Pre-AP Geometry – Chapter 6 Test Review

Standards/Goals:

- ✓ D.2.b./G.CO.12.:
 - **o** I can solve problems with triangles that involve a mid-segment.
 - I can identify medians, altitudes, perpendicular bisectors, and angle bisectors of triangles and use their properties to solve problems.
- **<u>G.1.b.</u>** I can use the midpoint and distance formulas to solve problems.
- ✓ <u>D.2.c.</u>: I can apply the triangle inequality theorem to determine if a triangle exists and the order of sides and angles.
- ✓ <u>C.1.e./G.CO.9/10.</u>: I can prove theorems in proofs about triangles.
- C.1.f.: I can prove that two triangles are congruent by applying the SSS, SAS, ASA, and AAS congruence statements.
- <u>C.1.g.</u>: I can use the principle that corresponding parts of congruent triangles are congruent to solve problems.
- ✓ <u>D.1.e./F.IF.7a:</u>
 - I can write AND graph linear equations in slope intercept form when given two points, when given a point and the slope.
 - I can graph linear equations using slope intercept form as a guide.
- ✓ <u>D.1.e./ F.LE.2.</u>: I can write and graph linear equations in point-slope form and standard form.
- ✓ <u>D.2.h./ A.CED.2.</u>: I can write a linear equation using its x and y intercepts.
- <u>D.2.g./G.GPE.5.</u>: I can understand the relationship between slope and its application to the idea of both parallel and perpendicular lines.

IMPORTANT VOCABULARY						
Midsegment	Triangle	Angle Bisector	Perpendicular	Perpendicular	Equidistant	Angle Bisector
	Midsegment		Bisector	Bisector		Theorem
	Theorem			Theorem		
Concurrent	Point of	Circumcenter	Circumcenter	Incenter	Incenter	Altitude
Lines	concurrency		Theorem		Theorem	
Median	Centroid	Centroid	Orthocenter	Triangle	SAS Inequality	SSS Inequality
		Theorem		Inequality	Theorem	Theorem
				Theorem	(Hinge	(Converse of
					Theorem)	Hinge
						Theorem)
Exterior Angle	Isosceles	Scalene	Equilateral	Congruent	Transitive	SSS, ASA, SAS,
Inequality	Triangle	Triangle	Triangle	Triangles	Property of	AAS, CPCTC
Theorem	Theorem	Theorem	Theorem		Inequality	

#1. Multiple Choice: In ΔXYZ , XY = 10 and XZ = 14. Which measure *cannot* be YZ?

- a. 18
- b. 20

c. 9

d. 4

#2. Name the longest side of ΔDEF .

#3. Which angle in $\triangle ABC$ has the greatest measure?

Chapter 6 Test Review

#4. Use the figure to find the angles.

m<3 = _____ m<4 = _____

#5. If \overline{PO} is an angle bisector of $\blacktriangleleft MON$, find x.

X-9

K

X +8

#6. If \overline{PO} is a perpendicular bisector, find x.

- #8. Use the following figure to answer part a & part b.
 - a. Which angle has the greatest measure?<3, <6, or <7
 - b. Which angle has the greatest measure? <9, <5, or <2

#9. Write an inequality comparing EF and GH.

#10. Write an inequality comparing $m \ll 1$ and $m \ll 2$.

#11. Find x in the triangle below:

#12. Consider the following figure: ΔGHI has midpoints at R, S, & T. <u>Fill in the blank:</u>

Part a: $\overline{RT} \parallel ___$ **Part b**: $\overline{HG} \parallel ___$

<u>Part c:</u> If GH = 16 and HI = 12, find RT.

<u>Part d:</u> If <G = 45 find m<HRS.

<u>**Part e:</u>** If m<G = m<H = m<I and RT = 26, find the perimeter of Δ GHI.</u>

#13. What value must x be greater than, and what value must x be less than?

#14. What is the relationship between a and y? Explain.

#15. Use the figure shown to answer the following:

- a. What is m<DBE?
- b. What is m<ABE?
- c. If m < FBA = 7x + 6y, what is m < FBA?

- d. What is m<FBD?
- e. What is m<ABC?
- f. What is m<DBF?
- g. What is m<EBF?

#16. <u>GIVEN</u>: P is the midpoint of MO m<NPM > m<NPO

PROVE: MN > NO

STATEMENTS	REASONS
#1. P is the midpoint of MO;	#1. Given
m <npm> m<npo< td=""><td></td></npo<></npm>	
#2. NP = NP	#2.
#3. MP = PO	#3.
#4. MN > NO	#4.

STATEMENTS	REASONS
#1. P is the midpoint of MO; MN > NO	#1. Given
#2. NP = NP	#2.
#3. MP = PO	#3.
#4. m<1 > m<2	#4.

GIVEN: MN = MQ <9 = <7 PROVE: ΔMOP is an isosceles Δ

STATEMENTS	REASONS
#1. MN = MP; <9 = <7	#1. Given
#2. Δ <i>NMQ</i> is	#2.
#3. <1 = <6	#3.
#4. $\Delta NMO \cong \Delta$	#4.
#5. MO = MP	#5.
#6. ΔMOP is an isosceles Δ	#6.

#19. <u>GIVEN</u>: <6 = <9

<u>PROVE</u>: PQ=QS

STATEMENTS	REASONS
#1. <6 = <9	#1. Given
#2.	#2.
<6 & <7 are	
<8 & <9 are	
#3.	#3.
<6 & <7 are	
<8 & <9 are	
#4.	#4.
#5.	#5.
#6. ΔPQS is an isosceles Δ	#6.
#7. PQ= QS	#7.

#4. <7 = <8	#4.
#5. ΔPQS is an isosceles Δ	#5.
#6. PQ= QS	#6.

#21. <u>GIVEN</u>: WX = XV; WY = VZ <u>PROVE</u>: Δ XYZ is an isosceles Δ

STATEMENTS	REASONS
#1. WX = XV; WY = VZ	#1. Given
#2. XY + YW = WX; XZ + ZV = XV	#2.
#3. XY = XZ	#3.
#4. ΔXYZ is an isosceles Δ	#4.

#22. GIVEN: YZ || WV; ΔWXV is an isosceles Δ PROVE: ΔXYZ is an isosceles Δ

STATEMENTS	REASONS
#1. YZ WV; ΔWXV is an isosceles Δ	#1. Given
#2. <2 = <4	#2.
#3. <1 & <2 are<'s	#3.
<3 & <4 are<'s	
#4. <1 = <2; <3 = <4	#4.
#5. <1 = <3	#5.
#6. ΔXYZ is an isosceles Δ	#6.

#23. <u>Given</u>: <1 = <2; \overline{AK} bisects <ZKC. <u>Prove</u>: $\Delta AKZ \cong \Delta AKC$

STATEMENTS	REASONS
#1. <1 = <2; <i>AK</i> bisects <zkc< td=""><td>#1. Given</td></zkc<>	#1. Given
#2. <3 = <4	#2.
#3. AK = AK	#3.
#4. ΔΑΚΖ ≌ ΔΑΚC	#4.

#25. Classify each triangle as: equilateral, isosceles, scalene, acute, equiangular, obtuse, or right. Some of the triangles may have more than ONE answer:

#26. 10 + |x + 9| < 8#27. -4|8x - 9| > 20

#28. |x + 9| + 18 = 17

#29. 1 < |x - 12| + 7 #30. $-2|x| \ge 10$ #31. $2|x| \ge -10$

#32. What is the equation, in <u>standard form</u>, of the line that passes through (10, -6) and has a slope of 3/4?

#33. What is the equation, in <u>standard form</u>, of the line that passes through (8, -2) and has a slope of 4/3?

#34. Solve by any method you choose: (2x + y) = 7

 $\{2x + y = -1$

#35. Short Answer

Refer to the figure below and determine whether each pair of equations has NO SOLUTION, INFINITELY MANY SOLUTIONS or ONE SOLUTION.

#36. Word Problem: The point (-7, -12) is on the graph of a linear equation. Another point on the graph of the same equation can be found by going 21 units up and 29 units to the right from (-7, -12). What is the slope of the line represented by the equation? Write the equation in slope-intercept form and then write it in standard form.

Write the following equations in slope intercept form. Afterwards, state what the slope of a line is that perpendicular to the original line would be. #39. -4x - 2y = -8 #40. 2x + 3y = -6

#41. *Find the other endpoint of the line segment with the given endpoint and midpoint.* Endpoint: (-5, 4); Midpoint (-10, -6)

#42. In the figure, segments RZ and WT are *transversals* that cut *parallel* lines m and l. Find the value of x. *Show your work algebraically.*

#43. **GIVEN**: $j || k; h \perp I;$ transversals h and I both intersect j and k. **PROVE**: m<8 + m<10 = 270

STATEMENTS:	REASONS:
#1. $j k$; h \perp I; transversals h and I both intersect j and k.	#1. Given
#2. <1 is a right angle	#2.
#3. <1 = 90	#3.
#4. <1 + <3 + <4 = 180	#4.
#5. 90 + <3 + <4 = 180	#5.
#6. <3 + <4 = 90	#6.
#7. <3 and <11 are angles	#7.
#8. <3 = <11	#8.
#9. <10 and <11 are a linear pair	#9.
#10. <10 and <11 are supplementary	#10.
#11. <10 + <11 = 180	#11.
#12. <10 + <3 = 180	#12.
#13. <3 = 180 - <10	#13.
#14. <4 and <8 are a linear pair	#14.
#15. <4 and <8 are supplementary	#15.
#16. <4 + <8 = 180	#16.
#17. <4 = 180 - <8	#17.
#18. 180 - <10 + 180 - <8 = 90	#18.
#19<10 - <8 + 360 = 90	#19.
#20 <10 - <8 = -270	#20.
#21. m<8 + m<10 = 270	#21.

#44. The midpoint of segment AC has coordinates (-1, 1). Point A has coordinates of (-5, 3). What is the y-coordinate of point C?

#45. Find the *distance* between the points: (-5, 11) and (3, 2).

#46. A midsegment is a segment that joins the midpoints of 2 sides of a triangle. What are the coordinates of the endpoints of the midsegment of ΔABC parallel to \overline{AC} ?

