Chapter 6 -Triangles
 Exercise 6.1

Question 1: Fill in the blanks using correct word given in the brackets:-
(i) All circles are \qquad . (congruent, similar)
(ii) All squares are \qquad . (similar, congruent)
(iii) All \qquad triangles are similar. (isosceles, equilateral)
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are \qquad and (b) their corresponding sides are
\qquad . (equal, proportional)

Answer:
(i) Similar
(ii) Similar
(iii) equilateral
(iv) (a) Equal ; (b) Proportional

Question 2: Give two different examples of pairs of
(i) similar figures.
(ii) non-similar figures.

Answer: (i) Two equilateral triangles with sides 2 cm and 3 cm

Two squares with sides 3 cm and 4 cm

(ii) Trapezium and square

Triangle and parallelogram

Question 3: State whether the following quadrilaterals are similar or not.

Answer: From the given above two figures, we can clearly see that, their corresponding angles are different or unequal. Therefore, they are not similar.

Exercise 6.2

Question 1: In the given figure (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).

Answer: (i) In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$
Hence, $\frac{A D}{D B}=\frac{A E}{E C} \ldots \ldots \ldots \ldots \ldots$ [Using Basic proportionality theorem]
or, $\frac{1.5}{3}=\frac{1}{E C}$
or, $\mathrm{EC}=\frac{3}{1.5}$
or, $\mathrm{EC}=3 \times \frac{10}{15}=2$
Therefore, EC $=2 \mathrm{~cm}$.
(ii) In $\triangle A B C, D E \| B C$
hence, $\frac{A D}{D B}=\frac{A E}{A C}$ \qquad [Using Basic proportionality theorem]
or, $\frac{A D}{7.2}=\frac{1.8}{5.4}$
or, $A D=1.8 \times \frac{7.2}{5.4}=\frac{18}{10} \times \frac{72}{10} \times \frac{10}{54}$
or, $A D=\frac{24}{10}$
or, $\mathrm{AD}=2.4$
Hence, AD = 2.4 cm .

Question 2: E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$.
For each of the following cases, state whether EF || QR.
(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.63 \mathrm{~cm}$

Answer:

(i) $\mathrm{PE}=3.9 \mathrm{~cm}$, [Given]
$\mathrm{EQ}=3 \mathrm{~cm}$, [Given]
$\mathrm{PF}=3.6 \mathrm{~cm}$ [Given]
$\mathrm{FR}=2.4 \mathrm{~cm}$ [Given]
Therefore,
$\frac{P E}{E Q}=\frac{3.9}{3}$ [using Basic proportionality theorem]
or, $\frac{39}{30}=\frac{13}{10}=1.3$
And $\frac{P F}{F R}=\frac{3.6}{2.4}=\frac{3}{2}=1.5$

So, we get, $\frac{P E}{E Q} \neq \frac{P F}{F R}$
Hence, EF is not parallel to QR.
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$ [Given]
$\frac{P E}{E Q}=\frac{4}{4.5}=\frac{40}{45}=\frac{8}{9}$
and, $\frac{P F}{F R}=\frac{8}{9}$
So, $\frac{P E}{E Q}=\frac{P F}{R F}$
Hence, EF is parallel to QR.
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$ [Given]

From the above figure,
$E Q=P Q-P E=(1.28-0.18) \mathrm{cm}=1.10 \mathrm{~cm}$
And, $\mathrm{FR}=\mathrm{PR}-\mathrm{PF}=(2.56-0.36) \mathrm{cm}=2.20 \mathrm{~cm}$
So, $\frac{P E}{E Q}=0.18 / 1.10 \frac{0.18}{1.10}=\frac{18}{110}=\frac{9}{55}$.
And, $\frac{P E}{F R}=\frac{0.36}{2.20}=\frac{36}{220}=\frac{9}{55}$
So, $\frac{P E}{E Q}=\frac{P F}{F R}$
Hence, EF is parallel to QR.

Question 3: In the figure, if LM || CB and LN || CD, prove that AM/AB = AN/AD

Answer: LM || CB [Given]
$\frac{A M}{A B}=\frac{A L}{A C}$.
(1) [Basic Proportionality theorem]

Again, LN || CD [Given]
$\frac{A N}{A D}=\frac{A L}{A C}$.
(2) [Basic Proportionality theorem]

From equation (1) and (2), we get,
$\frac{A M}{A B}=\frac{A N}{A D}$ [Proved]

Question 4: In the given figure, DE || AC and DF || AE.

Prove that $\frac{B F}{F E}=\frac{B E}{E C}$.

Answer: In $\triangle A B C, D E \| A C$
Hence, $\frac{B D}{D A}=\frac{B E}{E C}$
(1) [Basic Proportionality

Theorem]
In $\triangle A B C, D F| | A E$
Hence, $\frac{B D}{D A}=\frac{B F}{F E}$
(2) [Basic Proportionality

Theorem]
From equation (1) and (2), we get
$\frac{B E}{E C}=\frac{B F}{F E}$ [Given]

Question 5: In the given figure, DE || OQ and DF || OR. Show that EF || QR.

Answer: In \triangle PQO, DE || OQ [Given]
$\frac{P D}{D O}=\frac{P E}{E Q}$
(1) [Basic Proportionality Theorem]

In $\triangle P Q O, D E \| O Q$, [Given]
$\frac{P D}{D O}=\frac{P F}{F R}$
(2) [Basic Proportionality Theorem]

From the above two equations (1) and (2),
$\frac{P E}{E Q}=\frac{P F}{F E}$
Therefore, by using converse of Basic Proportionality Theorem, in $\triangle P Q R, E F \| Q R$.

Question 6: In the figure, A, B and C are points on OP, OQ and OR respectively such that $A B|\mid P Q$ and $A C| \mid P R$. Show that $B C|\mid Q R$.

Answer: In $\triangle \mathrm{OPQ}, \mathrm{AB}| | \mathrm{PQ}$, [Given]
$\frac{O A}{O P}=\frac{O B}{B Q}$
(1) [Basic Proportionality Theorem]

In $\triangle \mathrm{OPR}, \mathrm{AC}| | \mathrm{PR}$ [Given]
$\frac{O A}{A P}=\frac{O C}{C R} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.................... [Basic Proportionality Theorem]
From equations (1) and (2), we get,
$\frac{O B}{B Q}=\frac{O C}{C R}$
Therefore, by using converse of Basic Proportionality Theorem, in $\triangle O Q R, B C \| Q R$.

Question 7: Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

Answer: In triangle $A B C, D$ is the mid-point of $A B$ and $D E \| B C$ In $\triangle \mathrm{ABC}, \mathrm{DE} \mathrm{\| BC}$,
hence, $\frac{A D}{D B}=\frac{A E}{E C}$
But, $A D=D B[A s, D$ is the mid-point of $A B]$
or, $\frac{A D}{D B}=1$
or, $\frac{A E}{E C}=1$
Therefore, AE = EC
hence, $D E$ bisects $A C$.

Question 8: Using Converse of basic proportionality theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Answer:

D is the midpoint of $A B$ [given]
therefore, $\mathrm{AD}=\mathrm{DB}$
or, $\frac{A D}{B D}=1$
E is the mid-point of AC. [Given]
Therefore, $\mathrm{AE}=\mathrm{EC}$
or, $\frac{A E}{E C}=1$
From equations (1) and (2), we get,
$\frac{A D}{B D}=\frac{A E}{E C}$
Hence, by using converse of Basic Proportionality Theorem, DE || BC [Proved]

Question 9: ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the point O. Show that $\frac{A O}{B O}=\frac{C O}{D O}$

Answer:

From point O , let draw a line EO touching AD at E , in such a way that, EO || DC || AB [construction]

In $\triangle A D C$, we have $O E$ || DC
or, $\frac{A E}{E D}=\frac{A O}{C O}$
(1) [Basic Proportionality Theorem]

Now, In $\triangle A B D, O E \| A B$
$\frac{D E}{E A}=\frac{D O}{B O}$
(2) [Basic Proportionality Theorem]

From equation (1) and (2) we get,
$\frac{A O}{C O}=\frac{D O}{B O}$
or, $\frac{A O}{B O}=\frac{C O}{D O}$ [Proved]

Question 10: The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that $A B C D$ is a trapezium.
Answer:

[Construction] From the point O, draw a line EO touching AD at E, in such a way that, EO || DC || AB

In $\triangle \mathrm{DAB}, \mathrm{EO}| | \mathrm{AB}$
$\frac{D E}{E A}=\frac{D O}{O B} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ (1) [Basic Proportionality Theorem]
$\frac{A O}{B O}=\frac{C O}{D O} \quad$ [Given]
or, $\frac{A O}{C O}=\frac{B O}{D O}$
or, $\frac{C O}{A O}=\frac{D O}{B O}$
or, $\frac{D O}{B O}=\frac{C O}{A O}$
From equations (1) and (2), we get
$\frac{D E}{E A}=\frac{C O}{A O}$
Therefore, By using converse of Basic Proportionality Theorem, EO || DC also EO || AB, or, AB || DC.

Hence, quadrilateral $A B C D$ is a trapezium with $A B|\mid C D$.

Exercise 6.3

Question 1: State which pairs of triangles in Figure, are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

Answer: (i) In $\triangle A B C$ and $\triangle P Q R$,
$\angle \mathrm{A}=\angle \mathrm{P}=60^{\circ}$
$\angle B=\angle Q=80^{\circ}$
$\angle \mathrm{C}=\angle \mathrm{R}=40^{\circ}$
Therefore $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [AAA similarity criterion]
(ii) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$\frac{A B}{Q R}=\frac{B C}{R P}=\frac{C A}{P Q}$
By SSS similarity criterion,
Therefore, $\triangle \mathrm{ABC} \sim \triangle \mathrm{QRP}$ [SSS similarity criterion]
(iii) $\operatorname{In} \triangle \mathrm{LMP}$ and $\triangle \mathrm{DEF}, \mathrm{LM}=2.7, \mathrm{MP}=2, \mathrm{LP}=3, \mathrm{EF}=5, \mathrm{DE}=4, \mathrm{DF}=6$ $\frac{M P}{D E}=\frac{2}{4}=\frac{1}{2}$
$\frac{P L}{D F}=\frac{3}{6}=\frac{1}{2}$
$\frac{L M}{E F}=\frac{2.7}{5}=\frac{27}{50}$
Here,$\frac{M P}{D E}=\frac{P L}{D F} \neq \frac{L M}{E F}$

Therefore, $\triangle \mathrm{LMP}$ and $\triangle \mathrm{DEF}$ are not similar.
(iv) In $\triangle M N L$ and $\triangle Q P R$,
$\frac{M N}{Q P}=\frac{L M}{Q R}=\frac{1}{2}$
$\angle \mathrm{M}=\angle \mathrm{Q}=70^{\circ}$ [Given]
Therefore, $\Delta \mathrm{MNL} \sim \triangle$ QPR [SAS similarity criterion]
(v) In $\triangle A B C$ and $\triangle D E F, A B=2.5, B C=3, \angle A=80^{\circ}, E F=6, D F=5, \angle F=80^{\circ}$ [Given]
Here, $\frac{A D}{D F}=\frac{2.5}{5}=\frac{1}{2}$
And, $\frac{B C}{E F}=\frac{3}{6}=\frac{1}{2}$
or, $\angle B \neq \angle F$
Hence, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are not similar.
(vi) In $\triangle D E F$, we know that,
$\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ} \quad$ (sum of angles of triangles is 180°)
or, $70^{\circ}+80^{\circ}+\angle \mathrm{F}=180^{\circ}$
or, $\angle F=180^{\circ}-70^{\circ}-80^{\circ}$
or, $\angle F=30^{\circ}$
Similarly, In $\triangle P Q R$,
$\angle P+\angle Q+\angle R=180$ (Sum of angles of Δ)
or, $\angle \mathrm{P}+80^{\circ}+30^{\circ}=180^{\circ}$
or, $\angle \mathrm{P}=180^{\circ}-80^{\circ}-30^{\circ}$
or, $\angle \mathrm{P}=70^{\circ}$
Now, comparing both the triangles, $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$, we have
$\angle \mathrm{D}=\angle \mathrm{P}=70^{\circ}$
$\angle \mathrm{F}=\angle \mathrm{Q}=80^{\circ}$
$\angle \mathrm{F}=\angle \mathrm{R}=30^{\circ}$
Therefore, $\triangle \mathrm{DEF} \sim \triangle \mathrm{PQR}$. [AAA similarity criterion]
Question 2: In the figure, $\triangle O D C \propto 1 / 4 \triangle O B A, \angle B O C=125^{\circ}$ and $\angle C D O=70^{\circ}$. Find $\angle \mathrm{DOC}, \angle \mathrm{DCO}$ and $\angle \mathrm{OAB}$.

Answer: As we can see from the figure, DOB is a straight line.
Therefore, $\angle D O C+\angle C O B=180^{\circ}$
or, $\angle D O C=180^{\circ}-125^{\circ}\left(\right.$ Given, $\left.\angle B O C=125^{\circ}\right)$
$=55^{\circ}$

```
In }\triangle\textrm{DOC}
    \angleDCO + \angleCDO + \angleDOC = 180}\mp@subsup{}{}{\circ}\mathrm{ [sum of angles of }\triangle\mathrm{ ]
or, }\angle\textrm{DCO}+7\mp@subsup{0}{}{\circ}+5\mp@subsup{5}{}{\circ}=18\mp@subsup{0}{}{\circ}(\mathrm{ Given, }\angle\textrm{CDO}=7\mp@subsup{0}{}{\circ}\mathrm{ )
or, }\angle\textrm{DCO}=5\mp@subsup{5}{}{\circ
It is given that, }\triangle\textrm{ODC}\propto1/4\triangleOBA
Therefore, }\triangle\mathrm{ ODC ~ }\triangleOBA
Hence, are equal in similar triangles
\angleOAB = \angleOCD
or, }\angle\textrm{OAB}=5\mp@subsup{5}{}{\circ
```

Question 3: Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid ~ D C$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $A O / O C=O B / O D$

Answer:

In $\triangle \mathrm{DOC}$ and $\triangle \mathrm{BOA}$,
$A B|\mid C D$,
Therefore, $\angle \mathrm{CDO}=\angle \mathrm{ABO}$ [alternate interior are equal]
Similarly,
$\angle D C O=\angle B A O$
Also, for the two triangles $\triangle \mathrm{DOC}$ and $\triangle \mathrm{BOA}$,
$\angle D O C=\angle B O A$ [vertically opposite angles are equal]
Hence, by AAA similarity criterion,
$\triangle \mathrm{DOC} \sim \triangle \mathrm{BOA}$
Thus,
$\frac{D O}{B O}=\frac{O C}{O A} \quad$ [corresponding sides are proportional]
or, $\frac{O A}{O C}=\frac{O B}{O D}$
Hence, proved.

Question 4: In the fig.6.36, QR/QS = QT/PR and $\angle 1=\angle 2$. Show that \triangle PQS
$\sim \Delta T Q R$.

Answer:
In $\triangle P Q R$,
$\angle P Q R=\angle P R Q$
Therefore, $\mathrm{PQ}=\mathrm{PR}$
Given,
$\frac{Q S}{Q R}=\frac{Q T}{P R}$
Using equation (i), we get
$\frac{Q S}{Q R}=\frac{Q T}{Q P}$.
In $\triangle P Q S$ and $\triangle T Q R$, by equation (ii),
$\frac{Q S}{Q R}=\frac{Q T}{Q P}$
$\angle Q=\angle Q$
Therefore, $\triangle \mathrm{PQS} \sim \triangle \mathrm{TQR}$ [By SAS similarity criterion]
Question 5: S and T are point on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle P=$ $\angle R T S$. Show that $\triangle R P Q \sim \Delta R T S$.

Answer: Given, S and T are point on sides $P R$ and $Q R$ of $\triangle P Q R$ And $\angle \mathrm{P}=\angle \mathrm{RTS}$.

In $\triangle R P Q$ and $\triangle R T S$, $\angle R T S=\angle$ QPS (Given)
$\angle \mathrm{R}=\angle \mathrm{R}$ (Common angle)
Therefore $\triangle R P Q \sim \triangle R T S$ (AA similarity criterion)

Question 6: In the figure, if $\triangle A B E \cong \triangle A C D$, show that $\triangle A D E \sim \triangle A B C$.

Answer: Given, $\triangle A B E \cong \triangle A C D$.
Therefore, $\mathrm{AB}=\mathrm{AC}[\mathrm{By} \mathrm{CPCT}]$
And, $A D=A E[B y C P C T]$
In $\triangle A D E$ and $\triangle A B C$, dividing eq.(ii) by eq(i),
$\frac{A D}{A B}=\frac{A E}{A C}$
$\angle \mathrm{A}=\angle \mathrm{A}$ [Common angle]
Therefore, $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ [SAS similarity criterion]
Question 7: In the figure, altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point P. Show that:
(i) $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) $\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
(iii) $\triangle A E P \sim \triangle A D B$
(iv) \triangle PDC $\sim \triangle B E C$

Answer: Given, altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point P.
(i) In $\triangle A E P$ and $\triangle C D P$,
$\angle A E P=\angle C D P\left(90^{\circ}\right.$ each $)$
$\angle A P E=\angle C P D$ (Vertically opposite angles)
Hence, by AA similarity criterion,
$\triangle A E P \sim \triangle C D P$
(ii) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBE}$,
$\angle A D B=\angle C E B\left(90^{\circ}\right.$ each)
$\angle A B D=\angle C B E$ (Common Angles)
Hence, by AA similarity criterion,
$\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
(iii) In $\triangle A E P$ and $\triangle A D B$,
$\angle A E P=\angle A D B$ (90° each)
$\angle \mathrm{PAE}=\angle \mathrm{DAB}$ (Common Angles)
Hence, by AA similarity criterion,
$\triangle A E P \sim \triangle A D B$
(iv) In $\triangle P D C$ and $\triangle B E C$,
$\angle \mathrm{PDC}=\angle \mathrm{BEC}$ (90° each)
$\angle \mathrm{PCD}=\angle \mathrm{BCE}$ (Common angles)
Hence, by AA similarity criterion,
$\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$

Question 8: E is a point on the side AD produced of a parallelogram ABCD and $B E$ intersects $C D$ at F. Show that $\triangle A B E \sim \triangle C F B$.

Answer: Given, E is a point on the side AD produced of a parallelogram ABCD and $B E$ intersects $C D$ at F. Consider the figure below,

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$,
$\angle A=\angle C$ (Opposite angles of a parallelogram)
$\angle A E B=\angle C B F$ (Alternate interior angles as AE || BC)
Therefore $\triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$ (AA similarity criterion)

Question 9: In the figure, ABC and AMP are two right triangles, right angled at B and M respectively, prove that:
(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) CA/PA = BC/MP

Answer: Given, $A B C$ and AMP are two right triangles, right angled at B and M respectively.
(i) In $\triangle A B C$ and $\triangle A M P$, we have,
$\angle C A B=\angle M A P$ (common angles)
$\angle A B C=\angle A M P=90^{\circ}\left(\right.$ each $\left.90^{\circ}\right)$
Therefore $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$ (AA similarity criterion) [Proved]
(ii) As, $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$ (AA similarity criterion)

If two triangles are similar then the corresponding sides are always equal, Hence, $\frac{C A}{P A}=\frac{B C}{M P}$ [Proved]

Question 10: CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides $A B$ and $F E$ of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \Delta F E G$, Show that:
(i) $\mathrm{CD} / \mathrm{GH}=\mathrm{AC} / \mathrm{FG}$
(ii) $\triangle D C B \sim \triangle H G E$
(iii) $\triangle D C A \sim \Delta H G F$

Answer: Given, CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides $A B$ and $F E$ of $\triangle A B C$ and $\triangle E F G$ respectively.
(i) From the given condition, $\triangle \mathrm{ABC} \sim \Delta \mathrm{FEG}$.
Therefore $\angle A=\angle F, \angle B=\angle E$, and $\angle A C B=\angle F G E$
Since, $\angle A C B=\angle F G E$
Therefore $\angle A C D=\angle F G H$ (Angle bisector)
And, $\angle \mathrm{DCB}=\angle \mathrm{HGE}$ (Angle bisector)
In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{FGH}$,
$\angle A=\angle F$
$\angle A C D=\angle F G H$
Therefore $\triangle \mathrm{ACD} \sim \triangle \mathrm{FGH}$ (AA similarity criterion)
or, $\frac{C D}{G H}=\frac{A C}{F G}$
(ii) In $\triangle \mathrm{DCB}$ and $\triangle \mathrm{HGE}$,
$\angle D C B=\angle H G E$ (Already proved)
$\angle B=\angle E$ (Already proved)
Therefore $\triangle \mathrm{DCB} \sim \triangle H G E$ (AA similarity criterion)
(iii) In \triangle DCA and $\triangle H G F$,
$\angle A C D=\angle F G H$ (Already proved)
$\angle \mathrm{A}=\angle \mathrm{F}$ (Already proved)
Therefore $\triangle \mathrm{DCA} \sim \triangle \mathrm{HGF}$ (AA similarity criterion)

Question 11: In the following figure, E is a point on side CB produced of an isosceles triangle $A B C$ with $A B=A C$. If $A D \perp B C$ and $E F \perp A C$, prove that $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$.

Answer: Given, $A B C$ is an isosceles triangle.
Therefore $A B=A C$
or, $\angle A B D=\angle E C F$
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ECF}$,
$\angle A D B=\angle E F C\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle B A D=\angle C E F$ (Already proved)
Therefore $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$ (using AA similarity criterion)

Question 12: Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are

 respectively proportional to sides $P Q$ and $Q R$ and median PM of $\triangle P Q R$ (see Fig 6.41).Show that $\triangle A B C \sim \Delta P Q R$.

Answer: Given, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}, \mathrm{AB}, \mathrm{BC}$ and median AD of $\triangle \mathrm{ABC}$ are proportional to sides $P Q, Q R$ and median $P M$ of $\triangle P Q R$
i.e. $A B / P Q=B C / Q R=A D / P M$

We have to prove: $\triangle A B C \sim \triangle P Q R$
As we know here,
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A D}{P M}$
$\frac{A B}{P Q}=\frac{\frac{1}{2} B C}{\frac{1}{2} Q R}=\frac{A D}{P M}$
or, $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A D}{P M}$ (D is the midpoint of BC . M is the midpoint of QR)
or, $\triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$ [SSS similarity criterion]
Therefore $\angle \mathrm{ABD}=\angle \mathrm{PQM}$ [Corresponding angles of two similar triangles are equal] or, $\angle A B C=\angle P Q R$

In $\triangle A B C$ and $\triangle P Q R$
$\frac{A B}{P Q}=\frac{B C}{Q R}$
$\angle A B C=\angle P Q R$
From equation (i) and (ii), we get, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [SAS similarity criterion]

Question 13: D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=$ $\angle B A C$. Show that $C A^{2}=C B . C D$

Answer: D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. [Given]

In $\triangle A D C$ and $\triangle B A C$,
$\angle A D C=\angle B A C$ [given]
$\angle A C D=\angle B C A$ [Common angles]

Therefore, $\triangle \mathrm{ADC} \sim \triangle \mathrm{BAC}$ [AA similarity criterion]
As, we know that corresponding sides of similar triangles are in proportion.
therefore, $\frac{C A}{C B}=\frac{C D}{C A}$
or, $\mathrm{CA}^{2}=\mathrm{CB} . \mathrm{CD}$. [Proved]

Question 14: Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to $P Q$ and $P R$ and median PM of another triangle $P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.

Answer:
$\triangle A B C$ and $\triangle P Q R$ in which $A D$ and $P M$ are medians [Given]
Therefore, $\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P M}$
Construction: We need to produce $A D$ to E so that $A D=D E$.
Join CE, Similarly produce $P M$ to N such that $P M=M N$, also Join RN.

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CDE}$,
$A D=D E$ [By Construction.]
$B D=D C[A P$ is the median]
and, $\angle A D B=\angle C D E$ [Vertically opposite angles]
Hence, $\triangle \mathrm{ABD} \cong \triangle C D E$ [SAS criterion of congruence]
Thus, $A B=C E[B y ~ C P C T$.
Also, in $\triangle \mathrm{PQM}$ and $\triangle \mathrm{MNR}$,
$\mathrm{PM}=\mathrm{MN}$ [By Construction.]
$\mathrm{QM}=\mathrm{MR}[\mathrm{PM}$ is the median]
and, $\angle \mathrm{PMQ}=\angle \mathrm{NMR}$ [Vertically opposite angles]
Therefore, $\triangle \mathrm{PQM}=\triangle \mathrm{MNR}$ [SAS criterion of congruence]
Thus, $\mathrm{PQ}=\mathrm{RN}$ [CPCT].
Now, $\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P M}$
From equations (1) and (2),
or, $\frac{C E}{R N}=\frac{A C}{P R}=\frac{A D}{P M}$
or, $\frac{C E}{R N}=\frac{A C}{P R}=\frac{2 A D}{2 P M}$
or, $\frac{C E}{R N}=\frac{A C}{P R}=\frac{A E}{P N} \quad[$ Since $2 A D=A E$ and $2 P M=P N]$
therefore, $\triangle \mathrm{ACE} \sim \triangle \mathrm{PRN}$ [SSS similarity criterion]
Therefore, $\angle 2=\angle 4$
And, similarly, $\angle 1=\angle 3$
Thus, $\angle 1+\angle 2=\angle 3+\angle 4$
or, $\angle \mathrm{A}=\angle \mathrm{P}$
Now, in $\triangle A B C$ and $\triangle P Q R$,
$\frac{A B}{P Q}=\frac{A C}{P R}$ [Given]
From equation (3), $\angle \mathrm{A}=\angle \mathrm{P}$
Therefore, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [SAS similarity criterion]

Question 15: A vertical pole of a length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Answer:

In $\triangle A B C, A B$ is the pole and $B C$ its shadow.
Also, $\triangle P Q R, P Q$ be the tower of height h meters and $Q R$ be its shadow.
When Q is the altitude of the sun.
$\Delta \mathrm{ABC} \sim \triangle \mathrm{PQR} \quad$ [By AA similarity]
Or, $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$
Or, $\frac{B C}{R Q}=\frac{A C}{P R}$
Or, $\frac{4}{28}=\frac{6}{h}$
Or, $\mathrm{h}=\frac{6 \times 28}{4}=42$
Hence, the height of the tower is 42 m .

Question 16: If AD and PM are medians of triangles $A B C$ and PQR, respectively where $\triangle A B C \sim \triangle P Q R$ prove that $A B / P Q=A D / P M$.

Answer:

$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [Given]
or, $\angle A B C=\angle P Q R$

$$
\frac{A B}{P Q}=\frac{B C}{Q R}
$$

Or, $\frac{A B}{P Q}=\frac{\frac{1}{2} B C}{\frac{1}{2} Q R}$
Or, $\frac{A B}{P Q}=\frac{B D}{Q M}$
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$
$\frac{A B}{P Q}=\frac{B D}{Q M}$ [Proved]
$\angle B=\angle Q$
Hence, $\triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$
$\frac{A B}{P Q}=\frac{A D}{P M}$ [Corresponding sides of similar trinagles]

Exercise 6.4

Question 1: Let $\triangle A B C \sim \triangle D E F$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and 121 cm^{2}. If $E F=15.4 \mathrm{~cm}$, find $B C$.

Answer: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$, $\operatorname{ar}(\triangle \mathrm{ABC})=64 \mathrm{~cm}^{2}$
$\operatorname{ar}(\triangle D E F)=121 \mathrm{~cm}^{2}$
$E F=15.4 \mathrm{~cm}$
Therefore, $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{A B^{2}}{D E^{2}}$
As we know, if two triangles are similar, the ratio of their areas is equal to the square of the ratio of their corresponding sides,
$=\frac{A C^{2}}{D F^{2}}=\frac{B C^{2}}{E F^{2}}$
Hence, $\frac{64}{121}=\frac{B C^{2}}{E F^{2}}$
or, $\left(\frac{8}{11}\right)^{2}=\left(\frac{B C}{15.4}\right)^{2}$
or, $\left(\frac{8}{11}\right)^{2}=\frac{B C}{15.4}$
or, $\mathrm{BC}=\frac{8 \times 15.4}{11}$
or, $B C=8 \times 1.4$
or, $B C=11.2 \mathrm{~cm}$

Question 2: Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.

Answer:

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$, we have
$\angle 1=\angle 2$ (Alternate angles)
$\angle 3=\angle 4$ (Alternate angles)
$\angle 5=\angle 6$ (Vertically opposite angle)
Therefore $\triangle \mathrm{AOB} \sim \triangle \mathrm{COD}$ [AAA similarity criterion]
As we know, If two triangles are similar, then the ratio of their areas is equal to the square of the ratio of their corresponding sides. Therefore,
Area of $(\triangle A O B) /$ Area of $(\triangle C O D)=A B^{2} / C D^{2}$
$=\frac{(2 C D)^{2}}{C D^{2}} \quad$ [because $A B=2 C D$]
Therefore Area of ($\triangle \mathrm{AOB}) /$ Area of $(\triangle \mathrm{COD})$
$=\frac{4 C D^{2}}{C D^{2}}=\frac{4}{1}$
Hence, the required ratio of the area of $\triangle \mathrm{AOB}$ and $\triangle C O D=4: 1$
3. In the figure, $A B C$ and DBC are two triangles on the same base BC. If AD intersects $B C$ at O, show that area $(\triangle A B C) / a r e a(\triangle D B C)=A O / D O$.

Solution:

Given, $A B C$ and $D B C$ are two triangles on the same base $B C$. AD intersects $B C$ at 0 .
We have to prove: Area $(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DBC})=\frac{A O}{D O}$
Let us draw two perpendiculars AP and DM on line BC.

We know that area of a triangle $=1 / 2 \times$ Base \times Height
$\frac{\triangle \mathrm{ABC}}{\triangle \mathrm{DEF}}=\frac{\frac{1}{2} B C \times A P}{\frac{1}{2} B C \times D M}=\frac{A P}{D M}$
In $\triangle \mathrm{APO}$ and $\triangle \mathrm{DMO}$,
$\angle A P O=\angle D M O\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle A O P=\angle D O M$ (Vertically opposite angles)
Therefore $\triangle \mathrm{APO} \sim \triangle \mathrm{DMO}$ (AA similarity criterion)
Therefore $\frac{A P}{D M}=\frac{A O}{D O}$
or, $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})}=\frac{\mathrm{AO}}{\mathrm{BO}}$
4. If the areas of two similar triangles are equal, prove that they are congruent.

Answer: Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are two similar triangles and equal in area

Now let us prove $\triangle A B C \cong \triangle P Q R$.
Since $\triangle A B C \sim \triangle P Q R$
Therefore Area of $(\triangle A B C) /$ Area of $(\triangle P Q R)=B C^{2} / Q R^{2}$
or, $\frac{B C^{2}}{Q R^{2}}=1[$ Since, $\operatorname{Area}(\triangle \mathrm{ABC})=(\triangle \mathrm{PQR})$
or, $\frac{B C^{2}}{Q R^{2}}$
or, $B C=Q R$
Similarly, we can prove that
$A B=P Q$ and $A C=P R$
Thus, $\triangle A B C \cong \triangle P Q R$ [SSS criterion of congruence]
Question 5. D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the area of $\triangle D E F$ and $\triangle A B C$.

Answer: D, E and F are the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$.[Given]

In $\triangle \mathrm{ABC}$,
F is the mid-point of $A B$ (Already given)
E is the mid-point of $A C$ (Already given)
So, by the mid-point theorem, we have,
$\left.F E\left|\mid B C\right.$ and $\left.F E=\frac{1}{2} B C o r, F E\right| \right\rvert\, B C$ and $F E$ || $B D\left[B D=\frac{1}{2} B C\right]$
Since opposite sides of a parallelogram are equal and parallel
Therefore BDEF is a parallelogram.
Similarly, in $\triangle F B D$ and $\triangle D E F$, we have
$\mathrm{FB}=\mathrm{DE}$ (Opposite sides of parallelogram BDEF)
FD = FD (Common sides)
$B D=F E$ (Opposite sides of parallelogram BDEF)
Therefore $\triangle \mathrm{FBD} \cong \triangle \mathrm{DEF}$
Similarly, we can prove that
$\triangle A F E \cong \triangle D E F$
$\triangle E D C \cong \triangle D E F$
As we know, if triangles are congruent, then they are equal in area.
So, $\operatorname{Area}(\triangle \mathrm{FBD})=\operatorname{Area}(\triangle \mathrm{DEF})$
Area($\triangle A F E)=\operatorname{Area}(\triangle D E F)$
$\operatorname{Area}(\triangle E D C)=\operatorname{Area}(\triangle D E F)$
Now,
$\operatorname{Area}(\triangle \mathrm{ABC})=\operatorname{Area}(\triangle \mathrm{FBD})+\operatorname{Area}(\triangle \mathrm{DEF})+\operatorname{Area}(\triangle \mathrm{AFE})+\operatorname{Area}(\triangle E D C)$
$\operatorname{Area}(\triangle \mathrm{ABC})=\operatorname{Area}(\triangle \mathrm{DEF})+\operatorname{Area}(\triangle \mathrm{DEF})+\operatorname{Area}(\triangle \mathrm{DEF})+\operatorname{Area}(\triangle \mathrm{DEF})$
From equation (i), (ii) and (iii),
or, $\operatorname{Area}(\triangle D E F)=\left(\frac{1}{4}\right) \operatorname{Area}(\triangle A B C)$
or, $\frac{\operatorname{Area}(\triangle \mathrm{DEF})}{\operatorname{Area}(\triangle \mathrm{ABC})}=\frac{1}{4}$
Hence, $\operatorname{Area}(\triangle D E F)$: $\operatorname{Area}(\triangle A B C)=1: 4$

Question 6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Answer: AM and DN are the medians of triangles ABC and DEF respectively and $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.

We have to prove: $\operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DEF})=\frac{A M^{2}}{D N^{2}}$
Since $\triangle A B C \sim \triangle D E F$ (Given)
Therefore $\frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\operatorname{Area}(\triangle \mathrm{DEF})}=\left(\frac{A B^{2}}{D E^{2}}\right)$
and, $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$
or, $\frac{A B}{D E}=\frac{\frac{1}{2} A B}{\frac{1}{2} D E}=\frac{C D}{F D}$
In $\triangle A B M$ and $\triangle D E N$,
Since $\triangle A B C \sim \triangle D E F$
Therefore $\angle B=\angle E$
$\frac{A B}{D E}=\frac{B M}{E N}$ [Already Proved in equation (i)]
Therefore $\triangle A B C \sim \triangle D E F$ [SAS similarity criterion]
or, $\frac{A B}{D E}=\frac{A M}{D N}$
Therefore $\triangle A B M \sim \triangle D E N$
As the areas of two similar triangles are proportional to the squares of the corresponding sides.
Therefore area $(\triangle \mathrm{ABC}) /$ area $(\Delta \mathrm{DEF})=\mathrm{AB}^{2} / \mathrm{DE}^{2}=\mathrm{AM}^{2} / \mathrm{DN}^{2}$
Hence, proved.
7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the equilateral triangle area described on one of its diagonals.
Solution:

Given, $A B C D$ is a square whose one diagonal is $A C . \triangle A P C$ and $\triangle B Q C$ are two equilateral triangles described on the diagonals $A C$ and side $B C$ of the square ABCD.

Area($\triangle \mathrm{BQC})=1 / 2 \operatorname{Area}(\triangle \mathrm{APC})$
Since, $\triangle \mathrm{APC}$ and $\triangle \mathrm{BQC}$ are both equilateral triangles,
hence, $\triangle A P C \sim \triangle B Q C$ [AAA similarity criterion]
$\frac{\operatorname{ar}(\triangle \mathrm{APC})}{\operatorname{ar}(\triangle \mathrm{BQC})}=\frac{A C^{2}}{B C^{2}}$

Since, Diagonal $=\sqrt{ } 2$ side $=\sqrt{ } 2 B C=A C$
$\left(\frac{\sqrt{2} B C}{B C}\right)^{2}=2$
$\operatorname{area}(\triangle \mathrm{APC})=2 \times \operatorname{area}(\triangle \mathrm{BQC})$
Or, area $(\triangle B Q C)=1 / 2$ area $(\triangle A P C)$ [proved]
Tick the correct answer and justify:
8. $A B C$ and BDE are two equilateral triangles such that D is the mid-point of $B C$. The ratio of the area of triangles $A B C$ and $B D E$ is
(A) 2: 1
(B) $1: 2$
(C) $4: 1$
(D) $1: 4$

Answer: $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDE}$ are two equilateral triangles. D is the midpoint of BC . [Given]

Hence, $B D=D C=1 / 2 B C$
Let each side of the triangle be $2 a$.
As $\triangle \mathrm{ABC} \sim \triangle \mathrm{BDE}$
Hence, Area($\triangle \mathrm{ABC}) /$ Area($\triangle \mathrm{BDE}$)
$=\frac{A B^{2}}{B D^{2}}=\frac{(2 a)^{2}}{a^{2}}=\frac{4 a^{2}}{a^{2}}=\frac{4}{1}=4: 1$

The correct answer is (C).
9. Sides of two similar triangles are in the ratio 4: 9. Areas of these triangles are in the ratio
(A) $2: 3$
(B) $4: 9$
(C) $81: 16$
(D) $16: 81$

Answer: Sides of two similar triangles are in the ratio 4: 9. [Given]

Let $A B C$ and DEF are two similar triangles, such that,

And $A B / D E=A C / D F=B C / E F=4 / 9$
As the ratio of the areas of these triangles will be equal to the square of the balance of the corresponding sides,
Hence, $\operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DEF})=\frac{A B^{2}}{D E^{2}}$
Area $(\triangle A B C) / \operatorname{Area}(\triangle D E F)=\left(\frac{4}{9}\right)^{2}=\frac{16}{18}=16: 81$
Hence, the correct answer is (D).

Exercise 6.5

Question 1: Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) $\mathbf{7 c m}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
(iii) $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$
(iv) $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$

Answer: (i) $7^{2}+24^{2}=49+576=625=25^{2}$
Hence, the given triangle makes a right-angled triangle with hypotenuse 25 cm .
(ii) $3^{2}+6^{2}=9+36=45 \neq 8^{2}$

The given triangle is not right-angled.
(iii) $50^{2}+80^{2}=2500+6400=8900 \neq 100^{2}$

Hence, the given triangle is not right-angled.
(iv) $12^{2}+5^{2}=144+25=169=13^{2}$

Hence, the given triangle makes a right-angled triangle with hypotenuse 13 cm .
Question 2: QPR is a triangle right angled at P and M is a point on QR such that $P M \perp Q R$. Show that $P^{2}=\mathbf{Q M} \times M R$.

Solution:

Given, $\triangle P Q R$ is right-angled at P is a point on $Q R$ such that $P M \perp Q R$

We have to prove, $\mathrm{PM}^{2}=\mathrm{QM} \times \mathrm{MR}$

In \triangle PQM,
$\mathrm{PQ}^{2}=\mathrm{PM}^{2}+\mathrm{QM}^{2} \quad$ [Pythagoras theorem]
Or, $\mathrm{PM}^{2}=\mathrm{PQ}^{2}-\mathrm{QM}^{2}$
In \triangle PMR,
$P R^{2}=P M^{2}+M R^{2}$ [Pythagoras theorem]
Or, $\mathrm{PM}^{2}=\mathrm{PR}^{2}-\mathrm{MR}^{2}$
Adding equation, (1) and (2) we get,
$2 P M^{2}=\left(P Q^{2}+P M^{2}\right)-\left(Q M^{2}+M R^{2}\right)$
$=\mathrm{QR}^{2}-\mathrm{QM}^{2}-\mathrm{MR}^{2} \quad\left[\mathrm{QR}^{2}=\mathrm{PQ}^{2}+\mathrm{PR}^{2}\right]$
$=(Q M+M R)^{2}-Q M^{2}-M^{2}$
$=2 Q M \times M R$
Hence, $\mathrm{PM}^{2}=\mathrm{QM} \times \mathrm{MR}$ [Proved]
3. In Figure, $A B D$ is a triangle right angled at A and $A C \perp B D$. Show that
(i) $A B^{2}=B C \times B D$
(ii) $A C^{2}=B C \times D C$
(iii) $A D^{2}=B D \times C D$

Answer:
(i) In $\triangle A D B$ and $\triangle C A B$,
$\angle D A B=\angle A C B\left[\right.$ Each $\left.90^{\circ}\right]$
$\angle \mathrm{ABD}=\angle \mathrm{CBA}$ [Common angles]
Hence, $\triangle \mathrm{ADB} \sim \triangle \mathrm{CAB}$ [AA similarity criterion]
or, $\frac{A B}{C B}=\frac{B D}{A B}$
or, $A B^{2}=C B \times B D$
(ii) Let $\angle \mathrm{CAB}=\mathrm{x}$

In $\triangle C B A, \angle C B A=180^{\circ}-90^{\circ}-x$
or, $\angle \mathrm{CBA}=90^{\circ}-x$
Similarly, in \triangle CAD $\angle \mathrm{CAD}=90^{\circ}-\angle \mathrm{CBA}=90^{\circ}-x$
or, $\angle C D A=180^{\circ}-90^{\circ}-\left(90^{\circ}-x\right)$
or, $\angle C D A=x$
In \triangle CBA and $\triangle C A D$, we have
$\angle C B A=\angle C A D$
$\angle C A B=\angle C D A$
$\angle A C B=\angle D C A\left(\right.$ Each $\left.90^{\circ}\right)$
Hence, $\triangle \mathrm{CBA} \sim \triangle \mathrm{CAD}$ [AAA similarity criterion]
Or, $\frac{A C}{D C}=\frac{B C}{A C}$
or, $A C^{2}=D C \times B C$
(iii) In $\triangle \mathrm{DCA}$ and $\triangle \mathrm{DAB}$,
$\angle D C A=\angle D A B\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle C D A=\angle A D B$ (common angles)
Hence, $\triangle \mathrm{DCA} \sim \triangle \mathrm{DAB}$ [AA similarity criterion]
or, $\frac{D C}{D A}=\frac{A D}{B D}$
Or, $A D^{2}=B D \times C D$

Question 4. $A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=$ 2AC ${ }^{2}$.

Answer: $\triangle A B C$ is an isosceles triangle right angled at C.

In $\triangle \mathrm{ACB}, \angle \mathrm{C}=90^{\circ}$ [Given]
$A C=B C$ [isosceles triangle property]
$A B^{2}=A C^{2}+B C^{2}[B y$ Pythagoras theorem $]$
$=A C^{2}+A C^{2}[$ Since, $A C=B C]$
$A B^{2}=2 A C^{2}$ [proved]

Question 5. $A B C$ is an isosceles triangle with $A C=B C$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right triangle.
Answer: $\triangle A B C$ is an isosceles triangle having $A C=B C$ and $A B^{2}=2 A C^{2}$ [Given]

In $\triangle \mathrm{ACB}$,
$A C=B C$
$A B^{2}=2 A C^{2}$
$A B^{2}=A C^{2}+A C^{2}=A C^{2}+B C^{2}[A C=B C]$
Hence, by Pythagoras theorem, $\triangle A B C$ is a right-angle triangle.
Question 6. ABC is an equilateral triangle of side 2a. Find each of its altitudes.
Answer: $A B C$ is an equilateral triangle of side 2 a .

Draw, AD $\perp \mathrm{BC}$
In $\triangle A D B$ and $\triangle A D C$,
$A B=A C$
$A D=A D$
$\angle \mathrm{ADB}=\angle \mathrm{ADC}\left[90^{\circ}\right]$
Therefore, $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$ [RHS congruence.]
Hence, BD = DC [by CPCT]
In right-angled $\triangle \mathrm{ADB}$,
$A B^{2}=A D^{2}+B D^{2}$
or, $(2 a)^{2}=A D^{2}+a^{2}$
or, $A D^{2}=4 a^{2}-a^{2}$
or, $A D^{2}=3 a^{2}$
or, $A D=\sqrt{ } 3 a$
7. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

Solution:

Given, $A B C D$ is a rhombus whose diagonals $A C$ and $B D$ intersect at O.

We have to prove, as per the question,

$$
A B^{2}+B C^{2}+C D^{2}+A D^{2}=A C^{2}+B D^{2}
$$

Since the diagonals of a rhombus bisect each other at right angles.
Therefore, $\mathrm{AO}=\mathrm{CO}$ and $\mathrm{BO}=\mathrm{DO}$
In $\triangle \mathrm{AOB}$,
$\angle A O B=90^{\circ}$
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{BO}^{2}$
(i) [By Pythagoras theorem]

Similarly,
$A D^{2}=A O^{2}+D O^{2}$
$D C^{2}=\mathrm{DO}^{2}+\mathrm{CO}^{2}$
$\mathrm{BC}^{2}=\mathrm{CO}^{2}+\mathrm{BO}^{2}$
Adding equations (i) + (ii) + (iii) + (iv), we get,
$A B^{2}+A D^{2}+D C^{2}+B C^{2}=2\left(A O^{2}+B O^{2}+D O^{2}+C O^{2}\right)$
$=4 \mathrm{AO}^{2}+4 \mathrm{BO}^{2}$ [Since, $\mathrm{AO}=\mathrm{CO}$ and $\left.\mathrm{BO}=\mathrm{DO}\right]$
$=(2 A O)^{2}+(2 B O)^{2}=A C^{2}+B D^{2}$
$A B^{2}+A D^{2}+D C^{2}+B C^{2}=A C^{2}+B D^{2}[$ Proved]
8. In Fig. 6.54, O is a point in the interior of a triangle.

$A B C, O D \perp B C, O E \perp A C$ and $O F \perp A B$. Show that:
(i) $O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$,
(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$.

Solution:

Given, in $\triangle A B C, O$ is a point in the interior of a triangle.
And $O D \perp B C, O E \perp A C$ and $O F \perp A B$.
Join OA, OB and OC

(i) By Pythagoras theorem in $\triangle \mathrm{AOF}$, we have
$\mathrm{OA}^{2}=\mathrm{OF}^{2}+\mathrm{AF}^{2}$
Similarly, in $\triangle B O D$
$O B^{2}=O D^{2}+B D^{2}$
Similarly, in $\triangle C O E$
$\mathrm{OC}^{2}=\mathrm{OE}^{2}+\mathrm{EC}^{2}$
Adding these equations,
$O A^{2}+O B^{2}+O C^{2}=O F^{2}+\mathrm{AF}^{2}+O D^{2}+\mathrm{BD}^{2}+O \mathrm{E}^{2}+E C^{2}$
$O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$.
(ii) $\mathrm{AF}^{2}+\mathrm{BD}^{2}+E C^{2}=\left(\mathrm{OA}^{2}-\mathrm{OE}^{2}\right)+\left(\mathrm{OC}^{2}-\mathrm{OD}^{2}\right)+\left(\mathrm{OB}^{2}-\mathrm{OF}^{2}\right)$

Hence, $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$.
9. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.

Solution:

Given, a ladder 10 m long reaches a window 8 m above the ground.

Let BA be the wall and AC be the ladder,
Therefore, by Pythagoras theorem,
$A C^{2}=A B^{2}+B C^{2}$
$10^{2}=8^{2}+\mathrm{BC}^{2}$
$B C^{2}=100-64$
$\mathrm{BC}^{2}=36$
$B C=6 m$
Therefore, the distance of the foot of the ladder from the base of the wall is 6 m .
10. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Solution:
Given, a guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end.

Let $A B$ be the pole and $A C$ be the wire.
By Pythagoras theorem,
$A C^{2}=A B^{2}+B C^{2}$
$24^{2}=18^{2}+B C^{2}$
$B C^{2}=576-324$
$\mathrm{BC}^{2}=252$
$B C=6 \sqrt{ } 7 m$
Therefore, the distance from the base is $6 \sqrt{ } 7 \mathrm{~m}$.
11. An aeroplane leaves an airport and flies due north at $1,000 \mathrm{~km}$ per hour. Simultaneously, another aeroplane leaves the same airport and flies due west at a speed of $1,200 \mathrm{~km}$ per hour. How far apart will be the two planes after $1 \frac{1}{2}$ hours?

Answer: Speed of first aeroplane $=1000 \mathrm{~km} / \mathrm{hr}$ [Given]
Distance covered by a first aeroplane flying due north in $1 \frac{1}{2}$ hours $(\mathrm{OA})=100 \times \frac{3}{2} \mathrm{~km}$ $=1500 \mathrm{~km}$

Speed of second aeroplane $=1200 \mathrm{~km} / \mathrm{hr}$
Distance covered by a second aeroplane flying due west in $1 \frac{1}{2}$ hours $(O B)=1200 \times$ $\frac{3}{2} \mathrm{~km}=1800 \mathrm{~km}$

In right-angle $\triangle A O B$, by Pythagoras Theorem,
$A B^{2}=A O^{2}+O B^{2}$
or, $A B^{2}=(1500)^{2}+(1800)^{2}$
or, $A B=\sqrt{(2250000+3240000)}=\sqrt{5490000}$
$A B=300 \sqrt{ } 61 \mathrm{~km}$
Hence, the distance between the two aeroplanes will be $300 \sqrt{ } 61 \mathrm{~km}$.
12. Two poles of heights 6 m and 11 m stand on bare ground. If the distance between the bars' feet is $\mathbf{1 2} \mathbf{~ m}$, find the distance between their tops.
answer: Two poles of heights 6 m and 11 m stand on a plain ground. [Given]
And the distance between the feet of the poles is 12 m .

Let $A B$ and $C D$ be the poles of height 6 m and 11 m .
Therefore, $C P=11-6=5 \mathrm{~m}$
From the figure, it can be observed that $A P=12 m$
By Pythagoras theorem for $\triangle A P C$, we get,
$A P^{2}=P C^{2}+A C^{2}$
$(12 m)^{2}+(5 m)^{2}=(A C)^{2}$
$A C^{2}=(144+25) m^{2}=169 \mathrm{~m}^{2}$
$A C=13 m$
Therefore, the distance between their tops is 13 m .
13. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

Solution:

Given, D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C.

By Pythagoras theorem in $\triangle A C E$, we get
$A C^{2}+C E^{2}=A E^{2}$
In $\triangle B C D$, by Pythagoras theorem, we get
$B C^{2}+C D^{2}=B D^{2}$
From equations (i) and (ii), we get,
$A C^{2}+C E^{2}+B C^{2}+C D^{2}=A E^{2}+B D^{2}$
In $\triangle C D E$, by Pythagoras theorem, we get
$D E^{2}=C D^{2}+C E^{2}$
In $\triangle A B C$, by Pythagoras theorem, we get
$A B^{2}=A C^{2}+C B^{2}$
Putting the above two values in equation (iii), we get
$D E^{2}+A B^{2}=A E^{2}+B D^{2}$.

14. The perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D such that $D B=3 C D$ (see Figure). Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.

Solution:

Given, the perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D such that; $D B=3 C D$.

In $\triangle \mathrm{ABC}$,
$A D \perp B C$ and $B D=3 C D$
In a right-angled triangle, $A D B$ and $A D C$, by Pythagoras theorem,
$A B^{2}=A D^{2}+B D^{2}$
$A C^{2}=A D^{2}+D C^{2}$
Subtracting equation (ii) from equation (i), we get
$A B^{2}-A C^{2}=B D^{2}-D C^{2}$
$=9 C D^{2}-C D^{2}[A s, B D=3 C D]$
$=8 C D^{2}$
$=8(\mathrm{BC} / 4)^{2}[\mathrm{As}, \mathrm{BC}=\mathrm{DB}+\mathrm{CD}=3 \mathrm{CD}+\mathrm{CD}=4 \mathrm{CD}]$
Therefore, $A B^{2}-A C^{2}=B C^{2} / 2$
Or, $2\left(A B^{2}-A C^{2}\right)=B C^{2}$

Or, $2 A B B^{2}-2 A C^{2}=B C^{2}$
Hence, $2 A B^{2}=2 A C^{2}+B C^{2}$.
15. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=$ $1 / 3 B C$. Prove that $9 A D^{2}=7 A B^{2}$.

Answer: $A B C$ is an equilateral triangle and D is a point on side $B C$ such that $B D=$ ${ }_{3}^{1} \mathrm{BC}$ [Given]

Let the side of the equilateral triangle be a, and $A E$ be the altitude of $\triangle A B C$.
$\mathrm{BE}=\mathrm{EC}=\frac{B C}{2}=\frac{a}{2}$ and $\mathrm{AE}=\frac{\sqrt{3} a}{2}$
$\mathrm{BD}=\frac{1}{3} \mathrm{BC}$ [Given] and $\mathrm{BD}=\frac{a}{3}$
$\mathrm{DE}=\mathrm{BE}-\mathrm{BD}=\frac{a}{2}-\frac{a}{3}=\frac{a}{6}$
In $\triangle A D E$, by Pythagoras theorem,
$A D^{2}=A E^{2}+D E^{2}$
$A D^{2}=\left(\frac{a \sqrt{3}}{2}\right)^{2}+\left(\frac{a}{6}\right)^{2}$
$=\frac{3 a^{2}}{4}+\frac{a^{2}}{36}$
$=\frac{7}{9} A B^{2}$
Or, $9 A D^{2}=7 A B^{2}$
16. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Answer: An equilateral triangle ABC,

Let the sides of the equilateral triangle be of length a , and AE be the altitude of $\triangle \mathrm{ABC}$. Hence, $\mathrm{BE}=\mathrm{EC}=\frac{B C}{2}=\frac{a}{2}$
In $\triangle A B E$, by Pythagoras Theorem, we get
$A B^{2}=A E^{2}+B E^{2}$
$\mathrm{a}^{2}=A \mathrm{E}^{2}+\left(\frac{a}{2}\right)^{2}$
$\mathrm{AE}^{2}=\mathrm{a}^{2}-\frac{a^{2}}{4}$
$A E^{2}=\frac{3 a^{2}}{4}$
$4 A E^{2}=3 a^{2}$
or, $4 \times$ (Square of altitude) $=3 \times$ (Square of one side) [Proved]

Question 17. Tick the correct answer and justify: $\ln \triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=$ 12 cm and $B C=6 \mathrm{~cm}$.
The angle B is:
(A) 120°
(B) 60°
(C) 90°
(D) 45°

Answer: In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. [Given]

We can observe that,
$A B^{2}=108$
$A C^{2}=144$
And, $\mathrm{BC}^{2}=36$
$A B^{2}+B C^{2}=A C^{2}$
Hence, $\triangle A B C$ is satisfying Pythagoras theorem.
Therefore, the triangle is a right triangle, right-angled at B.
Hence, $\angle B=90^{\circ}$
Hence, the correct answer is (C).

Exercise 6.6

1. In Figure, PS is the bisector of \angle QPR of \triangle QPR. Prove that QS/PQ = SR/PR

Solution:

Let us draw a line segment RT parallel to SP which intersects extended line segment QP at point T.
Given, PS is the angle bisector of \angle QPR. Therefore,
$\angle Q P S=\angle S P R$.

As per the constructed figure,
$\angle \mathrm{SPR}=\angle \mathrm{PRT}$ (Since, $\mathrm{PS}|\mid T \mathrm{R}$).
$\angle Q P S=\angle Q R T($ Since,$P S| | T R)$
From the above equations, we get,
$\angle P R T=\angle Q T R$
Therefore,
$\mathrm{PT}=\mathrm{PR}$
In \triangle QTR, by basic proportionality theorem,
$\frac{Q S}{S R}=\frac{Q P}{P T}$
Since $\mathrm{PT}=\mathrm{TR}$
Therefore,
$\frac{Q S}{S R}=\frac{P Q}{P R}$
Hence, proved.
2. In Fig. 6.57, D is a point on hypotenuse $A C$ of $\triangle A B C$, such that $B D \perp A C, D M$ $\perp B C$ and $D N \perp A B$. Prove that: (i) $D^{2}=D N$. MC (ii) $D^{2}=D M$. AN.

Solution:

1. Let us join Point D and B.

Given,
$B D \perp A C, D M \perp B C$ and $D N \perp A B$
Now from the figure we have,
$\mathrm{DN}||\mathrm{CB}, \mathrm{DM}|| \mathrm{AB}$ and $\angle \mathrm{B}=90^{\circ}$
Therefore, DMBN is a rectangle.
So, $D N=M B$ and $D M=N B$
The given condition which we have to prove is when D is the foot of the perpendicular drawn from B to $A C$.

Therefore $\angle \mathrm{CDB}=90^{\circ} \Rightarrow \angle 2+\angle 3=90^{\circ}$
In \triangle CDM, $\angle 1+\angle 2+\angle D M C=180^{\circ}$
or, $\angle 1+\angle 2=90^{\circ}$
In $\triangle \mathrm{DMB}, \angle 3+\angle \mathrm{DMB}+\angle 4=180^{\circ}$
or, $\angle 3+\angle 4=90^{\circ}$
From equation (i) and (ii), we get
$\angle 1=\angle 3$
From equation (i) and (iii), we get
$\angle 2=\angle 4$
In $\triangle \mathrm{DCM}$ and $\triangle \mathrm{BDM}$,
$\angle 1=\angle 3$ (Already Proved)
$\angle 2=\angle 4$ (Already Proved)
Therefore $\triangle \mathrm{DCM} \sim \Delta \mathrm{BDM}$ (AA similarity criterion)
$\frac{B M}{D M}=\frac{D M}{M C}$
$\mathrm{DN} / \mathrm{DM}=\mathrm{DM} / \mathrm{MC}(\mathrm{BM}=\mathrm{DN})$
or, $\mathrm{DM}^{2}=\mathrm{DN} \times \mathrm{MC}$ Hence, proved.
(ii) In right triangle DBN, $\angle 5+\angle 7=90^{\circ}$

In right triangle DAN,
$\angle 6+\angle 8=90^{\circ}$
D is the point in the triangle, which is the perpendicular foot drawn from B to $A C$.
Therefore $\angle \mathrm{ADB}=90^{\circ} \Rightarrow \angle 5+\angle 6=90^{\circ}$
(vi)

From equation (iv) and (vi), we get,
$\angle 6=\angle 7$
From equation (v) and (vi), we get,
$\angle 8=\angle 5$
In \triangle DNA and $\triangle \mathrm{BND}$,
$\angle 6=\angle 7$ [Proved earlier]
$\angle 8=\angle 5$ [Proved earlier]
Therefore $\triangle \mathrm{DNA} \sim \Delta \mathrm{BND}$ (AA similarity criterion)
$\frac{A N}{D N}=\frac{D N}{N B}$
or, $\mathrm{DN}^{2}=\mathrm{AN} \times \mathrm{NB}$
or, $\mathrm{DN}^{2}=\mathrm{AN} \times \mathrm{DM}(\mathrm{NB}=\mathrm{DM})$ [Proved]
3. In Figure, $A B C$ is a triangle in which $\angle A B C>90^{\circ}$ and $A D \perp C B$ produced.

Prove that

$$
A C^{2}=A B^{2}+B C^{2}+2 B C \cdot B D
$$

Solution:

By applying Pythagoras Theorem in $\triangle A D B$, we get,
$A B^{2}=A D^{2}+D B^{2}$
Again, by applying Pythagoras Theorem in $\triangle A C D$, we get,
$A C^{2}=A D^{2}+D C^{2}$
$A C^{2}=A D^{2}+(D B+B C)^{2}$
$A C^{2}=A D^{2}+D B^{2}+B C^{2}+2 D B \times B C$
From equation (i),
$A C^{2}=A B^{2}+B C^{2}+2 D B \times B C[P r o v e d]$
4. In Figure, $A B C$ is a triangle in which $\angle A B C<90^{\circ}$ and $A D \perp B C$. Prove that $A C^{2}=A B^{2}+B C^{2}-2 B C . B D$.

Answer: By applying Pythagoras Theorem in $\triangle A D B$, we get,
$A B^{2}=A D^{2}+D B^{2}$
or, $A D^{2}=A B^{2}-D B^{2}$
By applying Pythagoras Theorem in $\triangle \mathrm{ADC}$, we get,
$A D^{2}+D C^{2}=A C^{2}$
From equation (i),
$A B^{2}-B D^{2}+D C^{2}=A C^{2}$
or, $A B^{2}-B D^{2}+(B C-B D)^{2}=A C^{2}$
or, $A C^{2}=A B^{2}-B D^{2}+B C^{2}+B D^{2}-2 B C \times B D$
or, $A C^{2}=A B^{2}+B C^{2}-2 B C \times B D$
Hence, proved.
5. In Figure, $A D$ is a median of a triangle $A B C$ and $A M \perp B C$. Prove that :
(i) $A C^{2}=A D^{2}+B C . D M+2(B C / 2)^{2}$
(ii) $A B^{2}=A D^{2}-B C . D M+2(B C / 2)^{2}$
(iii) $A C^{2}+A B^{2}=2 A D^{2}+1 / 2 B C^{2}$

Answer:
(i) By applying Pythagoras Theorem in $\triangle \mathrm{AMD}$, we get,
$A M^{2}+M D^{2}=A D^{2}$
Again, by applying Pythagoras Theorem in $\triangle \mathrm{AMC}$, we get,
$\mathrm{AM}^{2}+\mathrm{MC}^{2}=\mathrm{AC}^{2}$
or, $A M^{2}+(M D+D C)^{2}=A C^{2}$
or, $\left(A M^{2}+M D^{2}\right)+D C^{2}+2 M D \cdot D C=A C^{2}$
From equation(i), we get,
$A D^{2}+D C^{2}+2 M D \cdot D C=A C^{2}$
Since, $D C=B C / 2$, thus, we get,
$A D^{2}+\left(\frac{B C}{2}\right)^{2}+2 M D \cdot\left(\frac{B C}{2}\right)^{2}=A C^{2}$
or, $A D^{2}+\left(\frac{B C}{2}\right)^{2}+2 M D \times B C=A C^{2}$
Hence, proved.
(ii) By applying Pythagoras Theorem in $\triangle \mathrm{ABM}$, we get;
$A B^{2}=A M^{2}+M B^{2}$
$=\left(A D^{2}-D M^{2}\right)+M B^{2}$
$=\left(A D^{2}-D M^{2}\right)+(B D-M D)^{2}$
$=A D^{2}-D M^{2}+B D^{2}+M D^{2}-2 B D \times M D$
$=A D^{2}+B D^{2}-2 B D \times M D$
$=A D^{2}+\left(\frac{B C}{2}\right)^{2}-2\left(\frac{B C}{2}\right) M D$
$=A D^{2}+\left(\frac{B C}{2}\right)^{2}-B C \cdot M D$
Hence, proved.
(iii) By applying Pythagoras Theorem in $\triangle \mathrm{ABM}$, we get,
$A M^{2}+M B^{2}=A B^{2}$
By applying Pythagoras Theorem in $\triangle \mathrm{AMC}$, we get,
$A M^{2}+M C^{2}=A C^{2}$ \qquad
Adding both the equations (i) and (ii), we get,
$2 A M^{2}+M B^{2}+M C^{2}=A B^{2}+A C^{2}$
$2 A M^{2}+(B D-D M)^{2}+(M D+D C)^{2}=A B^{2}+A C^{2}$
$2 A M^{2}+B D^{2}+D M^{2}-2 B D \cdot D M+M D^{2}+D C^{2}+2 M D \cdot D C=A B^{2}+A C^{2}$
$2 A M^{2}+2 M D^{2}+B D^{2}+D C^{2}+2 M D(-B D+D C)=A B^{2}+A C^{2}$
$2\left(\mathrm{AM}^{2}+\mathrm{MD}^{2}\right)+\left(\frac{B C}{2}\right)^{2}+\left(\frac{B C}{2}\right)^{2}+2 \mathrm{MD}\left(-\frac{B C}{2}+\frac{B C}{2}\right)^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$2 A D^{2}+\frac{B C^{2}}{2}=A B^{2}+A C^{2}$
6. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Solution:

Let, ABCD be a parallelogram. Now, we need to draw perpendicular DE on extended side of $A B$ and draw a vertical $A F$ meeting $D C$ at point F.

In \triangle DEA, we get,
$D E^{2}+E A^{2}=D^{2}$
(1) [Pythagoras Theorem]

In $\triangle \mathrm{DEB}$, we get,

```
\(\mathrm{DE}^{2}+\mathrm{EB}^{2}=\mathrm{DB}^{2} \quad\) [[Pythagoras Theorem]
\(D E^{2}+(E A+A B)^{2}=D B^{2}\)
\(\left(D E^{2}+E A^{2}\right)+A B^{2}+2 E A \times A B=D B^{2}\)
\(D A^{2}+A B^{2}+2 E A \times A B=D B^{2}\)
```

By applying Pythagoras Theorem in $\triangle A D F$, we get,
$A D^{2}=A F^{2}+F D^{2}$
Again, in $\triangle \mathrm{AFC}$,
$A C^{2}=A F^{2}+F^{2}[B y$ Pythagoras Theorem $]$
$=A F^{2}+(D C-F D)^{2}$
$=A F^{2}+D C^{2}+F D^{2}-2 D C \times F D$
$=\left(A F^{2}+F D^{2}\right)+D^{2}-2 D C \times F D A C^{2}$
$A C^{2}=A D^{2}+D C^{2}-2 D C \times F D$
Since $A B C D$ is a parallelogram,
$A B=C D$
And $B C=A D$
In \triangle DEA and $\triangle \mathrm{ADF}$,
$\angle D E A=\angle A F D\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle E A D=\angle A D F(E A| | D F)$
$A D=A D$ (Common Angles)
Therefore $\triangle \mathrm{EAD} \cong \triangle \mathrm{FDA}$ (AAS congruence criterion) or, $\mathrm{EA}=\mathrm{DF}$

Adding equations (1) and (3), we get,

$$
\begin{aligned}
& D A^{2}+A B^{2}+2 E A \times A B+A D^{2}+D C^{2}-2 D C \times F D=D B^{2}+A C^{2} \\
& D A^{2}+A B^{2}+A D^{2}+D C^{2}+2 E A \times A B-2 D C \times F D=D B^{2}+A C^{2}
\end{aligned}
$$

From equation (4) and (6),
$B C^{2}+A B^{2}+A D^{2}+D C^{2}+2 E A \times A B-2 A B \times E A=D B^{2}+A C^{2}$
$A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}$
7. In Figure, two chords $A B$ and $C D$ intersect each other at the point P. Prove that :
(i) $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$
(ii) AP . $\mathrm{PB}=\mathrm{CP}$. DP

Solution:

Firstly, let us join CB in the given figure.
(i) In $\triangle \mathrm{APC}$ and $\triangle \mathrm{DPB}$,
$\angle \mathrm{APC}=\angle \mathrm{DPB} \quad$ [Vertically opposite angles]
$\angle C A P=\angle B D P \quad$ [Angles in the same segment for chord CB]
Therefore,
$\triangle \mathrm{APC} \sim \Delta \mathrm{DPB} \quad$ [AA similarity criterion]
(ii) In the above, we have proved that $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$

We know that the corresponding sides of similar triangles are proportional.
Therefore $\frac{A P}{D P}=\frac{P C}{P B}=\frac{C A}{B D}$
or, $\frac{A P}{D P}=\frac{P C}{P B}$
Therefore AP. PB = PC. DP [Proved]
8. In Fig. 6.62, two chords $A B$ and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that:
(i) \triangle PAC $\sim \Delta$ PDB
(ii) PA . $\mathrm{PB}=\mathrm{PC} . \mathrm{PD}$.

Solution:

(i) In $\triangle \mathrm{PAC}$ and $\triangle \mathrm{PDB}$,
$\angle P=\angle P$ [Common Angles]
As we know, the exterior angle of a cyclic quadrilateral is $\angle \mathrm{PCA}$ and $\angle \mathrm{PBD}$ is the opposite interior angle, which is both equal.
$\angle P A C=\angle P D B$
Thus, $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB} \quad$ [AA similarity criterion]
(ii) We have already proved above,
$\Delta \mathrm{APC} \sim \Delta \mathrm{DPB}$
We know that the corresponding sides of similar triangles are proportional.
Therefore,
$\frac{A P}{D P}=\frac{P C}{P B}=\frac{C A}{B D}$
$\frac{A P}{D P}=\frac{P C}{P B}$
Therefore AP. PB = PC. DP
9. In Figure, D is a point on side $B C$ of $\triangle A B C$ such that $B D / C D=A B / A C$. Prove that $A D$ is the bisector of $\angle B A C$.

Solution:

In the given figure, let us extend $B A$ to P such that;
$A P=A C$.
Now join PC.

Given, $\frac{B D}{C D}=\frac{A B}{B C}$
or, $\frac{B D}{C D}=\frac{A P}{A C}$
By using the converse of basic proportionality theorem, we get,
AD || PC
$\angle \mathrm{BAD}=\angle \mathrm{APC}$ [Corresponding angles]
And, $\angle \mathrm{DAC}=\angle \mathrm{ACP}$ [Alternate interior angles]
From the new figure,
$A P=A C$
or, $\angle A P C=\angle A C P$
On comparing equations (i), (ii), and (iii), we get,
$\angle B A D=\angle A P C$
Therefore, AD is the bisector of the angle BAC.
Hence, proved.
10. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water, and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see Figure)? If she pulls in the line at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?

Solution:

Let us consider; $A B$ is the height of the tip of the fishing rod from the water surface, and $B C$ is the
The horizontal distance of the fly from the tip of the fishing rod. Therefore, $A C$ is now the length of the string.

To find $A C$, we have to use Pythagoras theorem in $\triangle A B C$, is such a way;
$A C^{2}=A B^{2}+B C^{2}$
or, $A B^{2}=(1.8 \mathrm{~m})^{2}+(2.4 \mathrm{~m})^{2}$
or, $A B^{2}=(3.24+5.76) \mathrm{m}^{2}$
or, $A B^{2}=9.00 \mathrm{~m}^{2}$
or, $A B=\sqrt{ } 9 \mathrm{~m}=3 \mathrm{~m}$
Thus, the length of the string out is 3 m .
As its given, she pulls the string at the rate of 5 cm per second.
Therefore, string pulled in 12 seconds $=12 \times 5=60 \mathrm{~cm}=0.6 \mathrm{~m}$

Let us consider; the fly is at point D after 12 seconds.
Length of string out after 12 seconds is AD.
AD = AC - String pulled by Nazima in 12 seconds
$=(3.00-0.6) \mathrm{m}$
$=2.4 \mathrm{~m}$
In \triangle ADB,
$A B^{2}+B D^{2}=A D^{2}$ [Pythagoras Theorem]
or, $(1.8 \mathrm{~m})^{2}+\mathrm{BD}^{2}=(2.4 \mathrm{~m})^{2}$
or, $\mathrm{BD}^{2}=(5.76-3.24) \mathrm{m}^{2}=2.52 \mathrm{~m}^{2}$
or, $B D=1.587 \mathrm{~m}$
Horizontal distance of fly $=B D+1.2 \mathrm{~m}=(1.587+1.2) \mathrm{m}=2.787 \mathrm{~m}=2.79 \mathrm{~m}$

