; = the expected proportion of the datain the jth interva if the fitted
distribution were literdly true:
; (‘5_] f (x) dxfor continuous
_i a p(x)for discrete

| 8j-1EXEXa;

P;

Thus, n p; = expected (under fitted distribution) number of pointsin the jth

interva
If fitted distribution is correct, would expect that Nj » n p;
k (N. - np.)?
Test statistic: ¢2=g (N; - n;)
= NP,

Under Ho: Fitted distribution is correct, c2 has (approximately—see book for
details) a chi-square distribution with k— 1 d.f.

Reject Hp at level a if c2 > upper critica vaue

Advantages. Completely general
Asymptotically vdid (assn ® ¥) if MLEs were used

Drawback: Arbitrary choice of intervals (can affect test conclusion)
Conventiona advice:

Wantn p; ® 5or so for al but acoupleof |'s
Pick intervals such that the p;’s are close to each other
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Chi-square test for exponential distribution fitted to interarrival-time data:

Chose k = 20 intervals so that p; = 1/20 = 0.05 for each interval (see book for
details on how the endpoints were chosen ... involved inverting the

exponential CDF and taking ay, = +¥)
Thus, np; = (219) (0.05) = 10.95 for each interval
Counted observed frequencies N;, computed test statistic c®=22.188
Used.f. = k—1 = 19; upper 0.10 critical level is ¢ 54, = 27.204

Since test statistic does not exceed the critical level, do not reject Hy

Chi-square test for geometric distribution fitted to demand-size data:

Since data are discrete, cannot choose intervals so that the p;’s are exactly equal
to each other

Chose k = 3intervals (classes) {0}, {1, 2}, and {3, 4, ...}

Got np, = 53.960, np, = 58.382, and np; = 43.658

Counted observed frequencies N;, computed test statistic c®=1.930
Used.f. = k—1=2; upper 0.10 critical level is ¢, ;4 = 4.605

Since test gtatistic does not exceed the critical level, do not regject Hy
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K olmogor ov-Smirnov Tests

Advantages with respect to chi-square tests:
No arbitrary choiceslike intervas
Exactly valid for any (finite) n

Disadvantage with respect to chi-square tests:
Not as general

A kind of aformalization of probability plots
Compare empirical CDF from data against fitted CDF

Y et another version of empirica distribution function:
Fn(X) = proportion of the X datathat are £ x (piecewise linear step function)
On the other hand, we have the fitted CDF F (X )
In aperfect world, Fn(X) = F (x) for dl x

The worst (vertical) discrepancy is D, :sup( F_(X)- If(x)‘

(“sup” instead of “max” because it may not be attained for any X)
Computing Dy, (must be careful; sometimes stated incorrectly):
D; = max &2 - If(X(i))Q
2

i=12,...naN
D, = max ?(X(i))- i—_19

i=1,2,..., ne
D, =max{D},D; }
Reect Hp: Thefitted distribution is correct if Dy istoo big

There are several different kinds of tables depending on the form and
specificaion of the hypothesized distribution (see book for details and
example)
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Anderson-Darling Tests

Asin K-Stest, look at vertical discrepancies between F(x) and Fn(X)

Difference. K-S weights differences the same for each x
Sometimes more interested in getting accuracy in (right) tail
Queueing applications
P-K formula depends on variance of servicetime RV
A-D appliesincreasing weight on differences toward tails
A-D more sengitive (powerful) than K-Sin tail discrepancies

Define the weight function y (x) =

FOlL- F()
Notethat Y (x) is smalest (= 4) in the middle (median) where F(x)=1/2 and
largest (® ¥ ) in ether tall
Test datistic is
A2 =nd,[F,00- EOofy (0 (9 dx

8 (- DINE (X)) +Infl- (X )

—_ =l

- - n computationdly

Reject Ho: The fitted digtribution is correct if A® istoo big

There are severd different kinds of tables depending on the form and
specification of the hypothesized distribution (see book for details and
example)
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Poisson-Process Tests

Common situation in simulation: modeling an event process over time
Arrivals of customers or jobs

Breakdowns of machines
Accidents

Popular (and redlistic) model: Poisson process at rate |

Equivaent definitions:

1. Number of eventsin (t1, tp] ~ Poisson with mean | (to — t1)

2. Time between successive events ~ exponential with mean 1/
3. Distribution of events over afixed period of timeis uniform

Use second or third definitions to develop test for observed data coming from a
Poi sson process:

2. Test for inter-event times being exponential (chi-square, K-S, A-D, ...)
3. Test for placement of events over time being uniform

See book for details and example
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6.7 The ExpertFit Software and an Extended
Example

Need software assistance to carry out the above calculations

Standard statistical-analysis packages do not suffice
Often too oriented to normal-theory and related distributions
Need wider variety of “nonstandard” distributions to achieve and adequate fit

Difficult caculations like inverting non-closed-form CDFs, computation of
critical values and p-values for tests

ExpertFit package is tailored to these needs
Other packages exist, sometimes packaged with simulation-modding software

See book for details on ExpertFit and an extended, in-depth example
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6.8 Shifted and Truncated Distributions

Shifted Distributions

Many standard distributions have range [0, ¥)
Exponential, gamma, Weibull, lognorma PT5, PT6, log-logistic

But in some situations we' d like the range to be [g, ¥ ) for some parameter g> 0

A service time cannot physically be arbitrarily close to O; there is some absolute
positive minimum g for the service time

Can shift one of the above distributions up (to the right) by g

Replace x in their density definitions by x — g (including in the definition of the
ranges)

Introduces a new parameter g that must be estimated from the data

Depending on the distribution form, this may be relatively easy (e.g.,
exponential) or very chalenging (e.g., globa MLEs are ill-defined for gamma,
Welbull, lognorma)

See book for details and example

Truncated Distributions

Data are well-fitted by a distribution with range [0, ¥ ) but physical Situation dictates
that no value can exceed some finite constant b

Need to truncate the distribution above b, to make effective range [0, b]

Redly avariate-generation issue: covered in Chap. 8
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6.9 Bézier Distributions

Can approximate the underlying CDF F(x) arbitrarily closely by a Bézier
distribution (related to Bézier curves used in drawing)

Specify control points for distribution

Can fit an optimally fitting Bézier distribution, or use specialized software to drag
control points around visually with a mouse to achieve a visually acceptable fit

Thisis an aternative to smpler empirica distributions, useful when no standard
distribution adequately fits the observed data
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6.10 Specifying Multivariate Distributions,
Corréations, and Stochastic Processes

Assumption so far: Want to generate independent, identically distributed (11D)
random variables (RVs) for input to drive the smulation

Sometimes have correlation between RVsin redlity
A = interarrival time of ajob from an upstream process
S=sarvicetime of job at the station being modeled

Perhaps alarge A means that the job is“large,” taking alot of time upstream—
then it probably will take alot of time heretoo (Slarge), i.e., Cor(A, S) >0

Ignoring this correlation can lead to serious errors in output validity
Need ways to estimate this dependence, and (later) generate it in the smulation

There are severa different specific Situations and goals

6.10.1 Specifying Multivariate Distributions

Some of the model’s input RV s together form a jointly distributed random vector
Must specify the joint distribution form and estimate its parameters
Correlations between the RVs s then determined by the joint distribution form

Thisis an ambitious goal, in terms of both methods for specification, observed-
data requirements, and later variate-generation methods

At present, limited to several specific specia cases (see book for details):
multivariate normal, multivariate lognormal, multivariate Johnson, and bivariate
Bézier
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6.10.2 Specifying Arbitrary Marginal Distributionsand
Correlations

L ess ambitious than specifying the joint distribution, but affords greater flexibility

Allow for possible correlation between input RV's, but fit their univariate (margina)
distributions separately

Must specify the univariate margina distributions (earlier methods) and estimate the
correlations (fairly easy)

Does not in general uniquely specify (control) the joint distribution

Except in multivariate normal case, specifying the margina distributions and al
the correlations does not uniquely specify the joint distribution

Must take care that the correlations are compatible with the margina distributions

Margind distributions place constraints on what correlation structure is
theoretically possible

How to generate this structure for input to the smulation? (Chap. 8)

6.10.3 Specifying Stochastic Processes

Have an input stochastic process { Xy, X,, ...} wherethe X;’'s have the same
distribution, but there is a correlation structure for them at various lags

e.g., X isthe size of the ith incoming message in a communications system, and
it could be that large messages tend to be followed by other large messages
(or the reverse)

Can regard this as an infinite-dimensiona random vector for input

Some specific models (see book for details): AR, ARMA, gamma processes,
EAR, TES, ARTA
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6.11 Selecting a Distribution in the Absence
of Data

No data? (it happens)
Must rely to some extent on subjective information (guesses)

Ask “expert” for:

min, max b uniform distribution
min, max, mode b triangular distribution
min, max, mode, mean b beta distribution

See book for details and example
Must do sengitivity anayss

Change input distributions, see if output changes appreciably
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6.12 Modelsof Arrival Processes

Want probabilistic model of event process happening over time
Common application: arriva process

Asin distributions, need to specify form, estimate parameters

Three common models:

6.12.1 Poisson Processes

Three “behavioral” assumptions:
1. Eventsoccur one at atime
2. Number of eventsin atime interva is independent of the past
3. Expected rate of eventsis constant over time

Fitting: Fit exponentia to interevent timesviaMLE

Testing: Saw above
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6.12.2 Nonstationary Poisson Process
Drop behavioral assumption 3 above (keep 1, one-at-a-time events)

Allow for expected rate of eventsto vary with time: replace arrival-rate constant |
with afunction | (t), wheret =time

Number of eventsin (1, t;] ~ Poisson with mean ¢y (t) dit

Estimation of rate function

Assume rate function is constant over subintervals of time
Must specify subintervals thought to be appropriate
Must be careful to keep the units straight

Other methods exist (see book for discussion and references)

6.12.3 Batch Arrivals

Drop behaviora assumption 1 above

Allow number of events arriving to be a discrete RV, independent of event-time
process

Fitting
Fit digtribution to interevent timesvia MLE

Fit adiscrete RV to observed “group” sizes

Testing
Separately for interevent times, group sizes
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6.13 Assessing the Homogeneity of Different
Data Sets

Sometimes have different data sets on related but separate processes
Have service-time observations for ten different days
Can the ten data sets be merged?
In other words, is the underlying distribution the same for each day?

Advantages of merging (if it turns out to be justified)
Larger sample size, so get better specification of the input distribution
Just one specification problem rather than severd
Just one distribution from which to generate in the smulation model

Want to test
Ho: All the population distribution functions are identical
VS.

H.: At least one of the populations tends to yield larger observations than at
least one of the other populations

Formal statistical test for doing so: Kruskal-Wallis test, which is a nonparametric
test based on the ranks of the data sets (see book for details)
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