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6.1  Introduction 
 
Part of modeling—what input probability distributions to use as input to simulation 

for: 
Interarrival times 
Service/machining times 
Demand/batch sizes 
Machine up/down times 

 
Inappropriate input distribution(s) can lead to incorrect output, bad decisions 
 
Usually, have observed data on input quantities—options for use: 
 

Use Pros Cons 
Trace-driven 
Use actual data values to drive 

simulation 

Valid vis à vis real 
world 

Direct 

Not generalizable 

Empirical distribution 
Use data values to define a 

“connect-the-dots” distribu-
tion (several specific ways) 

Fairly valid 
Simple 
Fairly direct 

May limit range of 
generated variates 
(depending on 
form) 

Fitted “standard” distribution 
Use data to fit a classical dis-

tribution (exponential, uni-
form, Poisson, etc.) 

Generalizable—fills in 
“holes” in data 

May not be valid 
May be difficult 
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6.2  Useful Probability Distributions 
 
Many distributions exist, found useful for simulation input modeling 
 

6.2.1  Parameterization of Continuous Distributions 
 
Alternative ways to parameterize most distributions; not consistently done 
 
Typically, parameters can be classified as one of: 
 

• Location parameter γ (also called shift parameter):  specifies an abscissa (x 
axis) location point of a distribution’s range of values, often some kind of 
midpoint of the distribution. 

o Example:  µ for normal distribution 

o As γ changes, distribution just shifts left or right without changing its 
spread or shape 

o If X has location parameter 0, then X + γ has location parameter γ 
 

• Scale parameter β:  determines scale, or units of measurement, or spread, of 
a distribution. 

o Examples:  σ for normal distribution, β for exponential distribution 

o As β changes, the distribution is compressed or expanded without 
changing its shape 

o If X has scale parameter 1, then βX has scale parameter β 
 

• Shape parameter α:  determines, separately from location and scale, the 
basic form or shape of a distribution 

o Examples:  normal and exponential distribution do not have shape 
parameter; α for gamma and Weibull distributions 

o May have more than one shape parameter (beta distribution has two 
shape parameters) 

o Change in shape parameter(s) alters distribution’s shape more 
fundamentally than changes in scale or location parameters 
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6.2.2  Continuous Distributions 
 
Compendium of 13 continuous distributions 
 

Possible applications 
Density and distribution functions (where applicable) 
Parameter definitions and ranges 
Range of possible values 
Mean, variance, mode 
Maximum-likelihood estimator formula or method 
General comments, including relationships to other distributions 
Plots of densities 

 
 

6.2.3  Discrete Distributions 
 
Compendium of 6 discrete distributions, with similar information as for continuous 

distributions 
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6.2.4  Empirical Distributions 
 
Use observed data themselves to specify directly an empirical distribution; maybe 

no standard distribution fits the data adequately 
 
There are many different ways to specify empirical distributions, resulting in 

different distributions with different properties 
 
Continuous Empirical Distributions 
 

If original individual data points are available (i.e., data are not grouped) 
 

Sort data X1, X2, ..., Xn into increasing order:  X(i) is ith smallest 
Define F(X(i)) = (i – 1)/(n – 1), approximately (for large n) the proportion of 

the data less than X(i), and interpolate linearly between observed data 
points: 
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Potential disadvantages 

• Generated data will be within range of observed data 

• Expected value of this distribution is not the sample mean 
Other ways to define continuous empirical distributions, including putting an 

exponential tail on the right to make the range infinite on the right 

Rises most steeply 
over regions where 
observations are 
dense, as desired. 
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If only grouped data are available 
 

Don’t know individual data values, but counts of observations in adjacent 
intervals 

 
Define empirical distribution function G(x) with properties similar to F(x) 

above for individual data points (details in text) 
 
Discrete Empirical Distributions 
 

If original individual data points are available (i.e., data are not grouped) 
 
For each possible value x, define p(x) = proportion of the data values that are 

equal to x 
 

If only grouped data are available 
 
Define a probability mass function such that the sum of the p(x)’s for the x’s 

in an interval is equal to the proportion of the data in that interval 
 
Allocation of p(x)’s for x’s in an interval is arbitrary 
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6.3  Techniques for Assessing Sample 
Independence 
 
Most methods to specify input distributions assume observed data X1, X2, ..., Xn 

are and independent (random) sample from some underlying distribution 
If not, most methods are invalid 
Need a way to check data empirically for independence 
Heuristic plots vs. formal statistical tests for independence 

 
Correlation plot:  If data are observed in a time sequence, compute sample 

correlation jρ̂ (see Sec. 4.4 for formula) and plot as a function of the lag j 

If data are independent then the correlations should be near zero for all lags 
Keep in mind that these are just estimates 

 
Scatter diagram:  Plot pairs (Xi, Xi+1) 

If data are independent the pairs should be scattered randomly 
If data are positively (negatively) correlated the pairs will lie along a positively 

(negatively) sloping line 
 
Independent draws from expo(1) distribution (independent by construction): 
  Correlation plot Scatter diagram 
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Delays in queue from M/M/1 queue with utilization factor ρ = 0.8 (positively 
correlated): 

  Correlation plot Scatter diagram 

 
 
 
Formal statistical tests for independence: 

Nonparametric tests:  rank von Neumann ratio 
Runs tests 
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6.4  Activity I:  Hypothesizing Families of 
Distributions 
 
First, need to decide what form or family to use—exponential, gamma, or what? 
 
Later, need to estimate parameters and assess goodness of fit 
 
Sometimes have some prior knowledge of random variable’s role in simulation 
 

Requires no data 
 
Use theoretical knowledge of random variable’s role in simulation 
 
Seldom have enough prior knowledge to specify a distribution completely; 

exceptions: 
Arrivals one-at-a-time, constant mean rate, independent: exponential 

interarrival times 
Sum of many independent pieces: normal 
Product of many independent pieces: lognormal 

 
Often use prior knowledge to rule out distributions on basis of range: 

Service times: not normal (normal range always goes negative) 
 
Still should be supported by data (e.g., for parameter-value estimation) 
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6.4.1  Summary Statistics 
 
 
Compare simple sample statistics with theoretical population versions for some 

distributions to get a hint 
 

Bear in mind that we get only estimates subject to uncertainty 
 

If sample mean )(nX and sample median )(ˆ 5.0 nx are close, suggests a symmetric 
distribution 

 

Coefficient of variation of a distribution:  cv = σ/µ; estimate via cv = )(/)( nXnS ; 
sometimes useful for discriminating between continuous distributions 

cv < 1 suggests gamma or Weibull with shape parameter α < 1 
cv = 1 suggests exponential 

cv > 1 suggests gamma or Weibull with shape parameter α > 1 
 

Lexis ratio of a distribution:  τ = σ2/µ; estimate via )(/)(ˆ 2 nXnS=τ ; sometimes 
useful for discriminating between discrete distributions 

τ < 1 suggests binomial 

τ = 1 suggests Poisson 

τ > 1 suggests negative binomial or geometric 
 
Other summary statistics:  range, skewness, kurtosis 

^ 



6-12 

6.4.2  Histograms 
 
 
Continuous Data Set 
 

Basically an unbiased estimate of ∆b f(x), where f(x) is the true (unknown) 
underlying density of the observed data and ∆b is a constant 

Break range of data into k intervals of width ∆b each 

k, ∆b are basically trial and error 

One rule of thumb, Sturges’s rule:     nnk 102 log332.31log1 +=+=  

Compute proportion hj of data falling in jth interval; plot a constant of height hj 
above the jth interval 

Shape of plot should resemble density of underlying distribution; compare shape of 
histogram to density shapes in Sec. 6.2.2 

 
 
Discrete Data Set 
 
Basically an unbiased estimate of the (unknown) underlying probability mass 

function of the data 
For each possible value xj that can be assumed by the data, let hj be the proportion 

of the data that are equal to xj; plot a bar of height hj above xj 
Shape of plot should resemble mass function of underlying distribution; compare 

shape of histogram to mass-function shapes in Sec. 6.2.3 
 
 
Multimodal Data 
 
Histogram might have multiple local modes, rather than just one; no single 

“standard” distribution adequately represents this 
Possibility:  data can be separated on some context-dependent basis (e.g., observed 

machine downtimes are classified as minor vs. major) 
Separate data on this basis, fit separately, recombine as a mixture (details in text) 
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6.4.3  Quantile Summaries and Box Plots 
 
 
Quantile Summaries 
 
Numerical synopsis of sample quantiles useful for detecting whether underlying 

density or mass function is symmetric or skewed one way or the other 
 
Definition of quantiles:  Suppose the CDF F(x) is continuous and strictly increasing 

whenever 0 < F(x) < 1, and let q be strictly between 0 and 1.  Then the q-
quantile of F(x) is the number xq such that F(xq) = q.  If F–1 is the inverse of F, 
then xq = F–1(q) 

 
q = 0.5:  median 
q = 0.25 or 0.75:  quartiles 
q = 0.125, 0.875:  octiles 
q = 0, 1:  extremes 

 
Quantile summary:  List median, average of quartiles, average of octiles, and avg. of 

extremes 
If distribution is symmetric, then median, avg. of quartiles, avg. of octiles, and 

avg. of extremes should be approximately equal 
If distribution is skewed right, then 

median < avg. of quartiles < avg. of octiles < avg. of extremes 
If distribution is skewed left, then 

median > avg. of quartiles > avg. of octiles > avg. of extremes 
 
 
Box Plots 
 
Graphical display of quantile summary 
On horizontal axis, plot median, extremes, octiles, and a box ending at quartiles 
Symmetry or asymmetry of plot indicates symmetry or skewness of distribution 
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Hypothesizing a Family of Distributions:  Example with Continuous Data 
 
 
Sample of n = 219 interarrival times of cars to a drive-up bank over a 90-minute 

peak-load period 
Number of cars arriving in each of the six 15-minute periods was 

approximately equal, suggesting stationarity of arrival rate 
 
Sample mean = 0.399 (all times in minutes) >  median = 0.270, skewness = +1.458, 

all suggesting right skewness 
 
cv = 0.953, close to 1, suggesting exponential 
 

Histograms (for different choices of interval width ∆b) suggest exponential: 

 
 
Box plot is consistent with exponential: 
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Hypothesizing a Family of Distributions:  Example with Discrete Data 
 
Sample of n = 156 observations on number of items demanded per week from an 

inventory over a three-year period 
 
Range 0 through 11 
 
Sample mean = 1.891 > median = 1.00, skewness = +1.655, all suggesting right 

skewness 
 
Lexis ratio = 5.285/1.891 = 2.795 > 1, suggesting negative binomial or geometric 

(special case of negative binomial) 
 
Histogram suggests geometric: 
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6.5  Activity II:  Estimation of Parameters 
 
Have:  Hypothesized distribution 
 
Need:  Numerical estimates of its parameter(s)—this constitutes the “fit” 
 
Many methods to estimate distribution parameters 

Method of moments 
Unbiased 
Least squares 
Maximum likelihood (MLE) 

 
In some sense, MLE is the preferred method for our purposes 

Good statistical properties 
Somewhat justifies chi-square goodness-of-fit test 
Intuitive 
Allows estimates of error in the parameters—sensitivity analysis 

 
Idea for MLEs: 

Have observed sample X1, X2, ..., Xn 

Came from some true (unknown) parameter(s) of the distribution form 
Pick the parameter(s) that make it most likely that you would get what you did 

get (or close to what you got in the continuous case) 
An optimization (mathematical-programming) problem, often messy 
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MLEs for Discrete Distributions 
 

Have hypothesized family with PMF pθ (xj) =Pθ(X = xj) 

 

Single (for now) unknown parameter θ to be estimated 
 

For any trial value of θ, the probability of getting the already-observed sample is  
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Task:  Find the (legal) value of θ that makes L(θ) as big as it can be 
 
How?:  Differential calculus, take logarithm (turns products into sums), nonlinear 

programming methods, tabled values, staring at it, ... 
 
 
MLEs for Continuous Distributions 
 
Change “getting” above to “getting close to” for motivation (see Prob. 6.26) 
 

Wind up just replacing PMF pθ by density fθ and proceed the same way 
 
 
MLEs for Multiple-Parameter Distributions 
 
Same idea, but have optimization problem in dimensionality of number of 

parameters to be estimated 
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MLEs and Confidence Intervals on Distribution Parameters 
 

Have MLE estimate θ̂  of θ 
 

Would also like a confidence interval on θ  for sensitivity analysis of simulation 
output to parameter 

 
Asymptotic normality property of MLEs: 
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Thus, by the usual confidence-interval manipulations, an approximate 100(1–α)% 
confidence interval for θ is 

n
z
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θδ
θ α−±  

 where z1 – α/2 is the 1 – α/2 critical point of N(0, 1) 
 
Use in simulation: 

Question:  Is the estimate θ̂  of θ good enough? 
Approach: 

Get c.i. on θ as above 
Run simulation with input parameter set at left, then right end 

If simulation output changes significantly, then need better θ̂  

If not, this θ̂  is good enough 
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Example of Continuous MLE:  Interarrival-Time Data for Drive-Up Bank 
 

Hypothesized exponential family:  density function is 
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Want value of β that maximizes L(β) over all β > 0 
 

Equivalent (and easier) to maximize the log-likelihood function l(β) = ln L(β) since 
ln is a monotonically increasing function 

 

In this case, ∑
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Thus, the MLE is 399.0)(ˆ == nXβ  from the observed sample of n = 219 
points 
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Example of Discrete MLE:  Demand-Size Data from Inventory 
 
 

Hypothesized geometric family:  mass function is ,...2,1,0for  )1()( =−= xppxp x
p  

Likelihood function is ∑−= =
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6.6  Activity III:  Determining How 
Representative the Fitted Distributions Are 
 
 
Have:  Hypothesized family, have estimated parameters 
Question:  Does the fitted distribution agree with the observed data? 
Approaches:  Heuristic and formal statistical hypothesis tests 
 
 

6.6.1  Heuristic Procedures 
 
Density/Histogram Overplots and Frequency Comparisons 
 
Continuous Data 
 

Density/histogram overplot: 

Plot )(ˆ xfb∆  over the histogram h(x); look for similarities (recall that the area 

under h(x) is ∆b and f̂  is the density of the fitted distribution) 

Interarrival-time data for drive-up bank and fitted exponential: 
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Frequency comparison 

Histogram intervals interval [bj–1, bj] for j = 1, 2, ..., k, each of width ∆b 

Let hj = the observed proportion of data in jth interval 

Let ∫
−

=
j

j

b

bj dxxfr
1

)(ˆ , the expected proportion of data in jth interval if the 

fitted distribution is correct 
Plot hj and rj together, look for similarities 

 
 
Discrete Data 
 

Frequency comparison 
Let hj = the observed proportion of data that are equal to the jth possible 

value xj 

Let )(ˆ jj xpr = , the expected proportion of the data equal to xj if the fitted 

probability mass function p̂  is correct 

Plot hj and rj together, look for similarities 
Demand-size data for inventory and fitted geometric: 
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Distribution Function Differences Plots 
 
Above density/histogram overplots are comparisons of individual probabilities of 

fitted distribution with observed individual probabilities 
Instead of individual probabilities, could compare cumulative probabilities via fitted 

CDF )(ˆ xF  against a (new) empirical CDF 

n

xX
xF i

n

≤
=

 s' ofnumber 
)(  = proportion of data that are x≤  

Could plot )(ˆ xF  with Fn(x) and look for similarities, but it is harder to see such 
similarities for cumulative than for individual probabilities 

Alternatively, plot )()(ˆ xFxF n−  against the range of x values and look for 
closeness to a flat horizontal line at height 0 

Interarrival-time data for drive-up bank and fitted exponential: 

 
Demand-size data for inventory and fitted geometric: 
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Probability Plots 
 
Another class of ways to compare CDF of fitted distribution with an empirical 

directly from the data 
Sort data into increasing order:  X(1), X(2), ..., X(n) (called the order statistics of the 

data) 

Another empirical CDF definition, defined only at the order statistics:  ( ))(

~
in XF  is 

the observed proportion of data ≤ X(i), which is i/n (adjust to (i – 0.5)/n since 
it’s inconvenient to hit 0 or 1) 

If F(x) is the true (unknown) CDF of the data then F(x) = P(X ≤ x) for any x, so 
taking x = X(i), F(X(i)) = P(X ≤ X(i)), which is estimated by (i – 0.5)/n 

Thus, we should have F(X(i)) ≈ (i – 0.5)/n, for all i = 1, 2, ..., n 

 

P-P Plot:  If the fitted distribution (with CDF F̂ ) is correct, i.e. close to the true 
unknown F, we should have 

niXF i /)5.0()(ˆ
)( −≈ , for all i = 1, 2, ..., n 

 so plotting the pairs ( ))(ˆ,/)5.0( )(iXFni − , for all i = 1, 2, ..., n should result in 

an approximately straight line from (0, 0) to (1, 1) if F̂  is correct 
Valid for both continuous and discrete data 
Sensitive to misfits in the center of the range of the distribution 

 

Q-Q Plot:  Taking 1ˆ −F  across the above, 

( )( ))(
1 ,/)5.0(ˆ

iXniF −− , for all i = 1, 2, ..., n 

 so plotting the pairs ( ))(ˆ,/)5.0( )(iXFni − , for all i = 1, 2, ..., n should result in 

an approximately straight line from (X(1), X(1)) to (X(n), X(n)) if F̂  is correct 
Valid only for continuous data 
Depending on the form of the fitted distribution, there may not be a closed-form 

formula for 1ˆ −F  
Sensitive to misfits in the tails of the distributions 
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Q-Q plot of interarrival-time data for fitted exponential distribution: 

 
 
P-P plot of interarrival-time data for fitted exponential distribution: 

 
 
P-P plot of demand-size data for fitted geometric distribution: 
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6.6.2  Goodness-of-Fit Tests 
 
 
Formal statistical hypothesis tests for 
 

H0: The observed data X1, X2, ..., Xn are IID random variables with 
distribution function F̂  

 
Caution:  Failure to reject H0 does not constitute “proof” that the fit is good 
 

Power of some goodness-of-fit tests is low, particularly for small sample size n 
 
Also, large n creates high power, so tests will nearly always reject H0 
 

Keep in mind that null hypotheses are seldom literally true, and we are looking 
for an “adequate” fit of the distribution 
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Chi-Square Tests 
 
Very old (Karl Pearson, 1900), and general (continuous or discrete data) 
Formalization of frequency comparisons 
Divide range of data into k intervals, not necessarily of equal width: 

[a0, a1), [a1, a2), ..., [ak–1, ak] 

a0 could be –∞ or ak could be +∞ 
Compare actual amount of observed data in each interval with what the fitted 

distribution would predict 
Let Nj = the number of observed data points in the jth interval 

Let pj = the expected proportion of the data in the jth interval if the fitted 
distribution were literally true: 
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Thus, n pj = expected (under fitted distribution) number of points in the jth 
interval 

If fitted distribution is correct, would expect that Nj ≈ n pj 

Test statistic:  ∑
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χ  

Under H0: Fitted distribution is correct, χ2 has (approximately—see book for 
details) a chi-square distribution with k – 1 d.f. 

Reject H0 at level α if χ2 > upper critical value 

 
Advantages: Completely general 

 Asymptotically valid (as n → ∞) if MLEs were used 
 
Drawback: Arbitrary choice of intervals (can affect test conclusion) 
 Conventional advice: 

 Want n pj ≥ 5 or so for all but a couple of j’s 

 Pick intervals such that the pj’s are close to each other 
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Chi-square test for exponential distribution fitted to interarrival-time data: 
 

Chose k = 20 intervals so that pj = 1/20 = 0.05 for each interval (see book for 
details on how the endpoints were chosen ... involved inverting the 
exponential CDF and taking a20 = +∞) 

 
Thus, npj = (219) (0.05) = 10.95 for each interval 
 

Counted observed frequencies Nj, computed test statistic χ2 = 22.188 
 

Use d.f. = k – 1 = 19; upper 0.10 critical level is 204.272
90.0,19 =χ  

 
Since test statistic does not exceed the critical level, do not reject H0 

 
 
Chi-square test for geometric distribution fitted to demand-size data: 
 

Since data are discrete, cannot choose intervals so that the pj’s are exactly equal 
to each other 

 
Chose k = 3 intervals (classes) {0}, {1, 2}, and {3, 4, ...} 
 
Got np1 = 53.960, np2 = 58.382, and np3 = 43.658 
 

Counted observed frequencies Nj, computed test statistic χ2 = 1.930 
 

Use d.f. = k – 1 = 2; upper 0.10 critical level is 605.42
90.0,2 =χ  

 
Since test statistic does not exceed the critical level, do not reject H0 
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Kolmogorov-Smirnov Tests 
 
Advantages with respect to chi-square tests: 

No arbitrary choices like intervals 
Exactly valid for any (finite) n 

 
Disadvantage with respect to chi-square tests: 

Not as general 
 
A kind of a formalization of probability plots 

Compare empirical CDF from data against fitted CDF 
 
Yet another version of empirical distribution function: 

Fn(x) = proportion of the Xi data that are ≤ x (piecewise linear step function) 

On the other hand, we have the fitted CDF       ̂ F (x ) 

In a perfect world, Fn(x) =       ˆ F (x ) for all x 

The worst (vertical) discrepancy is )(ˆ)(sup xFxFD n
x

n −=  

(“sup” instead of “max” because it may not be attained for any x) 
Computing Dn (must be careful; sometimes stated incorrectly): 
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Reject H0:  The fitted distribution is correct if Dn is too big 

There are several different kinds of tables depending on the form and 
specification of the hypothesized distribution (see book for details and 
example) 
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Anderson-Darling Tests 
 

As in K-S test, look at vertical discrepancies between )(ˆ xF  and Fn(x) 

 
Difference: K-S weights differences the same for each x 
     Sometimes more interested in getting accuracy in (right) tail 
      Queueing applications 
      P-K formula depends on variance of service-time RV 
     A-D applies increasing weight on differences toward tails 
     A-D more sensitive (powerful) than K-S in tail discrepancies 
 

Define the weight function [ ])(ˆ1)(ˆ
1

)(
xFxF

x
−

=ψ  

 Note that Ψ(x) is smallest (= 4) in the middle (median) where 2/1)(ˆ =xF  and 

largest (→ ∞) in either tail 
 
Test statistic is  
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Reject H0:  The fitted distribution is correct if 2
nA  is too big 

There are several different kinds of tables depending on the form and 
specification of the hypothesized distribution (see book for details and 
example) 
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Poisson-Process Tests 
 
Common situation in simulation:  modeling an event process over time 
 

Arrivals of customers or jobs 
Breakdowns of machines 
Accidents 

 

Popular (and realistic) model:  Poisson process at rate λ 
 
Equivalent definitions: 
 

1. Number of events in (t1, t2] ~ Poisson with mean λ(t2 – t1) 

2. Time between successive events ~ exponential with mean 1/λ 
3. Distribution of events over a fixed period of time is uniform 

 
Use second or third definitions to develop test for observed data coming from a 

Poisson process: 
 

2. Test for inter-event times’ being exponential (chi-square, K-S, A-D, ...) 
3. Test for placement of events’ over time being uniform 

 
See book for details and example 
 



6-32 

6.7  The ExpertFit Software and an Extended 
Example 
 
 
Need software assistance to carry out the above calculations 
 
Standard statistical-analysis packages do not suffice 

Often too oriented to normal-theory and related distributions 
Need wider variety of “nonstandard” distributions to achieve and adequate fit 
Difficult calculations like inverting non-closed-form CDFs, computation of 

critical values and p-values for tests 
 
ExpertFit package is tailored to these needs 
 
Other packages exist, sometimes packaged with simulation-modeling software 
 
See book for details on ExpertFit and an extended, in-depth example 
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6.8  Shifted and Truncated Distributions 
 
 
Shifted Distributions 
 

Many standard distributions have range [0, ∞) 
Exponential, gamma, Weibull, lognormal PT5, PT6, log-logistic 

 

But in some situations we’d like the range to be [γ, ∞) for some parameter γ > 0 
A service time cannot physically be arbitrarily close to 0; there is some absolute 

positive minimum γ for the service time 
 

Can shift one of the above distributions up (to the right) by γ 

Replace x in their density definitions by x – γ (including in the definition of the 
ranges) 

 

Introduces a new parameter γ that must be estimated from the data 
Depending on the distribution form, this may be relatively easy (e.g., 

exponential) or very challenging (e.g., global MLEs are ill-defined for gamma, 
Weibull, lognormal) 

See book for details and example 
 
 
Truncated Distributions 
 

Data are well-fitted by a distribution with range [0, ∞) but physical situation dictates 
that no value can exceed some finite constant b 

 
Need to truncate the distribution above b, to make effective range [0, b] 
 
Really a variate-generation issue:  covered in Chap. 8 
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6.9  Bézier Distributions 
 
 
Can approximate the underlying CDF F(x) arbitrarily closely by a Bézier 

distribution (related to Bézier curves used in drawing) 
 
Specify control points for distribution 
 
Can fit an optimally fitting Bézier distribution, or use specialized software to drag 

control points around visually with a mouse to achieve a visually acceptable fit 
 
This is an alternative to simpler empirical distributions, useful when no standard 

distribution adequately fits the observed data 
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6.10  Specifying Multivariate Distributions, 
Correlations, and Stochastic Processes 
 
Assumption so far:  Want to generate independent, identically distributed (IID) 

random variables (RVs) for input to drive the simulation 
 
Sometimes have correlation between RVs in reality 

A = interarrival time of a job from an upstream process 
S = service time of job at the station being modeled 
Perhaps a large A means that the job is “large,” taking a lot of time upstream—

then it probably will take a lot of time here too (S large), i.e., Cor(A, S) > 0 
Ignoring this correlation can lead to serious errors in output validity 
Need ways to estimate this dependence, and (later) generate it in the simulation 

 
There are several different specific situations and goals 
 
 

6.10.1  Specifying Multivariate Distributions 
 
Some of the model’s input RVs together form a jointly distributed random vector 
 
Must specify the joint distribution form and estimate its parameters 
 
Correlations between the RVs is then determined by the joint distribution form 
 
This is an ambitious goal, in terms of both methods for specification, observed-

data requirements, and later variate-generation methods 
 
At present, limited to several specific special cases (see book for details):  

multivariate normal, multivariate lognormal, multivariate Johnson, and bivariate 
Bézier 
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6.10.2  Specifying Arbitrary Marginal Distributions and 
Correlations 
 
Less ambitious than specifying the joint distribution, but affords greater flexibility 
 
Allow for possible correlation between input RVs, but fit their univariate (marginal) 

distributions separately 
 
Must specify the univariate marginal distributions (earlier methods) and estimate the 

correlations (fairly easy) 
 
Does not in general uniquely specify (control) the joint distribution 

Except in multivariate normal case, specifying the marginal distributions and all 
the correlations does not uniquely specify the joint distribution 

 
Must take care that the correlations are compatible with the marginal distributions 

Marginal distributions place constraints on what correlation structure is 
theoretically possible 

 
How to generate this structure for input to the simulation?  (Chap. 8) 
 
 

6.10.3  Specifying Stochastic Processes 
 
Have an input stochastic process {X1, X2, ...} where the Xi’s have the same 

distribution, but there is a correlation structure for them at various lags 
e.g., Xi is the size of the ith incoming message in a communications system, and 

it could be that large messages tend to be followed by other large messages 
(or the reverse) 

 
Can regard this as an infinite-dimensional random vector for input 
 
Some specific models (see book for details):  AR, ARMA, gamma processes, 

EAR, TES, ARTA 
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6.11  Selecting a Distribution in the Absence 
of Data 
 
 
No data?  (it happens) 
 
Must rely to some extent on subjective information (guesses) 
 
Ask “expert” for: 
 

min, max ⇒ uniform distribution 

min, max, mode ⇒ triangular distribution 

min, max, mode, mean ⇒ beta distribution 
 
See book for details and example 
 
Must do sensitivity analysis 
 

Change input distributions, see if output changes appreciably 
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6.12  Models of Arrival Processes 
 
 
Want probabilistic model of event process happening over time 

Common application:  arrival process 
 
As in distributions, need to specify form, estimate parameters 
 
Three common models: 
 
 

6.12.1  Poisson Processes 
 
Three “behavioral” assumptions: 

1.  Events occur one at a time 
2.  Number of events in a time interval is independent of the past 
3.  Expected rate of events is constant over time 

 
Fitting:  Fit exponential to interevent times via MLE 
 
Testing:  Saw above 
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6.12.2  Nonstationary Poisson Process 
 
Drop behavioral assumption 3 above (keep 1, one-at-a-time events) 
 

Allow for expected rate of events to vary with time:  replace arrival-rate constant λ 
with a function λ(t), where t = time 

 

Number of events in (t1, t2] ~ Poisson with mean ∫
2

1

)(
t

t
dttλ  

 
Estimation of rate function 

 
Assume rate function is constant over subintervals of time 

Must specify subintervals thought to be appropriate 
Must be careful to keep the units straight 

 
Other methods exist (see book for discussion and references) 

 
 

6.12.3  Batch Arrivals 
 
Drop behavioral assumption 1 above 
 
Allow number of events arriving to be a discrete RV, independent of event-time 

process 
 
Fitting 

Fit distribution to interevent times via MLE 
Fit a discrete RV to observed “group” sizes 

 
Testing 

Separately for interevent times, group sizes 
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6.13  Assessing the Homogeneity of Different 
Data Sets 
 
 
Sometimes have different data sets on related but separate processes 

Have service-time observations for ten different days 
Can the ten data sets be merged? 
In other words, is the underlying distribution the same for each day? 

 
Advantages of merging (if it turns out to be justified) 

Larger sample size, so get better specification of the input distribution 
Just one specification problem rather than several 
Just one distribution from which to generate in the simulation model 

 
Want to test 

H0:  All the population distribution functions are identical 
vs. 
H1:  At least one of the populations tends to yield larger observations than at 

least one of the other populations 
 
Formal statistical test for doing so:  Kruskal-Wallis test, which is a nonparametric 

test based on the ranks of the data sets (see book for details) 
 


