Chapter 7

Cell Structure & Function

The Cell Theory

- 1. All living things are made up of **cells**.
- 2. Cells are the basic unit of **structure** & **function** in living things
- 3. Cells **reproduce**

Scientists

- 1. Robert Hooke (1665): Discovered that cork was made up of tiny chambers....he call them cells.
- 2. Anton van Leeuwenhoek (1674):
 Observed tiny organisms in drops of pond water using a simple microscope.

Scientists (continued)

- 3. Matthias Schleiden (1838): All plants are made up of cells.
- 4. Theodor Schwann (1839): All animals are made up of cells.
- 5. Rudolph Virchow (1855): Proposed all cells come from pre-existing cells.

Basic Cell Structures

- 1. All cells have:
- Cell membrane
- Cytoplasm

- 2. Most cells have:
- Nucleus

Categories of cells

A. <u>Prokaryotes:</u> Have cell membrane & cytoplasm but no nucleus
 ----<u>smaller</u> and <u>simpler</u> than eukaryote

Example: Bacteria (E. coli)

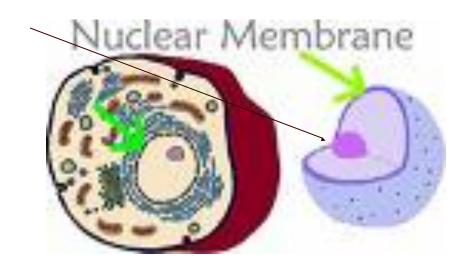
Categories of Cells

B. <u>Eukaryotes:</u> Have a nucleus, cell membrane, cytoplasm, and most have organelles

Examples: Plants, animals, fungi, many microorganisms

- a) Cell wall: <u>Plant</u> and <u>bacterial</u> cells <u>not</u> animal cells. It provides <u>support</u> & <u>protection</u>.
- b) Cell membrane: A thin flexible <u>barrier</u> around the <u>cell</u>. It <u>regulates</u> what enters & leaves a cell.

- c) Nucleus: Contains<u>heredity</u> information(DNA)
 - Chromatin: Uncoiled DNA



Chromosomes:
 Coiled DNA

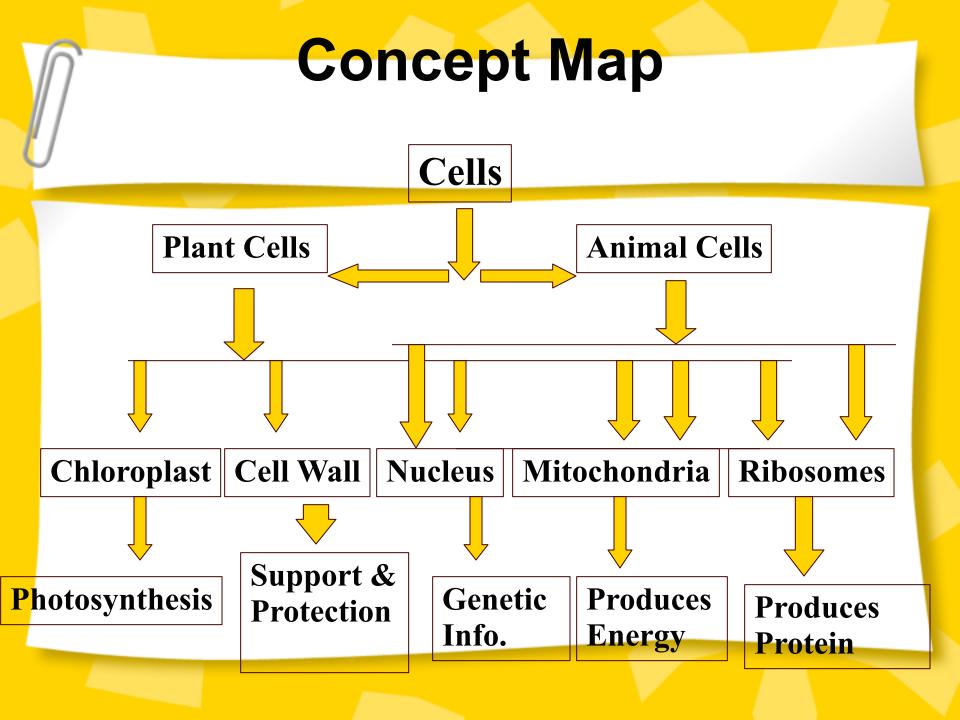
 Nucleolus: Site of RNA synthesis, produces ribosomes

Nuclear Envelope:
 Surrounds the nucleus, controls what enters and leaves the nucleus.

- d. <u>Cytoskeleton:</u> Network of protein, helps cell keep its shape; involved with cell motility
- Microtubules: Hollow tubes of protein
- Microfilaments: Long thin fibers of protein
- e. <u>Cytoplasm:</u> Material between the nucleus and the cell membrane; contains the cell organelles

Ribosomes:

Make **proteins** based on instructions that come from the **nucleus** (factory machines)


Endoplasmic reticulum (ER)

Rough ER: <u>ribosomes</u> attached to surface; pathways for transport of materials within the cell

Smooth ER: No <u>ribosomes</u> attached; pathway for transport of materials within the cell

Cell Organelles

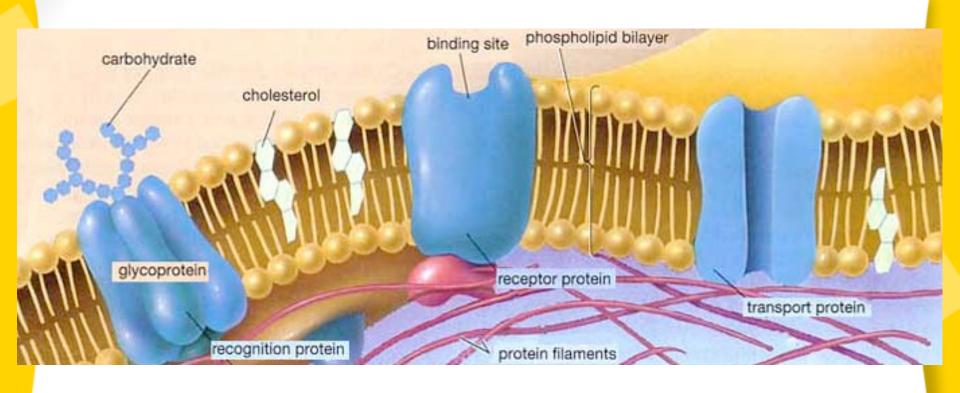
Golgi apparatus	Processes, packages & sends proteins & lipids to their final destination w/in cell (Post Office)
	Contain enzymes that break down large
Lysosome	molecules into smaller parts that can be used by cell; break down used cell parts. (Garbage men)
Vacuole	Store materials like water, starch, etc.; several small in animal cell; one large one in plant cell (Garage)

Cell Organelles

Chloroplast	Plant cells; use energy from the sun to make food; site of photosynthesis. (Solar power plant)
Mitochondria	Usually <u>many</u> in cell; release <u>energy</u> from <u>food</u> molecules; site of <u>cellular respiration</u> . "Powerhouse of the cell" (Power plant)
Cilia & Flagella	Locomotive <u>structures</u> made up of <u>microtubules</u>

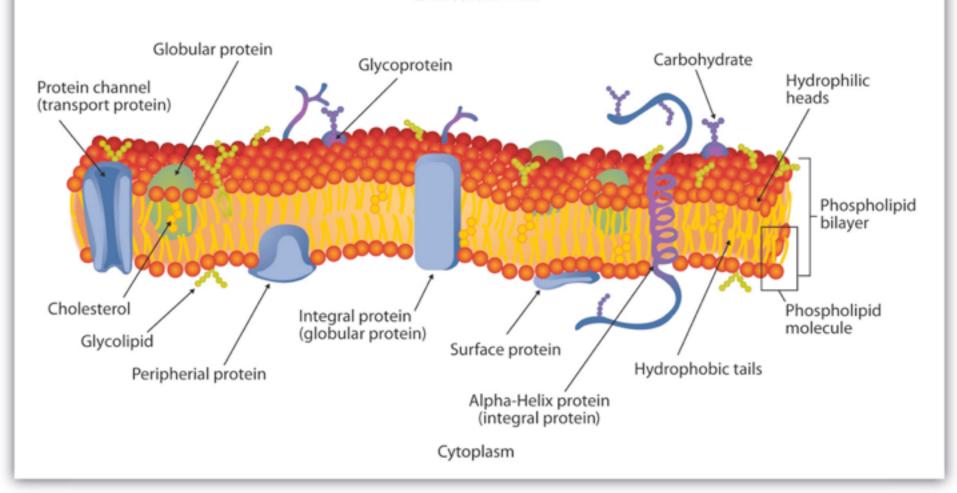
Structure	Prokaryotic	Eukaryotic	Eukaryotic	
		Animal Cell	Plant Cell	
Cell Membrane	Yes	Yes	Yes	
Cell Wall	Yes	No	Yes	
Nucleus	No	Yes	Yes	
Ri bosomes	Yes	Yes	Yes	
ER	No	Yes	Yes	
<mark>G</mark> olgi Apparatus	No	Yes	Yes	
Lysosomes	No	Yes	No	
V acuoles	No	Small/none	Yes	
M itochondria	No	Yes	Yes	
Chloroplasts	No	No	Yes	
Cytoskeleton	No	Yes	yes	

Cell Membrane


Selectively permeable: some substances can pass through it and some cannot

Lipid Bilayer: 2 layers of lipids the give the membrane a tough, flexible structure; forms a barrier between cell & its surroundings

Cell Membrane


- Protein Channels & Pumps: embedded in the lipid bilayer; help move materials across the membrane during facilitated diffusion and active transport
- Receptor proteins: embedded in lipid bilayer; receive chemical messages from other cells (ex: hormones). Homeostasis can be affected if blocked.

Receptor Proteins

Extracellular Fluid

Movement Through the Membrane

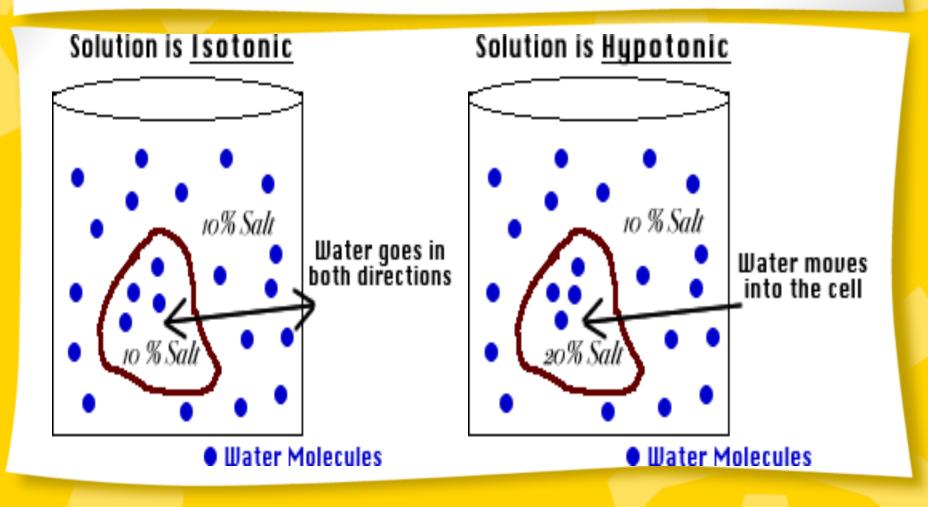
Diffusion (passive transport): Molecules move from areas of high concentration to low concentration until equilibrium is reached.

- * No energy is required
- * Equilibrium- the net movement of particles into the cell equals the net movement of particles out of the cell
- * Once equilibrium is reached, movement of molecules still occurs but in equal amounts

Osmosis

- Diffusion of water through a selectively permeable membrane from areas of high concentration to low concentration until equilibrium is reached
- * No energy is required

Osmosis & Solutions

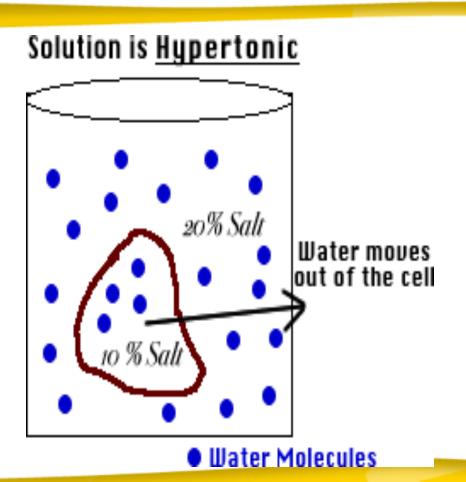

Isotonic Solution: Concentration of solute is **equal** on both sides of the membrane; at equilibrium

Hypotonic Solution: Concentration of solute is less outside the membrane than within the cell (below strength) causing water to move into the cell;

<u>animal cells placed in a hypotonic solution</u>: swell & burst

plant cells placed in a hypotonic solution: vacuoles swell, pushing cell content out against cell wall.

Isotonic & Hypotonic Solutions


Osmosis & Solutions

Hypertonic Solution: Concentration of solute is greater outside the cell membrane than inside the cell (above strength) causing water to leave the cell

animal cells: shrink due to water loss

plant cells: vacuoles collapse due to water loss

Hypertonic Solutions

Osmotic Pressure

- pressure exerted by osmosis on the hypertonic side of the membrane
- can cause serious problems for the cell
- cell is almost always hypertonic to freshwater -this means that the net movement of water will go into the cell
- cells burst if too much water enters

Movement Through the Membrane

Facilitated Diffusion: Protein channels in membrane help molecules move across the membrane that cannot pass directly (ex: sugar)

- *From high to low
- * No **energy** is required

- Active Transport: Movement from low concentration to high concentration.
 - * Energy is required in the form of ATP
 - endocytosis-process of taking material into the cell by means of infoldings, or pockets of the cell membrane
 - phagocytosis-when large particles are taken into
 the cell by extensions of the cytoplasm
 surrounding and engulfing the particle
 exocytosis-the removal of large amounts of
 material by the cell

Diversity of Cell Life

Unicellular Organisms (Single celled)

- Have all 8 characteristics of life
- Carry out all life functions
- Lack cell <u>specialization</u> (specialized to perform a specific function).

Muticellular Organisms (many cells)

- cells that are interdependent.
- All cells are **specialized** and **work together**.
- Have all 8 characteristics of life
- Carry out all life functions

Levels of Organization

Most complex

Organism

Organ Systems: Groups of organs working together to perform a specific function (Digestive, Nervous, Circulatory)

Organs: Groups of tissues that work together (Heart, Lungs, kidneys)

Tissues: Groups of similar cells that perform a specific function; 4 Types (muscle, epithelial, nervous, connective (bone, blood, cartilage)

Least complex

Cells: Perform a particular function