CHEMISTRY

AN ATOMS FIRST APPROACH

Chapter 6

Types of Chemical Reactions and Solution Stoichiometry

Chapter 6 *Table of Contents*

- (6.1) Water, the common solvent
- (6.2) The nature of aqueous solutions: Strong and weak electrolytes
- (6.3) The composition of solutions
- (6.4) Types of chemical reactions
- (6.5) Precipitation reactions
- (6.6) Describing reactions in solution
- (6.7) Stoichiometry of precipitation reactions
- (6.8) Acid–base reactions

Chapter 6 *Table of Contents*

- (6.9) Oxidation–reduction reactions
- (6.10) Balancing oxidation-reduction equations

Questions to Consider

- Why is sugar solution not used as an electrolyte?
- What kind of reaction would one classify photosynthesis as?

Importance of Water

- An integral part of many life-sustaining reactions
- Cooling effect of water is used to reduce the temperature of:
 - Automobile engines
 - Nuclear power plants
 - Many industrial processes
- Used as a means of transportation
- Vital to the growth of crops
- It is a polar molecule

Figure 6.2 - Water Dissolving a Salt

Hydration

- The interaction between water molecules and the ions of a salt, causing dissolution
 - Salts are broken up into individual cations and anions
- Consider the hydration of ammonium nitrate

 $\mathrm{NH}_4\mathrm{NO}_3(s) \xrightarrow{\mathrm{H}_2\mathrm{O}(l)} \mathrm{NH}_4^+(aq) + \mathrm{NO}_3^-(aq)$

(aq) indicates the hydration of ions

Solubility

- Varies among different substances
- Differences in solubility of ionic compounds depend on:
 - Attractions of ions to one another
 - Attraction of ions to water molecules
- When ionic solids dissolve in water, ions undergo hydration and are dispersed
- Many non-ionic solids are soluble
- Animal fat is not soluble in pure water

Figure 6.3 - Molecular Structures of Ethanol and Water

Copyright © 2016 Cengage Learning. All Rights Reserved.

Nature of Aqueous Solutions

- Solute: Substance dissolved
- Solvent: Liquid water
- Electrical conductivity: Ability of a solution to conduct electricity
 - Solutions with high electrical conductivity are strong electrolytes
 - Solutions with low electrical conductivity are weak electrolytes
 - Nonelectrolytes do not conduct electricity

Conductivity of Solutions

- According to Svante Arrhenius, the conductivity of a solution depends on the number of ions present
 - Strong electrolytes readily produce ions in aqueous solution
 - Weak electrolytes produce a relatively lesser number of ions in aqueous solution
 - Nonelectrolytes are those that do not produce ions in aqueous solution

Figure 6.4 - Electrical Conductivity of Aqueous Solutions

Copyright © 2016 Cengage Learning. All Rights Reserved.

Strong Electrolytes

- Substances that are completely ionized upon dissolution
- Classified as:
 - Soluble salts
 - Sodium chloride produces Na⁺ and Cl⁻ ions when dissolved
 - Strong acids
 - Undergo ionization reactions to produce H⁺ ions
 - Represented in the aqueous form in equations
 - Completely dissociate into ions
 - H₂SO₄ produces two H⁺ ions under certain conditions

 $H_2SO_4 \xrightarrow{H_2O} H^+(aq) + HSO_4^-(aq)$

Copyright © 2016 Cengage Learning. All Rights Reserved.

Strong Electrolytes

- Strong bases
 - Soluble ionic compounds that possess OH⁻ ions
 - Bitter to taste
 - Slippery to touch

 $NaOH(s) \xrightarrow{H_2O} Na^+(aq) + OH^-(aq)$

Weak Electrolytes

- Substances that produce lesser ions when dissolved
- Classified as:
 - Weak acids
 - Acids that produce a low amount of ions in aqueous solution $HC_2H_3O_2(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + C_2H_3O_2^-(aq)$
 - Weak bases
 - Bases that produce a low amount of ions in aqueous solution

 $\mathrm{NH}_{3}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \longrightarrow \mathrm{NH}_{4}^{+}(aq) + \mathrm{OH}^{-}(aq)$

Nonelectrolytes

- Substances that do not produce any ions when dissolved
- Consider ethanol (C₂H₅OH) dissolved in water
 - Molecules are dispersed, but do not break up into ions
 - Resulting solution is not capable of conducting electricity

Stoichiometry of Chemical Reactions

- Performing stoichiometric calculations requires the following information:
 - The nature of the reaction
 - Depends on the exact nature of chemicals when dissolved
 - The amounts of chemicals present in the solutions
 - Expressed as concentrations

Molarity

 Defined as the moles of solute per volume of solution in liters

 $M = \text{molarity} = \frac{\text{moles of solute}}{\text{liters of solution}}$

A solution that is 1.0 molar (1.0 M) contains 1.0 mole of solute per liter of solution

Interactive Example 6.1 - Calculation of Molarity I

 Calculate the molarity of a solution prepared by dissolving 11.5 g of solid NaOH in enough water to make 1.50 L of solution

Solution

- Objective
 - To find the molarity of NaOH solution
- Information available
 - 11.5 g NaOH
 - 1.50 L solution
- Information needed
 - Moles solute
 - Molarity = $\frac{\text{Mol solute}}{\text{L solution}}$

Solution

Step 1 - Determine the moles of NaOH (40.00 g/mol)

$$11.5 \text{ g NaOH} \times \frac{1 \text{ mol NaOH}}{40.00 \text{ g NaOH}} = 0.288 \text{ mol NaOH}$$

Step 2 - Determine the molarity of the solution

Molarity = $\frac{\text{mol solute}}{\text{L solution}} = \frac{0.288 \text{ mol NaOH}}{1.50 \text{ L solution}} = 0.192 M \text{ NaOH}$

Determining the Number of Moles in a Solute

- A sample is taken
- The number of moles present in the sample are determined
 - The molarity of the solution is multiplied by the volume of the sample

Liters of solution \times molarity = <u>liters of solution</u> \times

moles of solute

liters of solution

= moles of solute

Interactive Example 6.4 - Concentration of Ions II

Calculate the number of moles of Cl⁻ ions in 1.75 L of 1.0
 × 10⁻³ M ZnCl₂

Solution

- Objective
 - To find the moles of Cl⁻ ion in the solution
- Information available
 - 1.0 × 10⁻³ M ZnCl₂
 - 1.75 L
- Information required
 - Balanced equation for dissolving ZnCl₂

Solution

 Step 1 - State the balanced equation for dissolving the ions

$$\operatorname{ZnCl}_{2}(s) \xrightarrow{\operatorname{H}_{2}O} \operatorname{Zn}^{2^{+}}(aq) + 2\operatorname{Cl}^{-}(aq)$$

- Step 2 Calculate the molarity of the solution $2 \times (1.0 \times 10^{-3} M) = 2.0 \times 10^{-3} M \text{ Cl}^{-3}$
- Step 3 Determine the moles of Cl⁻

1.75 L solution ×
$$2.0 \times 10^{-3} M$$
 Cl⁻ = 1.75 L solution × $\frac{2.0 \times 10^{-3} \text{ mol Cl}^{-}}{\text{L solution}}$
= $3.5 \times 10^{-3} \text{ mol Cl}^{-}$

Dilution

- The addition of water to a concentrated solution in order to achieve the desired molarity
- Pieces of apparatus used in the process of dilution
 - Volumetric (transfer) pipettes
 - Specific sizes 5 mL, 10 mL, 25 mL, etc
 - Measuring pipettes
 - Used to measure volumes for which a volumetric pipette is not available

Interactive Example 6.7 - Concentration and Volume

What volume of 16 M sulphuric acid must be used to prepare 1.5 L of a 0.10 M H₂SO₄ solution?

Solution

- Objective
 - To find the volume of H₂SO₄ required to prepare the solution
- Information available
 - 1.5 L of 0.10 M H₂SO₄ is required
 - 16 M H₂SO₄ is available
- Information needed
 - Moles of H₂SO₄ in the required solution

Solution

Step 1 - Determine the moles of H₂SO₄ required

 $M \times V = \text{mol}$ 1.5 L solution $\times \frac{0.10 \text{ mol } \text{H}_2\text{SO}_4}{\text{L solution}} = 0.15 \text{ mol } \text{H}_2\text{SO}_4$

Step 2 - Determine the volume of 16 M H₂SO₄

$$V \times \frac{16 \text{ mol } \text{H}_2 \text{SO}_4}{\text{L solution}} = 0.15 \text{ mol } \text{H}_2 \text{SO}_4$$

Copyright © 2016 Cengage Learning. All Rights Reserved.

Solution

$$V = \frac{0.15 \text{ mol H}_2 \text{SO}_4}{16 \text{ mol H}_2 \text{SO}_4} = 9.4 \times 10^{-3} \text{ L or } 9.4 \text{ mL solution}$$

$$\frac{16 \text{ mol H}_2 \text{SO}_4}{1 \text{ L solution}}$$

To make 1.5 L of 0.10 M H₂SO₄ using 16 M H₂SO₄, 9.4 mL of concentrated acid must be diluted with 1.5 L of water

Moles of the Solute are not Altered by Dilution

 An alternate way to expresses this concept is by the following equation:

$$M_1 V_1 = M_2 V_2$$

- *M*₁ and *V*₁ represent the molarity and volume of the solution before dilution
- *M*₂ and *V*₂ represent the molarity and volume of the diluted solution
- Validating this concept:

 $M_1 \times V_1$ = mol solute before dilution

= mol solute after dilution = $M_2 \times V_2$

Concept Check

- Which of the following solutions contains the greatest number of ions?
 - 400.0 mL of 0.10 M NaCl
 - 300.0 mL of 0.10 M CaCl₂
 - 200.0 mL of 0.10 M FeCl₃
 - 800.0 mL of 0.10 M sucrose

Concept Check

- A 0.50 M solution of sodium chloride in an open beaker sits on a lab bench. Which of the following would decrease the concentration of the salt solution?
 - (a) Adding water to the solution
 - (b) Pouring some of the solution down the sink drain
 - (c) Adding more sodium chloride to the solution
 - (d) Letting the solution sit out in the open air for a couple of days

Section 6.4 *Types of Chemical Reactions*

Types of Solution Reactions

- Precipitation reactions
- Acid—base reactions
- Oxidation—reduction reactions

Section 6.5 *Precipitation Reactions*

Precipitation Reaction

- A reaction in which the mixing of two solutions results in the formation of an insoluble substance which separates from the solution
 - The solid formed is called a precipitate
- Identification of the precipitate requires knowledge of the chemical composition of the solutions

Section 6.5 *Precipitation Reactions*

Figure 6.13 - Formation of a Precipitate

Copyright © 2016 Cengage Learning. All Rights Reserved.

Identification of the Precipitate

- Consider a mixture containing aqueous solutions of potassium chromate and barium nitrate
 - Identify the reactants
 - K₂CrO₄ (aq)
 - Ba(NO₃)₂ (aq)
 - Recognize that when a solid dissolves in water, the ions are separated
 - K₂CrO₄ (aq) contains K⁺ and CrO₄²⁻ ions
 - Ba(NO₃)₂ (aq) contains separated Ba²⁺ and NO³⁻ ions

Identification of the Precipitate

- Therefore, the mixed solution contains the following ions:
 - K⁺, CrO₄²⁻, Ba²⁺, and NO₃⁻
- The compound formed must have a zero net charge
 - Both anions and cations are present in the product
- Most ionic materials contain only two types of ions
 - One type of cation and one type of anion
 - Possible combinations
 - K₂CrO₄, KNO₃, BaCrO₄, or Ba(NO₃)₂

Identification of the Precipitate

- K₂CrO₄ and Ba(NO₃)₂ are the reactants
- The substance formed is yellow in color
 - KNO₃ is white
 - BaCrO₄ is yellow
- The solid formed is almost certainly BaCrO₄
- If KNO₃ is mixed in the same quantity of water as in the mixed solution, it will not form a solid
- Thus,

 $K_2CrO_4(aq) + Ba(NO_3)_2(aq) \longrightarrow BaCrO_4(s) + 2KNO_3(aq)$

Simple Rules for the Solubility of Salts

- Most nitrate (NO₃⁻) salts are soluble
- Most salts containing the alkali metal ions and the ammonium ion are soluble
- Most Cl⁻, Br⁻, and l⁻ salts are soluble (except Ag⁺, Pb²⁺, and Hg₂²⁺)
- Most sulfate salts are soluble (except BaSO₄, PbSO₄, Hg₂SO₄, and CaSO₄)

Simple Rules for the Solubility of Salts

- Most hydroxides are only slightly soluble (NaOH, KOH are soluble; Ba(OH)₂, Ca(OH)₂ are marginally soluble)
- Most sulfide (S²⁻), carbonate (CO₃²⁻), chromate (CrO₄²⁻), and phosphate (PO₄³⁻) salts are only slightly soluble, except for those containing the cations in Rule 2

Simple Rules for the Solubility of Salts

Solubility Rules for Ionic Compounds

Rule	Applies to	Rule	Exceptions
1	Li ⁺ , K ⁺ , Na ⁺ , NH ₄ ⁺	Group IA and ammonium compounds are soluble.	
2	C ₂ H ₃ O ₂ ⁻ , NO ₃ ⁻	Acetates and nitrates are soluble.	
3	Cl ⁻ , Br ⁻ , l ⁻	Most chlorides, bromides, and iodides are soluble	AgCl, Hg ₂ Cl ₂ , PbCl ₂ , AgBr, HgBr ₂ , Hg ₂ Br ₂ , PbBr ₂ , AgI, HgI ₂ , Hg ₂ I ₂ , PbI ₂
4	SO4 ²⁻	Most sulfates are soluble.	CaSO4, SrSO4, BaSO4, Ag2SO4, , Hg2SO4, PbSO4
5	CO3 ²⁻	Most carbonates are insoluble.	Group IA carbonates, (NH ₄) ₂ CO ₃
6	PO4 ³⁻	Most phosphates are insoluble.	Group IA phosphates, (NH ₄) ₃ PO ₄
7	S ²⁻	Most sulfides are insoluble.	Group IA sulfides, (NH₄)₂S
8	OH-	Most hydroxides are insoluble.	Group IA hydroxides, Ca(OH)2, Sr(OH)2, Ba(OH)2

Rule 1 "wins" over rule 3, etc. Follow the rules in the above order.

Interactive Example 6.8 - Predicting Reaction Products

 Predict what will happen when aqueous solutions of Na₂SO₄ and Pb(NO₃)₂ are mixed

Solution

- The ions present in the solution before any reaction occurs are Na⁺, SO₄²⁻, Pb²⁺, and NO³⁻
- The possible salts that could form precipitates are $Na^{+} + SO_{4}^{2-} + Pb^{2+} + NO^{3-} \longrightarrow$
- NaNO₃ is soluble but PbSO₄ is insoluble
 - PbSO₄ forms the precipitate

 $Na_2SO_4(aq) + Pb(NO_3)_2(aq) \longrightarrow PbSO_4(s) + 2NaNO_3(aq)$

Concept Check

- Which of the following ions form compounds with Pb²⁺ that are generally soluble in water?
 - S^{2−}
 - Cl⁻
 - NO₃⁻
 - SO₄²⁻
 - Na⁺

Formula Equation (Molecular Equation)

- Gives the overall reaction stoichiometry but not necessarily the actual forms of the reactants and products in solution
- It is not a detailed representation $K_2CrO_4(aq) + Ba(NO_3)_2(aq) \longrightarrow BaCrO_4(s) + 2KNO_3(aq)$

Complete Ionic Equation and Net Ionic Equation

• A complete ionic equation represents as ions all reactants and products that are strong electrolytes $2K^{+}(aq) + CrO_{4}^{2-}(aq) + Ba^{2+}(aq) + 2NO_{3}^{-}(aq) \longrightarrow$

 $BaCrO_4(s) + 2K^+(aq) + 2NO^{3-}(aq)$

- Ions that do not participate directly are called spectator ions
- A net ionic equation includes only those solution components undergoing a change

$$\operatorname{Ba}^{2+}(aq) + \operatorname{CrO}_{4}^{2-}(aq) \longrightarrow \operatorname{BaCrO}_{4}(s)$$

Interactive Example 6.9 - Writing Equations for Reactions

- Write the formula equation, the complete ionic equation, and the net ionic equation for the following reaction:
 - Aqueous potassium chloride is added to aqueous silver nitrate to form a silver chloride precipitate plus aqueous potassium nitrate

Solution

Formula equation

$$\operatorname{KCl}(aq) + \operatorname{AgNO}_3(aq) \longrightarrow \operatorname{AgCl}(s) + \operatorname{KNO}_3(aq)$$

Complete ionic equation

Solution

Cancelling the spectator ions gives the net ionic equation

 $\mathcal{K}^{\leftarrow}(aq) + \operatorname{Cl}^{-}(aq) + \operatorname{Ag}^{+}(aq) + \operatorname{NO}_{3}^{\leftarrow}(aq) \longrightarrow \operatorname{AgCl}(s) + \mathcal{K}^{\leftarrow}(aq) + \operatorname{NO}_{3}^{\leftarrow}(aq)$

$$\mathrm{Cl}^{-}(aq) + \mathrm{Ag}^{+}(aq) \longrightarrow \mathrm{AgCl}(s)$$

Concept Check

 Write the correct formula equation, complete ionic equation, and net ionic equation for the reaction between cobalt(II) chloride and sodium hydroxide

Solving Stoichiometry Problems for Reactions in a Solution

- Identify the species present in the combined solution, and determine what reaction, if any, occurs
- Write the balanced net ionic equation for the reaction
- Calculate the moles of reactants
- Determine which reactant is limiting
- Calculate the moles of product(s), as required
- Convert to grams or other units, as required

Concept Check (Part I)

- 10.0 mL of a 0.30 M sodium phosphate solution reacts with 20.0 mL of a 0.20 M lead(II) nitrate solution (assume no volume change).
 - What precipitate will form?
 - What mass of precipitate will form?

Concept Check (Part II)

- 10.0 mL of a 0.30 M sodium phosphate solution reacts with 20.0 mL of a 0.20 M lead(II) nitrate solution (assume no volume change).
 - What is the concentration of nitrate ions left in solution after the reaction is complete?

Concept Check (Part III)

- 10.0 mL of a 0.30 M sodium phosphate solution reacts with 20.0 mL of a 0.20 M lead(II) nitrate solution (assume no volume change).
 - What is the concentration of phosphate ions left in solution after the reaction is complete?

Interactive Example 6.10 - Determining the Mass of Product Formed I

 Calculate the mass of solid NaCl that must be added to 1.50 L of a 0.100 M AgNO₃ solution to precipitate all the Ag⁺ ions in the form of AgCl

Solution

- Objective
 - To find the mass of solid NaCl required to precipitate the Ag⁺
- Information available
 - 1.50 L of 0.100 M AgNO₃
- Information required
 - Moles of Ag⁺ in the solution
- Step 1 Determine the ions present in the solution
 - Ag^+ , NO_3^- , Na^+ , and Cl^-

Solution

- Step 2 State the balanced equation for the reaction
 - NaNO₃ is soluble, and AgCl is insoluble
 - Therefore,

$$\operatorname{Ag}^{+}(aq) + \operatorname{Cl}^{-}(aq) \longrightarrow \operatorname{AgCl}(s)$$

Step 3 - Determine the moles of Ag⁺ ions present in the solution

$$1.50 \not L \times \frac{0.100 \text{ mol } \text{Ag}^+}{\not L} = 0.150 \text{ mol } \text{Ag}^+$$

Copyright © 2016 Cengage Learning. All Rights Reserved.

Solution

- Step 4 Determine the moles of Cl⁻ required to react with all the Ag⁺
 - Because Ag⁺ and Cl⁻ react in a 1:1 ratio, 0.150 mole of Cl⁻ and thus 0.150 mole of NaCl are required
- Step 5 Determine the mass of NaCl required

$$0.150 \text{ mol-NaCl} \times \frac{58.44 \text{ g NaCl}}{\text{mol-NaCl}} = 8.77 \text{ g NaCl}$$

Acid–Base Reactions (Brønsted–Lowry)

- An acid is a proton donor
- A base is a proton acceptor
- Consider a solution containing HC₂H₃O₂(aq) and KOH(aq)
 - The principal species are HC₂H₃O₂, K⁺, and OH⁻
 - Precipitation does not occur as KOH is soluble
 - OH⁻ ions are capable of attracting protons from HC₂H₃O₂ molecules

Acid–Base Reactions (Brønsted–Lowry)

- The net ionic reaction is
 - $OH^{-}(aq) + HC_{2}H_{3}O_{2}(aq) \longrightarrow H_{2}O(l) + C_{2}H_{3}O_{2}^{-}(aq)$
 - For purposes of stoichiometric calculations, it can be assumed that the OH⁻ ion reacts completely with any weak acid
- Acid—base reactions are also called neutralization reactions

Performing Calculations for Acid–Base Reactions

- List the species present in the combined solution before any reaction occurs, and decide what reaction will occur
- Write the balanced net ionic equation for this reaction
- Calculate moles of reactants
- Determine the limiting reactant where appropriate
- Calculate the moles of the required reactant or product
- Convert to grams or volume (of solution), as required

Interactive example 6.12 - Neutralization Reactions I

What volume of a 0.100 M HCl solution is needed to neutralize 25.0 mL of 0.350 M NaOH?

Solution

- Objective
 - To find the volume of 0.100 M HCl required for neutralization
- Information available
 - 25 mL of 0.350 M NaOH
 - 0.100 *M* HCl
 - The chemical reaction

$$\mathrm{H}^{+}(aq) + \mathrm{OH}^{-}(aq) \longrightarrow \mathrm{H}_{2}\mathrm{O}(l)$$

Solution

- Step 1 Identify the ions present in the combined solution
 - H⁺, Cl⁻, Na⁺, and OH⁻
 - The two possible reactions are

 $Na^+(aq) + Cl^-(aq) \longrightarrow NaCl(s)$

 $\mathrm{H}^{+}(aq) + \mathrm{OH}^{-}(aq) \longrightarrow \mathrm{H}_{2}\mathrm{O}(l)$

Step 2 - Determine the balanced equation for the reaction

 $H^+(aq) + OH^-(aq) \longrightarrow H_2O(l)$

Solution

Step 3 - Determine the moles of reactant present in the solution

25.0 mL NaOH ×
$$\frac{1 \not L}{1000 \ \text{mL}}$$
 × $\frac{0.350 \ \text{mol OH}^-}{\text{L NaOH}}$ = $8.75 \times 10^{-3} \ \text{mol OH}^-$

- Step 4 Identify the limiting reactant
 - This problem requires the addition of just enough H⁺ to react exactly with the OH⁻ ions present
 - The limiting reactant is not significant here

Solution

- Step 5 Determine the moles of H⁺ required
 - Since H⁺ and OH⁻ ions react in a 1:1 ratio, 8.75 × 10⁻²³ moles of H⁺ are required to neutralize the OH⁻ ions present
- Step 6 Determine the volume of HCl required

$$V \times \frac{0.100 \text{ mol H}^{+}}{L} = 8.75 \times 10^{-3} \text{ mol H}^{+}$$
$$V = \frac{8.75 \times 10^{-3} \text{ mol H}^{+}}{\frac{0.100 \text{ mol H}^{+}}{L}} = 8.75 \times 10^{-2} \text{ L}$$

Copyright $\ensuremath{\mathbb{C}}$ 2016 Cengage Learning. All Rights Reserved.

Acid–Base Titrations

- Volumetric analysis is used to determine the amount of a certain substance by doing a titration
- Titration is the delivery of a measured volume of solution of known concentration (titrant) into a solution containing the substance being analyzed (analyte)

Acid–Base Titrations

- Equivalence point or stoichiometric point is the stage in titration at which enough titrant has been added to react exactly with the analyte
 - An indicator is a substance added at the beginning of the titration that changes color at the equivalence point
 - Endpoint is the stage where the indicator actually changes color

Requirements for a Successful Titration

- The exact reaction between the titrant and analyte must be known (and rapid)
- The stoichiometric (equivalence) point must be marked accurately
- The volume of titrant required to reach the stoichiometric point must be known accurately

Figure 6.18 - Titration of an Acid with a Base

Copyright © 2016 Cengage Learning. All Rights Reserved.

Interactive Example 6.15 - Neutralization Analysis

An environmental chemist analyzed the effluent (the released waste material) from an industrial process known to produce the compounds carbon tetrachloride (CCl₄) and benzoic acid (HC₇H₅O₂), a weak acid that has one acidic hydrogen atom per molecule. A sample of this effluent weighing 0.3518 g was shaken with water, and the resulting aqueous solution required 10.59 mL of 0.1546 *M* NaOH for neutralization. Calculate the mass percent of HC₇H₅O₂ in the original sample

Solution

- Objective
 - To find the mass percent of HC₇H₅O₂ in the original sample
- Information available
 - 0.3518 g effluent (original sample)
 - 10.59 mL 0.1546 M NaOH for neutralization of HC₇H₅O₂
 - The chemical reaction

 $\mathrm{HC}_{7}\mathrm{H}_{5}\mathrm{O}_{2}(aq) + \mathrm{OH}^{-}(aq) \longrightarrow \mathrm{H}_{2}\mathrm{O}(l) + \mathrm{C}_{7}\mathrm{H}_{5}\mathrm{O}_{2}^{-}(aq)$

Solution

- Step 1 Identify the species present in the combined solution
 - HC₇H₅O₂, Na⁺, and OH⁻
- Step 2 Determine the balanced equation for the reaction

 $\mathrm{HC}_{7}\mathrm{H}_{5}\mathrm{O}_{2}(aq) + \mathrm{OH}^{-}(aq) \longrightarrow \mathrm{H}_{2}\mathrm{O}(l) + \mathrm{C}_{7}\mathrm{H}_{5}\mathrm{O}_{2}^{-}(aq)$

Step 3 - Calculate the moles of OH⁻ required

 $10.59 \text{ mL-NaOH} \times \frac{1 \text{ } \text{L}}{1000 \text{ } \text{ mL}} \times \frac{0.1546 \text{ mol OH}^{-}}{\text{L-NaOH}} = 1.637 \times 10^{-3} \text{ mol OH}^{-}$

Solution

- Step 4 Identify the limiting reactant
 - This problem requires the addition of just enough OH⁺ ions to react exactly with the HC₇H₅O₂ present
- Step 5 Determine the mass of HC₇H₅O₂ present

 $1.637 \times 10^{-3} \underbrace{\text{mol HC}_{7}\text{H}_{5}\text{O}_{2}}_{1 \text{ mol HC}_{7}\text{H}_{5}\text{O}_{2}} \times \frac{122.12 \text{ g HC}_{7}\text{H}_{5}\text{O}_{2}}{1 \text{ mol HC}_{7}\text{H}_{5}\text{O}_{2}} = 0.1999 \text{ g HC}_{7}\text{H}_{5}\text{O}_{2}$

Step 6 - Determine the mass percent of HC₇H₅O₂ in the effluent

 $\frac{0.1999 \text{ g}}{0.3158 \text{ g}} \times 100\% = 56.82\%$

Copyright © 2016 Cengage Learning. All Rights Reserved.

Concept Check

For the titration of sulfuric acid (H₂SO₄) with sodium hydroxide (NaOH), how many moles of sodium hydroxide would be required to react with 1.00 L of 0.500 M sulfuric acid to reach the endpoint?

Oxidation-Reduction Reactions (Redox Reactions)

Reactions in which one or more electrons are transferred

Copyright $\textcircled{\sc c}$ 2016 Cengage Learning. All Rights Reserved.

Oxidation States

- Also called oxidation numbers
- Help keep track of electrons in oxidation—reduction reactions
- Defined as imaginary charges that atoms would have if the shared electrons were divided equally between identical atoms bonded to one another
- Oxidation states on ions are represented as +n or -n

Table 6.2 - Rules for Assigning Oxidation States

The Oxidation State of	Summary	Examples
 An atom in an element is zero A monatomic ion is the same as its charge 	Element: 0 Monatomic ion: charge of ion	Na(s), O ₂ (g), O ₃ (g), Hg(l) Na ⁺ , Cl ⁻
 Fluorine is -1 in its compounds Oxygen is usually -2 in its compounds Exception: peroxides (containing O₂²⁻), in which oxygen is -1 	Fluorine: –1 Oxygen: –2	HF, PF ₃ H ₂ O, CO ₂
 Hydrogen is +1 in its covalent compounds 	Hydrogen: +1	H ₂ O, HCl, NH ₃

The Characteristics of Oxidation–Reduction Reactions

- At times, the transfer of electrons may not be evident
- Consider the combustion of methane

 Carbon undergoes a change in oxidation state from –4 in CH₄ to +4 in CO₂

Copyright © 2016 Cengage Learning. All Rights Reserved.

The Characteristics of Oxidation–Reduction Reactions

 Oxygen undergoes a change from an oxidation state of 0 in O₂ to -2 in H₂O and CO₂

- Oxidation is an increase in oxidation state
 - Loss of electrons
- Reduction is a decrease in oxidation state
 - Gain of electrons

The Characteristics of Oxidation–Reduction Reactions

- In the combustion of methane:
 - The carbon in methane is oxidized
 - Oxygen is reduced
 - CH₄ is the reducing agent
 - O₂ is the oxidizing agent
- When the oxidizing or reducing agent is named, the whole compound is specified

Concept Check

 Which of the following are oxidation—reduction reactions? Identify the oxidizing agent and the reducing agent

a)
$$\operatorname{Zn}(s) + 2\operatorname{HCl}(aq) \longrightarrow \operatorname{ZnCl}_2(aq) + \operatorname{H}_2(g)$$

- **b)** $\operatorname{Cr}_2 \operatorname{O}_7^{2-}(aq) + 2\operatorname{OH}^-(aq) \longrightarrow 2\operatorname{CrO}_4^{2-}(aq) + \operatorname{H}_2 \operatorname{O}(l)$
- c) $2\operatorname{CuCl}(aq) \longrightarrow \operatorname{CuCl}_2(aq) + \operatorname{Cu}(s)$

Interactive Example 6.17 - Oxidation–Reduction Problems

 Metallurgy, the process of producing a metal from its ore, always involves oxidation—reduction reactions. In the metallurgy of galena (PbS), the principal leadcontaining ore, the first step is the conversion of lead sulfide to its oxide (a process called roasting):

$$2PbS(s) + 3O_2(g) \longrightarrow 2PbO(s) + 2SO_2(g)$$

Interactive Example 6.17 - Oxidation–Reduction Problems

The oxide is then treated with carbon monoxide to produce the free metal:

 $PbO(s) + CO(g) \longrightarrow Pb(s) + CO_2(g)$

 For each reaction, identify the atoms that are oxidized and reduced, and specify the oxidizing and reducing agents

Solution

Assigning oxidation states to the first reaction

- Sulfur is oxidized
- Oxygen is reduced
- The reducing agent is PbS

Solution

Assigning oxidation states to the second reaction

$$\begin{array}{ccc} \operatorname{PbO}(s) + \operatorname{CO}(g) & \longrightarrow & \operatorname{Pb}(s) + \operatorname{CO}_2(g) \\ \uparrow & \uparrow & \uparrow & \uparrow \\ +2 & -2 & +2 & -2 & 0 & +4 & -2 \text{ (each O)} \end{array}$$

- Lead is reduced
- Carbon is oxidized
- PbO is the oxidizing agent
- CO is the reducing agent

Section 6.10 Balancing Oxidation–Reduction Reactions Balancing Oxidation–Reduction

Balancing Oxidation–Reduction Reactions by Oxidation States

- Write the unbalanced equation
- Determine the oxidation states of all atoms in the reactants and products
- Show electrons gained and lost using "tie lines"
- Use coefficients to equalize the electrons gained and lost
- Balance the rest of the equation by inspection
- Add appropriate states

Example 6.18 - Balancing Oxidation–Reduction States

 Balance the reaction between solid lead(II) oxide and ammonia gas to produce nitrogen gas, liquid water, and solid lead

Solution

Step 1 - State the unbalanced equation

 $PbO(s) + NH_3(g) \longrightarrow N_2(g) + H_2O(l) + Pb(s)$

Step 2 - Assign oxidation states to each atom

$$\begin{array}{ccc} -2 & -3 & 0 & -2 \\ PbO + NH_3 \longrightarrow N_2 + H_2O + Pb \\ +2 & +1 & +1 & 0 \end{array}$$

Solution

Step 3 - Use "tie lines" to show electrons gained and lost

The oxidation states of all other atoms are unchanged

Solution

Step 4 - Use coefficients to equalize electrons gained and lost

$$3PbO + 2NH_3 \longrightarrow N_2 + H_2O + 3Pb$$

Solution

Step 5 - Balance the rest of the elements

 $3PbO + 2NH_3 \longrightarrow N_2 + 3H_2O + 3Pb$

Step 6 - Add appropriate states

 $3PbO(s) + 2NH_3(g) \longrightarrow N_2(g) + 3H_2O(l) + 3Pb(s)$