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Chapter 7
Kinetic Energy and Work

In this chapter we will introduce the following concepts:

Kinetic energy of a moving object
Work done by a force    
Power

In addition we will develop the work-kinetic energy theorem and 
apply it to solve a variety of problems

Thi h i lt ti h t h i It lThis approach is alternative approach to mechanics.   It uses scalars 
such as work and kinetic energy rather than vectors such as velocity 
and acceleration.  Therefore it simpler to apply.  



Kinetic Energy:
We define a new physical parameter to describe 
the state of motion of an object of mass m andm m the state of motion of an object of mass m and 
speed v  

We define its kinetic energy K as: 
2

2
mvK =gy

2

We can use the equation above to define the SI unit for work                   
(th j l b l J ) A bj t f 1k th t ith d(the joule, symbol: J ).   An object of mass m = 1kg that moves with speed 
v = 1 m/s has a kinetic energy K = 1J

Work: (symbol W)Work: (symbol W)
If a force F is applied to an object of mass m it can accelerate it and 
increase its speed v and kinetic energy K.  Similarly F can decelerate m
and decrease its kinetic energyand decrease its kinetic energy.
We account for these changes in K by saying that F has transferred energy 
W to or from the object. If energy it transferred to m (its K increases) we 
say that work was done by F on the object (W > 0) If on the other handsay that work was done by F on the object (W > 0).  If on the other hand.  
If on the other hand energy its transferred from the object (its K decreases) 
we say that work was done by m (W < 0)   



Problem 5. A father racing his son has half the kinetic energy of the son, who has half 
the mass of the father. The father speeds up by 1.0 m/s and then has the same kinetic 
energy as the son What are the original speeds of (a) the father and (b) the son?energy as the son. What are the original speeds of (a) the father and (b) the son?
We denote the mass of the father as m and his initial speed vi. The initial kinetic energy of 
the father is 

K Ki =
1
2 so n  

 
and his final kinetic energy (when his speed is vf = vi + 1.0 m/s) is K Kf = so n .  We use 
these relations along with definition of kinetic energy in our solution. 
 
(a) We see from the above that K Ki f= 1

2 which (with SI units understood) leads to( ) i f2 ( )
 

( )221 1 1  1 .0 m /s
2 2 2i im v m v⎡ ⎤= +⎢ ⎥⎣ ⎦

. 

 
The mass cancels and we find a second-degree equation for vi :The mass cancels and we find a second degree equation for vi :
 

1
2

1
2

02v vi i− − = .  

 
The positive root (from the quadratic formula) yields vi = 2.4 m/s.p ( q ) y i
 
(b) From the first relation above K Ki = 1

2 so nb g , we have 
 

2 2
s o n

1 1 1  ( /2 )  
2 2 2im v m v⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

2 2 2⎝ ⎠
 
and (after canceling m and one factor of 1/2) are led to v v iso n = 2 = 4 .8  m s .  
 



m m Consider a bead of mass  that can move 
Finding an expression for Work:

m
without friction along a straight wire along 

the x-axis. A constant force  applied at an
l h i i i h b

F
φ

r

dangle  to the wire is acting on th be φ ead

We apply Newton's second law:    We assume that the bead had an initialx xF ma=
r

velocity  and after it has travelled a displacement  its velocity is .  We apply the 

third equation of kinematics:  
ov d v

rr r

2 2 2    We multiply both sides by / 2o xv v a d m
m m m m F m

− = →

2 2 2

2

 2 2 cos                  
2 2 2 2 2

     The change in kinetic energy cos  

x
o x x i o

f f i

m m m m F mv v a d d F d F d K v
m

mK v K K Fd

φ

ϕ

− = = = = =

= → − =g gy
2

Thus the work  done  the force  thby on

f f i

W

ϕ

e bead is given by:  cos
 

xW F d Fd ϕ= =

cosW Fd ϕ= W F d= ⋅
rr



AF
r

F
r m m

cosW Fd ϕ=

r

CF

W F d= ⋅
rr

BF
r

The unit of is the same as that of i e joulesW KThe unit of  is the same as that of  i.e. 
The expressions for work we have developed apply when  is constant
We have made the implicit assumption that the m

Note 1:
Note oving objec t

jo

 i

ule

s p2 -

s

: oint

W K
F

like
0  if    0 90   ,   0  if    90 180

  If we have several forces acting on a body (say three as in the picture)
h h d h b d l l h

Note 3:  
Net Wor :k

W Wφ φ> < < ° < ° < < °

k Wthere are two methods that can be used to calculate the net work 

  First calculate the work done by each force:  by force ,

by force and by force Then determine

Method 1:
net

A A

W

W

W F

W F W F W W W= + +

r

r r
 by force , and  by force  .  Then determine   

CMethod 2: alculate first    ; 
nB B C C

net B C

C

A

et A BWW F W F

F F F

W W

F

W

=

=

+

+

+

+
r r r r

 Then determine  netW F d= ⋅
rr



Accelerating a Crate
A 120kg crate on the flatbed of a truck is moving with an acceleration a = +1.5m/s2 along the 
positive x axis The crate does not slip with respect to the truck as the truck undergoes apositive x axis. The crate does not slip with respect to the truck, as the truck undergoes a 
displacement s = 65m. What is the total work done on the crate by all the forces acting on it?

1.2x104 N



Work
Problem 11: A 1200kg car is being driven up a 5.0° hill. The frictional force is directed opposite to 
the motion of the car and has a magnitude of fk = 5.0x102N. The force F is applied to the car by the g k pp y
road and propels the car forward. In addition to those two forces, two other forces act on the car: 
its weight W, and the normal force N directed perpendicular to the road surface. The length of the 
hill is 3.0x102m. What should be the magnitude of F so that the net work done by all the forces 
acting on the car is g
+150,000 J?



We have seen earlier that:   .   f i netK K W− =
Work-Kinetic Energy Theorem

m m We define the change in kinetic energy as:
.  The equation above becomes

th ork kinetic energ te heorem
f iK K KΔ = −

th work-kinetic energy te heorem

f i netK K K WΔ = − =

Change in the kinetic net work done on
energy of a particle     the particle
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦gy p p⎣ ⎦ ⎣ ⎦

The work-kinetic energy theorem holds for both positive and negative values of W

The work-energy theorem:  when a net external force does work W on an object, the kinetic energy of the 
object changes from initial value KE0 to the final value KEf, the difference between the two values being 
equal to the work W = Kf – K0 = 1/2mvf

2 – 1/2mv0
2

The work kinetic energy theorem holds for both positive and negative values of  
If         0    0

If         0    0

net

net f i f i

net f i f i

W
W K K K K

W K K K K

> → − > → >

< → − < → <f f



Work and Kinetic Energy

In a circular orbit the gravitational force F is 
always perpendicular to the displacement s of 
the satellite and does no work

KE = constant

W>0
KE increases

In an elliptical orbit, there can be a 
component of the force along the 
displacement

Work is done

W<0
KE decreases



The Work-Energy Theorem and Kinetic Energy
Problem :  A 0.075kg arrow is fired horizontally. The bowstring exerts an average force of 65 N on 
the arrow over a distance of 0.90 m. With what speed does the arrow leave the bow?the arrow over a distance of 0.90 m. With what speed does the arrow leave the bow?



The Work-Energy Theorem and Kinetic Energy
The speed of a hockey puck decreases from 45.00 to 44.67m/s in coasting 16m across the ice. Find 
the coefficient of kinetic friction between the puck and the ice.p



The work-energy theorem deals with the work done by the net external force. The work-energy 
theorem does not apply to the work done by an individual force. If W>0 then KE increases; if W<0 
then KE decreases; if W=0 then KE remains constant.

Downhill Skiing: A 58kg skier is coasting down a 25° slope. A kinetic friction force fk=70N opposes 
her motion. Near the top of the slope, the skier’s speed is v0=3.6m/s. Ignoring air resistance, 
determine the speed vf at a point that is displaced 57m downhill.



Problem 15. A 12.0 N force with a fixed orientation does work on a particle as the particle moves
ˆˆ ˆthrough displacement (2.00 4.00 3.00 ) m. What is the angle between the force and the 

displacem
d i j k= − +
r

ent if the charge in the particle's kinetic energy is (a) +30.0J and (b) -30.0J?

Using the work-kinetic energy theorem, we have  
 
 cosK W F d Fd φΔ = = ⋅ =

rr
 

 
In addition, 12 NF = and 2 2 2(2.00 m) ( 4.00 m) (3.00 m) 5.39 md = + − + = . 
 
(a) If 30.0 JKΔ = + , then 
 

30 0 JK ⎛ ⎞Δ⎛ ⎞ 1 1 30.0 Jcos cos 62.3
(12.0 N)(5.39 m)

K
Fd

φ − − ⎛ ⎞Δ⎛ ⎞= = = °⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

.

 
(b) 30.0 JKΔ = − , then 

1 1 30.0 Jcos cos 118
(12.0 N)(5.39 m)

K
Fd

φ − − ⎛ ⎞Δ −⎛ ⎞= = = °⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 



B Work Done by the Gravitational Force:

A

Consider a tomato of mass  that is thrown upwards at point A
with initial speed .  As the tomato rises, it slows down by the

it ti l f th t t
o

m
v
F i t B it h ll dA

  gravitational force so that at pogF

( )
int B its has a smaller speed .

The work A B  done by the gravitational force on the 

tomato as it travels from point A to point B is:
g

v

W →

( )
( )

tomato as it travels from point A to point B is:
A B cos180

The work B A  done by the gravitational forc
g

g

W mgd mgd

W

→ = ° = −

→ e on the ( ) y gg

( )
tomato as it travels from point B to point A is:

B A cos 0gW mgd mgd→ = ° =



B .
C id bj t f th t i lift d b f F f
Work done by a force in Lifting an object:

A m

Consider an object of mass m that is lifted by a force F form 
point A to point B.  The object starts from rest at A and arrives
at B with zero speed.  The force  F is not necessarily constant p y
during the trip.   

The work-kinetic energy theorem states that:        f i netK K K WΔ = − =

We also have that 0 0    There are two forces 
acting on the object:  The gravitational force  and the applied force 

i f net

g

K K K W
F F

= → Δ = → =

 t ( ) ( )
( ) ( )
( ) ( )

hat lifts the object.  A B A B 0

A B A B         

A B 180 A B

net a g

a g

W W W

W W

W d d W d

= → + → = →

→ = − →

°( ) ( )
Work done by a force in Lowering an obje

A B cos180 -  A B

In this case the object moves from B to A
ct:

g aW mgd mgd W mgd→ = ° = → → =

( )
In this case the object moves from B to A

B A cos 0     gW mgd mgd→ = ° = ( ) ( )   B A B A =     a gW W mgd→ = − → −



Problem 17. A helicopter lifts a 72 kg astronaut 15 m vertically from the ocean by means of 
a cable. The acceleration of the astronaut is g/10. How much work is done on the astronaut 
by (a) the force from the helicopter and (b0 the gravitational force on her? Just before she y ( ) p ( g
reaches the helicopter, what are her (c) kinetic energy and (d) speed?

 (a) We use 
r

F  to denote the upward force exerted by the cable on the astronaut. The
force of the cable is upward and the force of gravity is mg downward. Furthermore, the
acceleration of the astronaut is g/10 upward. According to Newton’s second law, F – mgacceleration of the astronaut is g/10 upward. According to Newton s second law, F mg
= mg/10, so F = 11 mg/10. Since the force 

r
F  and the displacement 

r
d  are in the same 

direction, the work done by 
r

F  is 
 

2
41 1 1 1  (7 2  k g ) (9 .8 m /s ) (1 5  m ) 1 .1 6 4 1 0  J

1 0 1 0F
m g dW F d= = = = ×  
1 0 1 0

 
which (with respect to significant figures) should be quoted as 1.2 × 104 J. 
 
(b) The force of gravity has magnitude mg and is opposite in direction to the
displacement. Thus the work done by gravity is 
 

2 4(7 2  k g ) (9 .8 m /s ) (1 5  m ) 1 .0 5 8 1 0  JgW m g d= − = − = − ×  
 
which should be quoted as – 1.1 × 104 J. 
 

4 4 3(c) The total work done is W = × − × = ×1 1 6 4. 1 0 J 1 .0 5 8 1 0 J 1 .0 6 1 0 J4 4 3 . Since the 
astronaut started from rest, the work-kinetic energy theorem tells us that this (which we
round to 1 1. × 1 0 J3 ) is her final kinetic energy. 
 
(d) Since K m v= 1

2
2 ,  her final speed is 

 

v K
m

= =
×

=
2 2 1 0 6 1 0 5 4

3( . .J )
7 2  k g

 m / s.  



Problem 24. A cave rescue team lifts an injured spelunker directly upward and out of a sinkhole 
by means of a motor-driven cable. The lift is performed in three stages, each requiring a vertical 
distance of 10.0 m: (a) the initially stationary spelunker is accelerated to a speed of 5.00 m/s; (b0 
he is then lifted at the constant speed of 5.00 m/s; © finally he is decelerated to zero speed. How 
much work is done on the 80.0kg rescuee by the force lifting him during each stage?

We use d to denote the magnitude of the spelunker’s displacement during each stage. TheWe use d to denote the magnitude of the spelunker s displacement during each stage. The
mass of the spelunker is m = 80.0 kg. The work done by the lifting force is denoted Wi
where i = 1, 2, 3 for the three stages. We apply the work-energy theorem, Kf-Ki=Wa+Wg 
 
(a) For stage 1, W mgd K mv v1 1

1
2 1

2
1 500− = = =Δ , .where m / s . This gives(a) For stage 1, W mgd K mv v1 1 2 1 1 500Δ , .where  m / s . This gives

 
2 2 2 3

1 1
1 1(80.0 kg)(9.80 m/s )(10.0 m) (80.0 kg)(5.00 m/s) 8.84 10  J.
2 2

W mgd mv= + = + = ×  

 
(b) For stage 2, W2 – mgd = ΔK2 = 0, which leads to 
 

2 3
2 (80.0 kg)(9.80 m/s )(10.0 m) 7.84 10  J.W mgd= = = ×  

(c) For stage 3, W mgd K mv3 3
1
2 1

2− = = −Δ . We obtain 
 

2 2 2 31 1(80 0 k )(9 80 / )(10 0 ) (80 0 k )(5 00 / ) 6 84 10 JW d ×2 2 2 3
3 1 (80.0 kg)(9.80 m/s )(10.0 m) (80.0 kg)(5.00 m/s) 6.84 10  J.

2 2
W mgd mv= − = − = ×



A force  that is not constant but instead varies as function of 
i h i fi

Work done by a variable

W i h t l l

 force (

t

) act

th k th t d

ing along the -axis:
F x

W F

F x x

is shown in fig.a.  We wish to calculate the work  that  does 
on an objec

W F

( )
t it moves from position  to position .

We partition the interval into "elements" of length
i fx x

x x N( )We partition the interval ,  into  elements  of length

 each as is shown in fig.b.  The work done by  in the - th
interval is:     Where  

i f

j j avg

x x N

x F j
W F x F

Δ
Δ = Δ is the average value of Fj avg,j j avg ,

,
1

g

over the -th element.     We then take the limit of

j avg

N

j avg
j

j W F x
=

= Δ∑

,

the sum as 0 , (or equivalently  )

lim ( )    Geometrically,  is the area
fxN

j avg

x N

W F x F x dx W

Δ → →∞

= Δ =∑ ∫,
1

b
i

j avg
j x=
∑ ∫

etween ( ) curve and the -axis, between  and 

(shaded blue in fig d)
i fF x x x x

fx(shaded blue in fig.d)
( )

f

ix

W F x dx= ∫



The Ideal Spring
Springs are objects that exhibit elastic behavior. It will return back to its original length after 
being stretched or compressed.being stretched or compressed.

Equilibrium position

Relaxed or unstrained length of the spring

For small deformations, the force “F” required to 
stretch or compress a spring obeys the equation:  F = 
kx

• x - displacement of the spring from its unstrained length
• k – spring constant [N/m] unitp g [ ]
• A spring that behaves according to the relationship F = kx it is said to be an 
ideal spring



Restoring Force

Equilibrium positionq p

Restoring force
Stretched position

• To stretch or compress a spring a force F must be applied
• Newton’s 3rd Law: Every action has an equal in magnitude and opposite reaction.

The reaction force that is applied by the spring to the agent that does the pulling or pushing is 
called restoring force

The restoring force is always opposite to the displacement of the spring



Fig.a shows a spring in its relaxed state.  
The Spring Force:

In fig.b we pull one end of the spring and
stretch it by an amount .  The spring 
resits by exerting a force on our hand in

d
Fresits by exerting a force  on our hand in

the opposi dite 
F

rection.
In fig.c we push one end of the spring and
compress it by an amount . Again the 
spring resists by exerting a force  on our 
hand in the opposite direction

d
F

hand in the opposite direction

The force  exerted by the spring on whatever agent (in the picture our hand)
is trying to change its natural length either by extending or by compressing it

F
is trying to change its natural length either by extending or by compressing it
is given by the equation:       Here x F kx= − is the amount by which the spring
has been extended or compressed.  This equation is known as "Hookes law"
k is known as "spring constant"

F kx= −



An object is attached to the lower end of a 100-coil spring that is hanging from the ceiling. The 
spring stretches by 0.160 m. The spring is then cut into two identical springs of 50 coils each. As the 
drawing shows, each spring is attached between the ceiling and the object. By how much does each 

i t t h?spring stretch?



Consider the relaxed spring of spring constant k shown in (a)
Work Done by a Spring Forcex

i f

Consider the relaxed spring of spring constant k shown in (a)
By applying an external force we change the spring's
length from x  (see  b)  to x   (see c).  We will 

xi

x

O (a)

calculate the work  done by the spring on the external agent
(in this case our hand) that changed the spring length. We 

th t th i i l d th t it b H k ' l

sW
O (b)

xf

x

assume that the spring is massless and that it obeys Hooke's law

We will use the expression:  ( )  
f f fx x x

sW F x dx kxdx k xdx= = − = −∫ ∫ ∫

O (c)

22 2

p ( )

       Quite often we start with a relaxed 
2 2 2

i i i

f

s
x x x

x
fi

s

kxx kxW k ⎡ ⎤
= − = −⎢ ⎥

⎣ ⎦

∫ ∫ ∫

Q
2 2 2

spring ( 0) and we either stretch or compress the spring b
i

s
x

ix

⎢ ⎥
⎣ ⎦

=
2

y an 

kxamount    ( ).  In this case  
2sf

kx Wx x x
= −= ±



Problem 29. The only force acting on a 2.0 kg body as it moves along a positive x axis has an x 
component Fx=-6x N, with x in meters. The velocity at x= 3.0 m is 8.0 m/s. (a) What is the 
velocity of the body at x=4.0 m? (b) At what positive value of x will the body have a velocity of 
5.0 m/s?

(a) As the body moves along the x axis from xi = 3.0 m to xf = 4.0 m the work done by the
force is 
 

2 2 2 2 6  3( ) 3  (4 .0 3 .0 ) 2 1 J .f fx x

x f iW F d x x d x x x= = − = − − = − − = −∫ ∫ ( ) ( )
i i

x f ix x∫ ∫
 

According to the work-kinetic energy theorem, this gives the change in the kinetic
energy: 
 

1 d iW K m v vf i= = −Δ
1
2

2 2d i
 
where vi is the initial velocity (at xi) and vf is the final velocity (at xf). The theorem yields 
 

2 2 ( 2 1 J )W 2 22 2 ( 2 1 J ) (8 .0 m /s ) 6 .6  m /s .
2 .0 k gf i

Wv v
m

−
= + = + =  

 
(b) The velocity of the particle is vf = 5.0 m/s when it is at x = xf. The work-kinetic energy 
theorem is used to solve for xf. The net work done on the particle is ( )2 23 f iW x x= − − , so f p ( )f i ,
the theorem leads to 

− − = −3 1
2

2 2 2 2x x m v vf i f id i d i .  

Thus, 
 

( ) ( )2 2 2 2 2 22 .0  k g (5 .0  m /s) (8 .0  m /s) (3 .0  m ) 4 .7  m .
6 6  N /mf f i i
mx v v x= − − + = − − + =  



In the general case the force  acts in three dimensional space and moves an object

Three dimensional Analysis:

F
r

g p j
on a three dimensional path from an initial point A  to a final point   B 

The force has t ( ) ( ) ( ) ˆˆ ˆhe form:    , , , , , ,x y zF F x y z i F x y z j F x y z k= + +
r

( ) ( )Point s A and B have coordinates , ,  and , , , respectivelyi i i f f f

x y z

x y z x y z

dW F dr F dx F dy F dz= ⋅ = + +
r r

f f f

i i i

x y zB

x y z
A x y z

W dW F dx F dy F dz= = + +∫ ∫ ∫ ∫

z
Bf f fx y z

W F dx F dy F dz= + +∫ ∫ ∫
Ox

yA

pathi i i

x y z
x y z

W F dx F dy F dz= + +∫ ∫ ∫



Conside a variable force F(x) which moves an object of mass m from point A( )
Work-Kinetic Energy Theorem with a Variable Force:

ix x=

to point B( ).   We apply Newton's second law:      We thf
dvx x F ma m
dt

= = = en

multiply both sides of the last equation with and get: dvdx Fdx m dx=

f fx x

multiply both sides of the last equation with  and get:  

We integrate both sides over  from  to :  i f

dx Fdx m dx
dt

dvdx x x Fdx m dx
dt

=

=∫ ∫
i ix x

   Thus the integral beco

dt

dv dv dx dv dv dxdx dx vdv
dt dx dt dt dx dt

= → = =

∫ ∫

mes:

2 2
2

2 2 2

f
f

i
i

x
x f i

f ix
x

mv mvmW m vdv v K K K⎡ ⎤= = = − = − = Δ⎣ ⎦∫

O x-axisF(x)A Bm

Note: The work-kinetic energy theorem has exactly the same form as in the case 
when  is constant!F

. .O

x
dx

 
 f iW K K K= − = Δ



We define "power"   as the rate at which work is done by a force .  
Power

P F
If  does work  in a time interval  then we define as the  as: average powerF W tΔ

WP =avgP
t

=
Δ

 The instantaneous po   is definedwer as: 
dWP
dt

=

  The SI unit of power is the watt.  It is defined  as the power 
of an engine that does work  = 1 J   in a time  =  1 second 
Unit of :

t
P

Wg
A commonly used non-SI power unit is the horsepower (hp) de if ned as:
1 hp = 746 W

6

    The kilowatt-hour (kWh) is a unit of work.  It is defined
as the work performed by an engine of power  = 1000 W in a time  = 1 hour

1000 3600 3 60 10

The 

J

kilowatt-hour
P t

W Pt= = × = × The kWh is used by electrical utility1000 3600  3.60 10  J  W Pt= = × = ×   The kWh is used by electrical utility
companies  (check your latest electric bill)



Consider a force  acting on a particle at an angle  to the motion.  The rateF φ
cosat which  does work is given by:  cos cosdW F dx dxF P F Fv

dt dt dt
φ φ φ= = = =

cosP Fv F vφ= = ⋅
r r

v



Example:
An elevator cage has a mass of 1000kg. How many horsepower must the motor deliver to the 
elevator if it is to raise the elevator cage at the rate of 2.0m/s?



A car accelerates uniformly from rest to 27 m/s in 7.0s along a level stretch of road. Ignoring 
friction, determine the average power required to accelerate the car if
a) The weight of the car is 1.2x104N, and b) weight is 1.6x104N



P ro b le m  4 8 .  (a )  A t a  c e r ta in  in s ta n t, a  p a r tic le -lik e  o b k e c t is  a c te d  o n  b y  a  fo rc e  
ˆ ˆˆ ˆ ˆ( 4 .0 ) ( 2 .0 ) ( 9 .0 )  w h ile  th e  o b je c ts  v e lo c ity  is  ( 2 .0 / ) ( 4 .0 / )

W h a t is  th e  in s ta n ta n e o u s  ra te
F N i N j N k v m s i m s k= − + = − +
r r

 a t w h ic h  th e  fo rc e  d o e s  w o rk  o n  th e  o b je c t?  (b )  
A T  so m e  o th e r  tim e , th e  v e lo c ity  c o n s is ts  o f  o n ly  a  y  c o m p o n e n t. if  th e  fo rc e  is u n c h a n g e d
 a n d  th e  in s ta n ta n e o u s  p o w e r  is  -1 2 W , w h a t is  th e  v e lo c ity  o f  th e  o b je c t?

( ) b i(a) we obtain 
 

(4.0 N)( 2.0 m/s) (9.0 N)(4.0 m/s) 28 W.P F v= ⋅ = − + =
r r  

 
(b) with a one-component velocity: rv v  j.= $  
 

12 W ( 2.0 N) .P F v v= ⋅ ⇒ − = −
r r ( )

which yields v = 6 m/s. 


