C H E M I S T R Y an atoms first appronch

Chapter 6

Types of

Chemical Reactions

 and Solution Stoichiometry
Chapter 6
 Table of Contents

- (6.1) Water, the common solvent
- (6.2) The nature of aqueous solutions: Strong and weak electrolytes
- (6.3) The composition of solutions
- (6.4) Types of chemical reactions
- (6.5) Precipitation reactions
- (6.6) Describing reactions in solution
- (6.7) Stoichiometry of precipitation reactions
- (6.8) Acid-base reactions

Chapter 6
 Table of Contents

- (6.9) Oxidation-reduction reactions
- (6.10) Balancing oxidation-reduction equations

Chapter 6

Questions to Consider

- Why is sugar solution not used as an electrolyte?
- What kind of reaction would one classify photosynthesis as?

Section 6.1
 Water, the Common Solvent

Importance of Water

- An integral part of many life-sustaining reactions
- Cooling effect of water is used to reduce the temperature of:
- Automobile engines
- Nuclear power plants
- Many industrial processes
- Used as a means of transportation

- Vital to the growth of crops
- It is a polar molecule

Section 6.1

Water, the Common Solvent

Figure 6.2 - Water Dissolving a Salt

Copyright © 2016 Cengage Learning. All Rights Reserved.

Section 6.1
 Water, the Common Solvent

Hydration

- The interaction between water molecules and the ions of a salt, causing dissolution
- Salts are broken up into individual cations and anions
- Consider the hydration of ammonium nitrate

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}(l)} \mathrm{NH}_{4}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)
$$

- (aq) indicates the hydration of ions

Section 6.1
 Water, the Common Solvent

Solubility

- Varies among different substances
- Differences in solubility of ionic compounds depend on:
- Attractions of ions to one another
- Attraction of ions to water molecules
- When ionic solids dissolve in water, ions undergo hydration and are dispersed
- Many non-ionic solids are soluble
- Animal fat is not soluble in pure water

Section 6.1

Water, the Common Solvent

Figure 6.3 - Molecular Structures of Ethanol and Water

Section 6.2
 The Nature of Aqueous Solutions

Nature of Aqueous Solutions

- Solute: Substance dissolved
- Solvent: Liquid water
- Electrical conductivity: Ability of a solution to conduct electricity
- Solutions with high electrical conductivity are strong electrolytes
- Solutions with low electrical conductivity are weak electrolytes
- Nonelectrolytes do not conduct electricity

Section 6.2
 The Nature of Aqueous Solutions

Conductivity of Solutions

- According to Svante Arrhenius, the conductivity of a solution depends on the number of ions present
- Strong electrolytes readily produce ions in aqueous solution
- Weak electrolytes produce a relatively lesser number of ions in aqueous solution
- Nonelectrolytes are those that do not produce ions in aqueous solution

Section 6.2

The Nature of Aqueous Solutions
Figure 6.4 - Electrical Conductivity of Aqueous Solutions

Copyright © 2016 Cengage Learning. All Rights Reserved.

Section 6.2
 The Nature of Aqueous Solutions

Strong Electrolytes

- Substances that are completely ionized upon dissolution
- Classified as:
- Soluble salts
- Sodium chloride produces Na^{+}and Cl^{-}ions when dissolved
- Strong acids
- Undergo ionization reactions to produce H^{+}ions
- Represented in the aqueous form in equations
- Completely dissociate into ions
- $\mathrm{H}_{2} \mathrm{SO}_{4}$ produces two H^{+}ions under certain conditions
$\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}^{+}(a q)+\mathrm{HSO}_{4}^{-}(a q)$

Section 6.2
 The Nature of Aqueous Solutions

Strong Electrolytes

- Strong bases
- Soluble ionic compounds that possess OH^{-}ions
- Bitter to taste
- Slippery to touch

$$
\mathrm{NaOH}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Section 6.2
 The Nature of Aqueous Solutions

Weak Electrolytes

- Substances that produce lesser ions when dissolved
- Classified as:
- Weak acids
- Acids that produce a low amount of ions in aqueous solution

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)
$$

- Weak bases
- Bases that produce a low amount of ions in aqueous solution

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Section 6.2
 The Nature of Aqueous Solutions

Nonelectrolytes

- Substances that do not produce any ions when dissolved
- Consider ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ dissolved in water
- Molecules are dispersed, but do not break up into ions
- Resulting solution is not capable of conducting electricity

Section 6.3
 The Composition of Solutions

Stoichiometry of Chemical Reactions

- Performing stoichiometric calculations requires the following information:
- The nature of the reaction
- Depends on the exact nature of chemicals when dissolved
- The amounts of chemicals present in the solutions
- Expressed as concentrations

Section 6.3
 The Composition of Solutions

Molarity

- Defined as the moles of solute per volume of solution in liters

$$
M=\text { molarity }=\frac{\text { moles of solute }}{\text { liters of solution }}
$$

- A solution that is 1.0 molar (1.0 M) contains 1.0 mole of solute per liter of solution

Section 6.3
 The Composition of Solutions

Interactive Example 6.1 - Calculation of Molarity I

- Calculate the molarity of a solution prepared by dissolving 11.5 g of solid NaOH in enough water to make 1.50 L of solution

Section 6.3
 The Composition of Solutions

Solution

- Objective
- To find the molarity of NaOH solution
- Information available
- 11.5 g NaOH
- 1.50 L solution
- Information needed
- Moles solute
- Molarity $=\frac{\text { Mol solute }}{\text { L solution }}$

Section 6.3
 The Composition of Solutions

Solution

- Step 1 - Determine the moles of $\mathrm{NaOH}(40.00 \mathrm{~g} / \mathrm{mol})$

$$
11.5 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{40.00 \mathrm{~g} \mathrm{NaOH}}=0.288 \mathrm{~mol} \mathrm{NaOH}
$$

- Step 2 - Determine the molarity of the solution

$$
\text { Molarity }=\frac{\text { mol solute }}{\mathrm{L} \text { solution }}=\frac{0.288 \mathrm{~mol} \mathrm{NaOH}}{1.50 \mathrm{~L} \text { solution }}=0.192 \mathrm{M} \mathrm{NaOH}
$$

Section 6.3
 The Composition of Solutions

Determining the Number of Moles in a Solute

- A sample is taken
- The number of moles present in the sample are determined
- The molarity of the solution is multiplied by the volume of the sample
$\begin{aligned} \text { Liters of solution } \times \text { molarity } & =\underline{\text { liters of solution }} \times \frac{\text { moles of solute }}{\text { liters of solution }} \\ & =\text { moles of solute }\end{aligned}$

Section 6.3
 The Composition of Solutions

Interactive Example 6.4-Concentration of Ions II

- Calculate the number of moles of Cl^{-}ions in 1.75 L of 1.0 $\times 10^{-3} \mathrm{M} \mathrm{ZnCl}_{2}$

Section 6.3
 The Composition of Solutions

Solution

- Objective
- To find the moles of Cl^{-}ion in the solution
- Information available
- $1.0 \times 10^{-3} \mathrm{M} \mathrm{ZnCl}_{2}$
- 1.75 L
- Information required
- Balanced equation for dissolving ZnCl_{2}

Section 6.3
 The Composition of Solutions

Solution

- Step 1 - State the balanced equation for dissolving the ions

$$
\mathrm{ZnCl}_{2}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Zn}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q)
$$

- Step 2 - Calculate the molarity of the solution

$$
2 \times\left(1.0 \times 10^{-3} \mathrm{M}\right)=2.0 \times 10^{-3} \mathrm{M} \mathrm{Cl}^{-}
$$

- Step 3 - Determine the moles of Cl^{-}
1.75 L solution $\times 2.0 \times 10^{-3} \mathrm{M} \mathrm{Cl}^{-}=1.75 \mathrm{~L}$ selution $\times \frac{2.0 \times 10^{-3} \mathrm{~mol} \mathrm{Cl}^{-}}{\mathrm{L}_{\text {selution }}}$

$$
=3.5 \times 10^{-3} \mathrm{~mol} \mathrm{Cl}^{-}
$$

Section 6.3
 The Composition of Solutions

Dilution

- The addition of water to a concentrated solution in order to achieve the desired molarity
- Pieces of apparatus used in the process of dilution
- Volumetric (transfer) pipettes
- Specific sizes - $5 \mathrm{~mL}, 10 \mathrm{~mL}, 25 \mathrm{~mL}$, etc
- Measuring pipettes
- Used to measure volumes for which a volumetric pipette is not available

Section 6.3
 The Composition of Solutions

Interactive Example 6.7-Concentration and Volume

- What volume of 16 M sulphuric acid must be used to prepare 1.5 L of a $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

Section 6.3
 The Composition of Solutions

Solution

- Objective
- To find the volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ required to prepare the solution
- Information available
- 1.5 L of $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is required
- $16 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is available
- Information needed
- Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the required solution

Section 6.3
 The Composition of Solutions

Solution

- Step 1 - Determine the moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ required

$$
\begin{aligned}
& M \times V=\mathrm{mol} \\
& 1.5 \mathrm{~L} \text { solution } \times \frac{0.10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{\mathrm{~L} \text { solution }}=0.15 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

- Step 2 - Determine the volume of $16 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
V \times \frac{16 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{\mathrm{~L} \text { solution }}=0.15 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Section 6.3

The Composition of Solutions

Solution

$$
V=\frac{0.15 \mathrm{molH}_{2} \mathrm{SO}_{4}}{\frac{16 \mathrm{molH}_{2} \mathrm{SO}_{4}}{1 \mathrm{~L} \text { solution }}}=9.4 \times 10^{-3} \mathrm{~L} \text { or } 9.4 \mathrm{~mL} \text { solution }
$$

- To make 1.5 L of $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ using $16 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}, 9.4 \mathrm{~mL}$ of concentrated acid must be diluted with 1.5 L of water

Section 6.3
 The Composition of Solutions

Moles of the Solute are not Altered by Dilution

- An alternate way to expresses this concept is by the following equation:

$$
M_{1} V_{1}=M_{2} V_{2}
$$

- M_{1} and V_{1} represent the molarity and volume of the solution before dilution
- M_{2} and V_{2} represent the molarity and volume of the diluted solution
- Validating this concept:

$$
\begin{aligned}
M_{1} \times \mathrm{V}_{1} & =\text { mol solute before dilution } \\
& =\text { mol solute after dilution }=M_{2} \times V_{2}
\end{aligned}
$$

Section 6.3
 The Composition of Solutions

Concept Check

- Which of the following solutions contains the greatest number of ions?
- $\quad 400.0 \mathrm{~mL}$ of 0.10 M NaCl
- $\quad 300.0 \mathrm{~mL}$ of $0.10 \mathrm{M} \mathrm{CaCl}_{2}$
- $\quad 200.0 \mathrm{~mL}$ of $0.10 \mathrm{M} \mathrm{FeCl}_{3}$
- $\quad 800.0 \mathrm{~mL}$ of 0.10 M sucrose

Section 6.3
 The Composition of Solutions

Concept Check

- A 0.50 M solution of sodium chloride in an open beaker sits on a lab bench. Which of the following would decrease the concentration of the salt solution?
- (a) Adding water to the solution
- (b) Pouring some of the solution down the sink drain
- (c) Adding more sodium chloride to the solution
- (d) Letting the solution sit out in the open air for a couple of days

Section 6.4
 Types of Chemical Reactions

Types of Solution Reactions

- Precipitation reactions
- Acid-base reactions
- Oxidation-reduction reactions

Section 6.5
 Precipitation Reactions

Precipitation Reaction

- A reaction in which the mixing of two solutions results in the formation of an insoluble substance which separates from the solution
- The solid formed is called a precipitate
- Identification of the precipitate requires knowledge of the chemical composition of the solutions

Section 6.5

Precipitation Reactions

Figure 6.13 - Formation of a Precipitate

Richard Megna/Fundamental Photographs (c) Cengage Leaming
Copyright © 2016 Cengage Learning. All Rights Reserved.

Section 6.5
 Precipitation Reactions

Identification of the Precipitate

- Consider a mixture containing aqueous solutions of potassium chromate and barium nitrate
- Identify the reactants
- $\mathrm{K}_{2} \mathrm{CrO}_{4}(a q)$
- $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(a q)$
- Recognize that when a solid dissolves in water, the ions are separated
- $\mathrm{K}_{2} \mathrm{CrO}_{4}(a q)$ contains K^{+}and $\mathrm{CrO}_{4}{ }^{2-}$ ions
- $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(a q)$ contains separated Ba^{2+} and NO^{3-} ions

Section 6.5
 Precipitation Reactions

Identification of the Precipitate

- Therefore, the mixed solution contains the following ions:
- $\mathrm{K}^{+}, \mathrm{CrO}_{4}{ }^{2-}, \mathrm{Ba}^{2+}$, and $\mathrm{NO}_{3}{ }^{-}$
- The compound formed must have a zero net charge
- Both anions and cations are present in the product
- Most ionic materials contain only two types of ions
- One type of cation and one type of anion
- Possible combinations
- $\mathrm{K}_{2} \mathrm{CrO}_{4}, \mathrm{KNO}_{3}, \mathrm{BaCrO}_{4}$ or $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$

Section 6.5

Precipitation Reactions

Identification of the Precipitate

- $\mathrm{K}_{2} \mathrm{CrO}_{4}$ and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ are the reactants
- The substance formed is yellow in color
- KNO_{3} is white
- BaCrO_{4} is yellow
- The solid formed is almost certainly BaCrO_{4}
- If KNO_{3} is mixed in the same quantity of water as in the mixed solution, it will not form a solid
- Thus,

$$
\mathrm{K}_{2} \mathrm{CrO}_{4}(a q)+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(a q) \longrightarrow \mathrm{BaCrO}_{4}(s)+2 \mathrm{KNO}_{3}(a q)
$$

Section 6.5
 Precipitation Reactions

Simple Rules for the Solubility of Salts

- Most nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$salts are soluble
- Most salts containing the alkali metal ions and the ammonium ion are soluble
- Most $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$, and I^{-}salts are soluble (except $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, and $\mathrm{Hg}_{2}{ }^{2+}$)
- Most sulfate salts are soluble (except $\mathrm{BaSO}_{4}, \mathrm{PbSO}_{4}$, $\mathrm{Hg}_{2} \mathrm{SO}_{4}$, and CaSO_{4})

Section 6.5

Precipitation Reactions

Simple Rules for the Solubility of Salts

- Most hydroxides are only slightly soluble ($\mathrm{NaOH}, \mathrm{KOH}$ are soluble; $\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{Ca}(\mathrm{OH})_{2}$ are marginally soluble)
- Most sulfide (S^{2-}), carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$, chromate $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$, and phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ salts are only slightly soluble, except for those containing the cations in Rule 2

Section 6.5

Precipitation Reactions

Simple Rules for the Solubility of Salts

Solubility Rules for Ionic Compounds

Rule	Applies to	Rule	Exceptions
1	$\mathrm{Li}^{+}, \mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{NH}_{4}{ }^{+}$	Group IA and ammonium compounds are soluble.	
2	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}, \mathrm{NO}_{3}{ }^{-}$	Acetates and nitrates are soluble.	
3	$\mathrm{Cl}^{\prime}, \mathrm{Br}^{-}, \mathrm{l}^{-}$	Most chlorides, bromides, and iodides are soluble	$\mathrm{AgCl}, \mathrm{Hg}_{2} \mathrm{Cl}_{2}, \mathrm{PbCl}_{2}, \mathrm{AgBr}^{2} \mathrm{HgBr}_{2}$, $\mathrm{Hg}_{2} \mathrm{Br}_{2}, \mathrm{PbBr}_{2}, \mathrm{Agl}^{2}, \mathrm{Hgl}_{2}, \mathrm{Hg}_{2} \mathrm{l}_{2}, \mathrm{Pbl}_{2}$
4	$\mathrm{SO}_{4}{ }^{2-}$	Most sulfates are soluble.	$\begin{aligned} & \mathrm{CaSO}_{4}, \mathrm{SrSO}_{4}, \mathrm{BaSO}_{4}, \mathrm{Ag}_{2} \mathrm{SO}_{4}, \\ & \mathrm{Hg}_{2} \mathrm{SO}_{4}, \mathrm{PbSO}_{4} \end{aligned}$
5	$\mathrm{CO}_{3}{ }^{2-}$	Most carbonates are insoluble.	Group IA carbonates, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
6	$\mathrm{PO}_{4}{ }^{\text {3- }}$	Most phosphates are insoluble.	Group IA phosphates, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
7	S^{2-}	Most sulfides are insoluble.	Group IA sulfides, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
8	OH^{-}	Most hydroxides are insoluble.	Group IA hydroxides, $\mathrm{Ca}(\mathrm{OH})_{2}$, $\mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$

Rule 1 "wins" over rule 3, etc. Follow the rules in the above order.

Section 6.5
 Precipitation Reactions

Interactive Example 6.8 - Predicting Reaction Products

- Predict what will happen when aqueous solutions of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ are mixed

Section 6.5

Precipitation Reactions

Solution

- The ions present in the solution before any reaction occurs are $\mathrm{Na}^{+}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{Pb}^{2+}$, and NO^{3-}
- The possible salts that could form precipitates are

- NaNO_{3} is soluble but PbSO_{4} is insoluble
- PbSO_{4} forms the precipitate

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q) \longrightarrow \mathrm{PbSO}_{4}(s)+2 \mathrm{NaNO}_{3}(a q)
$$

Section 6.5
 Precipitation Reactions

Concept Check

- Which of the following ions form compounds with Pb^{2+} that are generally soluble in water?
- S^{2-}
- Cl^{-}
- $\mathrm{NO}_{3}{ }^{-}$
- $\mathrm{SO}_{4}{ }^{2-}$
- Na^{+}

Section 6.6
 Describing Reactions in Solution

Formula Equation (Molecular Equation)

- Gives the overall reaction stoichiometry but not necessarily the actual forms of the reactants and products in solution
- It is not a detailed representation

$$
\mathrm{K}_{2} \mathrm{CrO}_{4}(a q)+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(a q) \longrightarrow \mathrm{BaCrO}_{4}(s)+2 \mathrm{KNO}_{3}(a q)
$$

Section 6.6
 Describing Reactions in Solution

Complete Ionic Equation and Net Ionic Equation

- A complete ionic equation represents as ions all reactants and products that are strong electrolytes

$$
\begin{aligned}
& 2 \mathrm{~K}^{+}(a q)+ \mathrm{CrO}_{4}^{2-}(a q)+\mathrm{Ba}^{2+}(a q)+ \\
& 2 \mathrm{NO}_{3}^{-}(a q) \\
& \mathrm{BaCrO}_{4}(s)+2 \mathrm{~K}^{+}(a q)+2 \mathrm{NO}^{3-}(a q)
\end{aligned}
$$

- Ions that do not participate directly are called spectator ions
- A net ionic equation includes only those solution components undergoing a change

$$
\mathrm{Ba}^{2+}(a q)+\mathrm{CrO}_{4}^{2-}(a q) \longrightarrow \mathrm{BaCrO}_{4}(s)
$$

Section 6.6

Describing Reactions in Solution

Interactive Example 6.9-Writing Equations for

Reactions

- Write the formula equation, the complete ionic equation, and the net ionic equation for the following reaction:
- Aqueous potassium chloride is added to aqueous silver nitrate to form a silver chloride precipitate plus aqueous potassium nitrate

Section 6.6

Describing Reactions in Solution

Solution

- Formula equation

$$
\mathrm{KCl}(a q)+\mathrm{AgNO}_{3}(a q) \longrightarrow \mathrm{AgCl}(s)+\mathrm{KNO}_{3}(a q)
$$

- Complete ionic equation

Section 6.6

Describing Reactions in Solution

Solution

- Cancelling the spectator ions gives the net ionic equation

$$
\begin{aligned}
\mathrm{K}^{\prime}(a q)+\mathrm{Cl}^{-}(a q)+\mathrm{Ag}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \longrightarrow & \mathrm{AgCl}(s)+\mathrm{K}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \\
\mathrm{Cl}^{-}(a q)+\mathrm{Ag}^{+}(a q) \longrightarrow & \mathrm{AgCl}(s)
\end{aligned}
$$

Section 6.6
 Describing Reactions in Solution

Concept Check

- Write the correct formula equation, complete ionic equation, and net ionic equation for the reaction between cobalt(II) chloride and sodium hydroxide

Section 6.7

Stoichiometry of Precipitation

Reactions

Solving Stoichiometry Problems for Reactions in a

 Solution- Identify the species present in the combined solution, and determine what reaction, if any, occurs
- Write the balanced net ionic equation for the reaction
- Calculate the moles of reactants
- Determine which reactant is limiting
- Calculate the moles of product(s), as required
- Convert to grams or other units, as required

Section 6.7

Stoichiometry of Precipitation

Reactions

Concept Check (Part I)

- 10.0 mL of a 0.30 M sodium phosphate solution reacts with 20.0 mL of a 0.20 M lead(II) nitrate solution (assume no volume change).
- What precipitate will form?
- What mass of precipitate will form?

Section 6.7

Stoichiometry of Precipitation

Reactions

Concept Check (Part II)

- 10.0 mL of a 0.30 M sodium phosphate solution reacts with 20.0 mL of a 0.20 M lead(II) nitrate solution (assume no volume change).
- What is the concentration of nitrate ions left in solution after the reaction is complete?

Section 6.7

Stoichiometry of Precipitation

Reactions

Concept Check (Part III)

- 10.0 mL of a 0.30 M sodium phosphate solution reacts with 20.0 mL of a 0.20 M lead(II) nitrate solution (assume no volume change).
- What is the concentration of phosphate ions left in solution after the reaction is complete?

Section 6.7

Stoichiometry of Precipitation

Reactions

Interactive Example 6.10 - Determining the Mass of Product Formed I

- Calculate the mass of solid NaCl that must be added to 1.50 L of a $0.100 \mathrm{M} \mathrm{AgNO}_{3}$ solution to precipitate all the Ag^{+}ions in the form of AgCl

Section 6.7

Stoichiometry of Precipitation

Reactions

Solution

- Objective
- To find the mass of solid NaCl required to precipitate the Ag^{+}
- Information available
- 1.50 L of $0.100 \mathrm{M} \mathrm{AgNO}_{3}$
- Information required
- Moles of Ag^{+}in the solution
- Step 1 - Determine the ions present in the solution
- $\mathrm{Ag}^{+}, \mathrm{NO}_{3}{ }^{-}, \mathrm{Na}^{+}$, and Cl^{-}

Section 6.7

Stoichiometry of Precipitation

Reactions

Solution

- Step 2 - State the balanced equation for the reaction
- NaNO_{3} is soluble, and AgCl is insoluble
- Therefore,

$$
\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{AgCl}(s)
$$

- Step 3 - Determine the moles of Ag^{+}ions present in the solution

$$
1.50 \not \subset \times \frac{0.100 \mathrm{~mol} \mathrm{Ag}^{+}}{\not \swarrow}=0.150 \mathrm{~mol} \mathrm{Ag}^{+}
$$

Section 6.7

Stoichiometry of Precipitation

Reactions

Solution

- Step 4 - Determine the moles of Cl^{-}required to react with all the Ag^{+}
- Because Ag^{+}and Cl^{-}react in a $1: 1$ ratio, 0.150 mole of Cl^{-} and thus 0.150 mole of NaCl are required
- Step 5 - Determine the mass of NaCl required

$$
0.150 \mathrm{~mol} \mathrm{NaCl} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{\mathrm{~mol} \mathrm{NaCl}}=8.77 \mathrm{~g} \mathrm{NaCl}
$$

Section 6.8

Acid-Base Reactions

Acid-Base Reactions (Brønsted-Lowry)

- An acid is a proton donor
- A base is a proton acceptor
- Consider a solution containing $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)$ and $\mathrm{KOH}(a q)$
- The principal species are $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}^{+}$, and OH^{-}
- Precipitation does not occur as KOH is soluble
- OH^{-}ions are capable of attracting protons from $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ molecules

Section 6.8

Acid-Base Reactions

Acid-Base Reactions (Brønsted-Lowry)

- The net ionic reaction is

$$
\mathrm{OH}^{-}(a q)+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)
$$

- For purposes of stoichiometric calculations, it can be assumed that the OH^{-}ion reacts completely with any weak acid
- Acid-base reactions are also called neutralization reactions

Section 6.8

Acid-Base Reactions

Performing Calculations for Acid-Base Reactions

- List the species present in the combined solution before any reaction occurs, and decide what reaction will occur
- Write the balanced net ionic equation for this reaction
- Calculate moles of reactants
- Determine the limiting reactant where appropriate
- Calculate the moles of the required reactant or product
- Convert to grams or volume (of solution), as required

Section 6.8
 Acid-Base Reactions

Interactive example 6.12 - Neutralization Reactions I

- What volume of a 0.100 M HCl solution is needed to neutralize 25.0 mL of 0.350 M NaOH ?

Section 6.8
 Acid-Base Reactions

Solution

- Objective
- To find the volume of 0.100 M HCl required for neutralization
- Information available
- 25 mL of 0.350 M NaOH
- 0.100 M HCl
- The chemical reaction

$$
\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

Section 6.8

Acid-Base Reactions

Solution

- Step 1 - Identify the ions present in the combined solution
- $\mathrm{H}^{+}, \mathrm{Cl}^{-}, \mathrm{Na}^{+}$, and OH^{-}
- The two possible reactions are

$$
\begin{aligned}
& \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{NaCl}(s) \\
& \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

- Step 2 - Determine the balanced equation for the reaction

$$
\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

Section 6.8

Acid-Base Reactions

Solution

- Step 3 - Determine the moles of reactant present in the solution
$25.0 \mathrm{~mL} \mathrm{NaOH} \times \frac{1 \not \subset}{1000 \mathrm{mLL}^{2}} \times \frac{0.350 \mathrm{~mol} \mathrm{OH}^{-}}{\mathrm{LNaOH}}=8.75 \times 10^{-3} \mathrm{~mol} \mathrm{OH}^{-}$
- Step 4 - Identify the limiting reactant
- This problem requires the addition of just enough H^{+}to react exactly with the OH^{-}ions present
- The limiting reactant is not significant here

Section 6.8

Acid-Base Reactions

Solution

- Step 5 - Determine the moles of H^{+}required
- Since H^{+}and OH^{-}ions react in a 1:1 ratio, 8.75×10^{-23} moles of H^{+}are required to neutralize the OH^{-}ions present
- Step 6 - Determine the volume of HCl required

$$
\begin{aligned}
& V \times \frac{0.100 \mathrm{~mol} \mathrm{H}^{+}}{\mathrm{L}}=8.75 \times 10^{-3} \mathrm{~mol} \mathrm{H}^{+} \\
& V=\frac{8.75 \times 10^{-3} \mathrm{mot} \mathrm{H}^{+}}{\frac{0.100 \mathrm{mot} \mathrm{H}^{+}}{\mathrm{L}}}=8.75 \times 10^{-2} \mathrm{~L}
\end{aligned}
$$

Section 6.8
 Acid-Base Reactions

Acid-Base Titrations

- Volumetric analysis is used to determine the amount of a certain substance by doing a titration
- Titration is the delivery of a measured volume of solution of known concentration (titrant) into a solution containing the substance being analyzed (analyte)

Section 6.8
 Acid-Base Reactions

Acid-Base Titrations

- Equivalence point or stoichiometric point is the stage in titration at which enough titrant has been added to react exactly with the analyte
- An indicator is a substance added at the beginning of the titration that changes color at the equivalence point
- Endpoint is the stage where the indicator actually changes color

Section 6.8
 Acid-Base Reactions

Requirements for a Successful Titration

- The exact reaction between the titrant and analyte must be known (and rapid)
- The stoichiometric (equivalence) point must be marked accurately
- The volume of titrant required to reach the stoichiometric point must be known accurately

Section 6.8

Acid-Base Reactions

Figure 6.18 - Titration of an Acid with a Base

Copyright © 2016 Cengage Learning. All Rights Reserved.

Section 6.8

Acid-Base Reactions

Interactive Example 6.15 - Neutralization Analysis

- An environmental chemist analyzed the effluent (the released waste material) from an industrial process known to produce the compounds carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ and benzoic acid $\left(\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)$, a weak acid that has one acidic hydrogen atom per molecule. A sample of this effluent weighing 0.3518 g was shaken with water, and the resulting aqueous solution required 10.59 mL of 0.1546 M NaOH for neutralization. Calculate the mass percent of $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ in the original sample

Section 6.8

Acid-Base Reactions

Solution

- Objective
- To find the mass percent of $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ in the original sample
- Information available
- 0.3518 g effluent (original sample)
- 10.59 mL 0.1546 M NaOH for neutralization of $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$
- The chemical reaction

$$
\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}(a q)
$$

Section 6.8

Acid-Base Reactions

Solution

- Step 1 - Identify the species present in the combined solution
- $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}, \mathrm{Na}^{+}$, and OH^{-}
- Step 2 - Determine the balanced equation for the reaction

$$
\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}(a q)
$$

- Step 3 - Calculate the moles of OH^{-}required
$10.59 \mathrm{~mL} \mathrm{NaOH} \times \frac{1, ~ \ell}{1000 \mathrm{~mL}} \times \frac{0.1546 \mathrm{~mol} \mathrm{OH}^{-}}{\mathrm{LNaOH}}=1.637 \times 10^{-3} \mathrm{~mol} \mathrm{OH}^{-}$

Section 6.8

Acid-Base Reactions

Solution

- Step 4 - Identify the limiting reactant
- This problem requires the addition of just enough OH^{+}ions to react exactly with the $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ present
- Step 5 - Determine the mass of $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ present

$$
1.637 \times 10^{-3} \mathrm{~mol} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2} \times \frac{122.12 \mathrm{~g} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{1 \frac{\mathrm{~mol} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}}{}}=0.1999 \mathrm{~g} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}
$$

- Step 6 - Determine the mass percent of $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ in the effluent

$$
\frac{0.1999 \mathrm{~g}}{0.3158 \mathrm{~g}} \times 100 \%=56.82 \%
$$

Section 6.8
 Acid-Base Reactions

Concept Check

- For the titration of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ with sodium hydroxide (NaOH), how many moles of sodium hydroxide would be required to react with 1.00 L of 0.500 M sulfuric acid to reach the endpoint?

Section 6.9

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions (Redox Reactions)

- Reactions in which one or more electrons are transferred

Section 6.9
 Oxidation-Reduction Reactions

Oxidation States

- Also called oxidation numbers
- Help keep track of electrons in oxidation-reduction reactions
- Defined as imaginary charges that atoms would have if the shared electrons were divided equally between identical atoms bonded to one another
- Oxidation states on ions are represented as $+n$ or $-n$

Section 6.9

Oxidation-Reduction Reactions

Table 6.2 - Rules for Assigning Oxidation States

The Oxidation State of...

- An atom in an element is zero
- A monatomic ion is the same as its charge
- Fluorine is -1 in its compounds
- Oxygen is usually -2 in its compounds Exception: peroxides (containing $\mathrm{O}_{2}{ }^{2-}$), in which oxygen is -1
- Hydrogen is +1 in its covalent compounds

Summary	Examples
Element: 0 $\mathrm{Na}(\mathrm{s}), \mathrm{O}_{2}(\mathrm{~g}), \mathrm{O}_{3}(\mathrm{~g}), \mathrm{Hg}(I)$ Monatomic ion: charge of ion $\mathrm{Na}^{+}, \mathrm{Cl}^{-}$ Fluorine: -1	$\mathrm{HF}, \mathrm{PF}_{3}$
Oxygen: -2	$\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$

Hydrogen: $+1 \quad \mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}, \mathrm{NH}_{3}$

Section 6.9

Oxidation-Reduction Reactions

The Characteristics of Oxidation-Reduction Reactions

- At times, the transfer of electrons may not be evident
- Consider the combustion of methane

- Carbon undergoes a change in oxidation state from -4 in CH_{4} to +4 in CO_{2}

Section 6.9
 Oxidation-Reduction Reactions

The Characteristics of Oxidation-Reduction Reactions

- Oxygen undergoes a change from an oxidation state of 0 in O_{2} to -2 in $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}

- Oxidation is an increase in oxidation state
- Loss of electrons
- Reduction is a decrease in oxidation state
- Gain of electrons

Section 6.9
 Oxidation-Reduction Reactions

The Characteristics of Oxidation-Reduction Reactions

- In the combustion of methane:
- The carbon in methane is oxidized
- Oxygen is reduced
- CH_{4} is the reducing agent
- O_{2} is the oxidizing agent
- When the oxidizing or reducing agent is named, the whole compound is specified

Section 6.9

Oxidation-Reduction Reactions

Concept Check

- Which of the following are oxidation-reduction reactions? Identify the oxidizing agent and the reducing agent
a) $\mathrm{Zn}(s)+2 \mathrm{HCl}(a q) \longrightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(g)$
b) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(a q)+2 \mathrm{OH}^{-}(a q) \longrightarrow 2 \mathrm{CrO}_{4}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
c) $2 \mathrm{CuCl}(a q) \longrightarrow \mathrm{CuCl}_{2}(a q)+\mathrm{Cu}(s)$

Section 6.9

Oxidation-Reduction Reactions

Interactive Example 6.17-Oxidation-Reduction

Problems

- Metallurgy, the process of producing a metal from its ore, always involves oxidation-reduction reactions. In the metallurgy of galena (PbS), the principal leadcontaining ore, the first step is the conversion of lead sulfide to its oxide (a process called roasting):

$$
2 \mathrm{PbS}(s)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{PbO}(s)+2 \mathrm{SO}_{2}(g)
$$

Section 6.9

Oxidation-Reduction Reactions

Interactive Example 6.17-Oxidation-Reduction
Problems

- The oxide is then treated with carbon monoxide to produce the free metal:

$$
\mathrm{PbO}(s)+\mathrm{CO}(g) \longrightarrow \mathrm{Pb}(s)+\mathrm{CO}_{2}(g)
$$

- For each reaction, identify the atoms that are oxidized and reduced, and specify the oxidizing and reducing agents

Section 6.9

Oxidation-Reduction Reactions

Solution

- Assigning oxidation states to the first reaction

- Sulfur is oxidized
- Oxygen is reduced
- The reducing agent is PbS

Section 6.9

Oxidation-Reduction Reactions

Solution

- Assigning oxidation states to the second reaction

- Lead is reduced
- Carbon is oxidized
- PbO is the oxidizing agent
- CO is the reducing agent

Section 6.10

Balancing Oxidation-Reduction

Reactions

Balancing Oxidation-Reduction Reactions by
Oxidation States

- Write the unbalanced equation
- Determine the oxidation states of all atoms in the reactants and products
- Show electrons gained and lost using "tie lines"
- Use coefficients to equalize the electrons gained and lost
- Balance the rest of the equation by inspection
- Add appropriate states

Section 6.10

Balancing Oxidation-Reduction

Reactions

Example 6.18 - Balancing Oxidation-Reduction States

- Balance the reaction between solid lead(II) oxide and ammonia gas to produce nitrogen gas, liquid water, and solid lead

Section 6.10

Balancing Oxidation-Reduction

Reactions

Solution

- Step 1 - State the unbalanced equation

$$
\mathrm{PbO}(s)+\mathrm{NH}_{3}(g) \longrightarrow \mathrm{N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Pb}(s)
$$

- Step 2 - Assign oxidation states to each atom
$\underset{+2}{\mathrm{PbO}}+\underset{+1}{\underset{+2}{\mathrm{NH}_{3}}} \longrightarrow \stackrel{0}{\mathrm{~N}_{2}}+\underset{+1}{\mathrm{H}_{2} \mathrm{O}}+\underset{0}{-2} \mathrm{~Pb}$

Section 6.10

Balancing Oxidation-Reduction

Reactions

Solution

- Step 3 - Use "tie lines" to show electrons gained and lost

- The oxidation states of all other atoms are unchanged

Section 6.10

Balancing Oxidation-Reduction

Reactions

Solution

- Step 4 - Use coefficients to equalize electrons gained and lost

Section 6.10

Balancing Oxidation-Reduction

Reactions

Solution

- Step 5 - Balance the rest of the elements

$$
3 \mathrm{PbO}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~Pb}
$$

- Step 6 - Add appropriate states

$$
3 \mathrm{PbO}(s)+2 \mathrm{NH}_{3}(g) \longrightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)+3 \mathrm{~Pb}(s)
$$

