
CHAPTER 7
Interest Rate Models and Bond Pricing

The riskless interest rate has been assumed to be constant in most of the pric-
ing models discussed in previous chapters. Such an assumption is acceptable
when the interest rate is not the dominant state variable that determines the
option payoff, and the life of the option is relatively short. In recent decades,
we have witnessed a proliferation of new interest rate dependent securities,
like bond futures, options on bonds, swaps, bonds with option features, etc.,
whose payoffs are strongly dependent on the interest rates. Note that interest
rates are used for discounting as well as for defining the payoff of the deriva-
tive. The values of these interest rate derivative products depend sensibly on
the level of interest rates. In the construction of valuation models for these
securities, it is crucial to incorporate the stochastic movement of interest
rates into consideration. Several approaches for pricing interest rate deriva-
tives have been proposed in the literature. Unfortunately, up to this time,
no definite consensus has been reached with regard to the best approach for
these pricing problems.

The correct modelling of the stochastic behaviors of interest rates, or more
specifically, the term structure of the interest rate through time is important
for the construction of realistic and reliable valuation models for interest rate
derivatives. The extension of the Black-Scholes valuation framework to bond
options and other bond derivatives is doomed to be difficult because of the
pull-to-par phenomenon, where the bond price converges to par at maturity,
thus causing the instantaneous rate of return on the bond to be distributed
with a diminishing variance through time. The earlier approaches attempt to
model the prices of the interest rate securities as functions of one or a few
state variables, say, spot interest rate, long-term interest rate, spot forward
rate, etc. In the so called no arbitrage or term structure interest rate models,
the consistencies with the observed initial term structures of interest rates
and/or volatilities of interest rates are enforced.

In Sec. 7.1, we introduce the terminologies commonly used in bond pric-
ing models and discuss several one-factor models that are widely used in the
literature. However, the empirical tests on the applicability of some of these
interest rate models in pricing derivatives are not quite promising. We run
into the dilemma that the simple models cannot capture the essence of the
term structure movement while the more sophisticated models are too cum-
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bersome to be applied in actual pricing procedures. We examine and analyze
the term structure of interest rates obtained from a few of these prototype
models. It is commonly observed that the interest rate term structure and
the volatility term structure derived from the interest rate models in general
do not fit with the observed initial term structures. Such discrepancies are
definitely undesirable. In Sec. 7.2, we consider yield curve fitting procedures
where the initial term structures are taken as inputs to the models and so
values of contingent claims obtained from these models are automatically
consistent with these inputs. These no arbitrage models contain parameters
which are functions of time, and these parameter functions are to be deter-
mined from the current market data. Fortunately, some of these no-arbitrage
models have good analytic tractability, (like the Hull-White model). In Sec.
7.3, we consider the Heath-Jarrow-Morton appraoch of modeling the stochas-
tic movement of interest rate. Most earlier interest rate models can be visu-
alized as special cases within the Heath-Jarrow-Morton framework. However,
the Heath-Jarrow-Morton type models are in general non-Markovian. This
would lead to much tedious numerical implementation, thus limit their prac-
tical use. In Sec. 7.4, we consider other common types of interest rate models,
like the multi-factor models and market rate models.

7.1 Short rate models

A bond is a long-term contract under which the issuer (or borrower) promises
to pay the bondholder coupon interest payments (usually periodic) and prin-
cipal on specific dates as stated in the bond indenture. If there is no coupon
payment, the bond is said to be a zero-coupon bond . A bond issue is gener-
ally advertised publicly and sold to different investors. A bond is a common
financial instrument used by firms or governments to raise capital. The up-
front premium paid by the bondholders can be considered as a loan to the
issuer. The face value of the bond is usually called the par value and the
maturity date of the bond is the specified date on which the par value of a
bond must be repaid. A natural question: how much premium should be paid
by the bondholder at the initiation of the contract so that it is fair to both
the issuer and bondholder? The amount of premium is the value of the bond.
From another perspective, the value of a bond is simply the present value of
the cash flows that the bondholder expects to realize throughout the life of
the bond. In addition, the possible default of the bond issuer should also be
taken into account in the pricing consideration.

Since the life span of a bond is usually 10 years or even longer, it is
unrealistic to assume the interest rate to remain constant throughout the
whole life of the bond. After the bond is being launched, the value of the bond
changes over time until maturity due to the change in its life span, fluctuations
in interest rates, and other factors, like coupon payments outstanding and
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change in credit quality of the bond issuer. First, we assume the interest
rate to be a known function of time, and derive the corresponding bond
price formula. Next, we discuss various terminologies that describe the term
structures of interest rates. In the later parts of this section, we present
various stochastic models for the interest rates and discuss the associated
bond pricing models.

7.1.1 Basic bond price mathematics

Let r(t) be the deterministic riskless interest rate function defined for t ∈
[0, T ], where t is the time variable and T is the maturity date of the bond.
Normally, the bond price is a function of the interest rate and time. At this
point, we assume that the interest rate is not an independent state variable
but itself is a known function of time. Hence, the bond price can be assumed
to be a function of time only. Let B(t) and k(t) denote the bond price and
the known coupon rate, respectively. The final condition is given by B(T ) =
F , where F is the par value. The derivation of the governing equation for
B(t), t < T , leads to a simple first order linear ordinary differential equation.
Over time increment dt from the current time t, the change in value of the

bond is
dB

dt
dt and the coupon received is k(t) dt. By no-arbitrage principle,

the above sum must equal the riskless interest return r(t)B(t) dt in time
interval dt; hence

dB

dt
+ k(t) = r(t)B, t < T. (7.1.1a)

By multiplying both sides by the integrating factor e
∫ T

t
r(s) ds, we obtain

d

dt

[
B(t)e

∫ T

t
r(s) ds

]
= −k(t)e

∫ T

t
r(s) ds

. (7.1.1b)

Together with the final condition:B(T ) = F , the bond price function is found
to be

B(t) = e
−
∫ T

t
r(s) ds

[
F +

∫ T

t

k(u)e
∫ T

u
r(s) ds

du

]
. (7.1.2)

The above bond price formula has nice financial interpretation. The coupon
amount k(u) du received over the period [u, u+ du] will grow to the amount

k(u)e
∫ T

u
r(s) ds

du at maturity time T . The future value at T of all coupons

received is given by
∫ T

t

k(u)e
∫ T

u
r(s) ds

du. The present value of the par

value and coupons is obtained by discounting the sum by the discount factor

e
−
∫ T

t
r(s) ds, and this gives the current bond value at time t. Depending on

the relative magnitude of r(t)B and k(t), the bond price function can be an
increasing or decreasing function of time. A bond is called a discount bond if
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the bond price falls below its par value, and called a premium bond if other-
wise. Also, the market value of a bond will always approach its par value as
maturity is approached. This is known as the pull-to-par phenomenon.

Term structure of interest rates
The interest rate market is where the price of rising capital is set. Bonds are
traded securities and their prices are observed in the market. The bond price
over a term depends crucially on the random fluctuations of the interest rate
market. Readers are reminded that interest rate, unlike bonds, cannot be
traded. We only trade bonds and other instruments that depend on interest
rates.

The bond price B(t, T ) is a function of both the current time t and the
time of maturity T . Therefore, the plot of B(t, T ) is indeed a two-dimensional
surface over varying values of t and T . For a given fixed t = t0, the plot of
B(t, T ) against T represents the whole spectrum of bond prices of differ-
ent maturities at time t0 (see Fig. 7.1). The prices of bonds with different
maturity dates are different, but they are correlated.

Fig. 7.1 Plot of the whole spectrum of bond prices
of maturities beyond t0. Generally, the bond prices
B(t0 , T ) decrease monotonically with maturity T .

On the other hand, we can plot B(t, T0) for a bond of given fixed maturity
date T0 and observe the evolution of the price of a bond with a known ma-
turity T0 (see Fig. 7.2). However, unlike stock, each bond with a given fixed
maturity cannot be treated in isolation. The evolution of the bond price as
a function of time t can be considered as a stochastic process with infinite
degrees of freedom corresponding to the infinite number of possible maturity
dates.
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Fig. 7.2 Evolution of the price of a bond with
known maturity T0. Observe that B(t, T0)

∣∣
t=T0

= 1
due to the pull-to-par phenomenon.

To prepare ourselves for the discussion of interest rate models, it is neces-
sary to give precise definitions of the following terms: yield to maturity, yield
curve, term structure of interest rates, forward rate and spot rate. All these
quantities can be expressed explicitly in terms of traded bond prices, B(t, T ),
which is the price at time t of a zero-coupon bond maturing at time T . For
simplicity, we assume unit value, where B(T, T ) = 1. The market bond prices
indicate the market expectation of the interest rate at future dates.

The yield to maturity R(t, T ) is defined by

R(t, T ) = − 1
T − t

lnB(t, T ), (7.1.3)

which gives the internal rate of return at time t on the bond. The yield curve
is the plot of R(t, T ) against T and the dependence of the yield curve on
the time to maturity T − t is called the term structure of interest rates. The
term structure reveals market beliefs about future interest rates at different
maturities. Normally, the yield increases with maturity due to higher uncer-
tainties with longer time horizon. However, if the current rates are high, the
longer-term bond yield may be lower than the shorter-term bond yield.

Next, we consider the price of a forward contract at time t where the
holder agrees to purchase at later time T1 one zero-coupon bond with ma-
turity date T2(> T1). The bond forward price is given by B(t, T2)/B(t, T1),
since the underlying asset is the T2-maturity bond and the growth factor (re-
ciprocal of the discount factor) over the time period [t, T1] is 1/B(t, T1). We
define the forward rate f(t, T1, T2) as seen at time t for the period between
T1 and T2(> T1) in terms of bond forward price by
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f(t, T1 , T2) = − 1
T2 − T1

ln
B(t, T2)
B(t, T1)

. (7.1.4)

The forward rate is the rate of interest over a time period in the future
implied by today’s zero-coupon bonds. By taking T1 = T and T2 = T +∆T ,
the instantaneous forward rate as seen at time t for a bond maturing at time
T is given by

F (t, T ) = − lim
∆T→0

lnB(t, T +∆T ) − lnB(t, T )
∆T

= − 1
B(t, T )

∂B

∂T
(t, T ).

(7.1.5a)
Here, F (t, T ) can be interpreted as the marginal rate of return from commit-
ting a bond investment for an additional instant. Conversely, by integrating
Eq. (7.1.5a) with respect to T , the bond price B(t, T ) can be expressed in
terms of the forward rate as follows:

B(t, T ) = exp

(
−
∫ T

t

F (t, u) du

)
. (7.1.5b)

Furthermore, by combining Eqs. (7.1.3) and (7.1.5a), F (t, T ) can be expressed
as

F (t, T ) =
∂

∂T
[R(t, T )(T − t)] = R(t, T ) + (T − t)

∂R

∂T
(t, T ), (7.1.6a)

or equivalently,

R(t, T ) =
1

T − t

∫ T

t

F (t, u) du. (7.1.6b)

Equations (7.1.5b, 7.1.6b) indicate, respectively, that the bond price and
bond yield can be recovered from the knowledge of the term structure of
the forward rate. On the other hand, the forward rate provides the sense
of instantaneity as dictated by the nature of its definition. In Eq. (7.1.6b),
F (t, u) gives the internal rate of return as seen at time t over the future
period (u, u+du), and its average over (t, T ) gives the yield to maturity. The
instantaneous spot rate or short rate r(t) is simply

r(t) = lim
T→t

R(t, T ) = R(t, t) = F (t, t). (7.1.7)

The plot of B(t, T ) against T is inevitably a downward sloping curve since
bonds with longer maturity always have lower prices (see Fig. 7.1). However,
the yield curve [plot of R(t, T ) against T ] can be an increasing or decreasing
curve, which reveals the average return of the bonds. Therefore, yield curves
provide more visual information compared to bond price curves. As deduced
from Eq. (7.1.6a), the forward rate curve [plot of F (t, T ) against T ] will be
above the yield curve if the yield curve is increasing or below the yield curve
otherwise.
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Theories of term structures
Several theories of term structures have been proposed to explain the shape
of a yield curve. One of them is the expectation theory , which states that
long-term interest rates reflect expected future short term interest rates. Let
Et[r(s)] denote the expected value at time t of the spot rate at time s. The
yield to maturity for the expectation theory can be expressed as [comparing
Eq. (7.1.6b)]

R(t, T ) =
1

T − t

∫ T

t

Et[r(s)] ds. (7.1.8a)

The other theory is the market segmentation theory , which states that each
borrower or lender has a preferred maturity so that the slope of the yield curve
will depend on the supply and demand conditions for funds in the long-term
market relative to the short-term market. The third theory is the liquidity
preference theory . It conjectures that lenders prefer to make short-term loans
rather than long-term loans since liquidity of capital is in general preferred.
Hence, long-term bonds normally have a better yield than short-term bonds.
The representation equations of the term structures for the market segmen-
tation theory and the liquidity preference theory have similar form, namely,

R(t, T ) =
1

T − t

[∫ T

t

Et[r(s)] ds+
∫ T

t

L(s, T ) ds

]
, (7.1.8b)

where L(s, T ) is interpreted as the instantaneous term premium at time s
of a bond maturing at time T . The premium represents the deviation from
the expectation theory, which could be irregular as implied by the market
segmentation theory or monotonically increasing as implied by the liquidity
preference theory.

7.1.2 One-factor short rate models

We would like to derive the governing equation for the bond price using
the arbitrage pricing approach. The method of applying the riskless hedging
principle is similar but slightly different from that used in equity option
pricing model. Suppose the short rate r(t) follows the Ito stochastic process,
which is described by the following stochastic differential equation

dr = u(r, t) dt+ w(r, t) dZ, (7.1.9)

where dZ is the standard Wiener process, u(r, t) and w(r, t)2 are the instan-
taneous drift and variance of the process for r(t). The price of a zero-coupon
bond is expected to be dependent on r(t). Also, there are other factors which
affect the price of the bond, like tax effects, default risk, marketability, senior-
ity and other features associated with the bond indenture. For the present
analysis framework, we assume that the bond price depends only on the spot
interest rate r, current time t and maturity time T . Note that the present
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framework corresponds to one-factor short rate models since the interest rate
movement as assumed by Eq. (7.1.9) depends on a single stochastic variable
r(t) only.

If we write the bond price as B(r, t) (suppressing T when there is no
ambiguity), then Ito’s lemma gives the dynamics of the bond price as

dB =
(
∂B

∂t
+ u

∂B

∂r
+

1
2
w2∂

2B

∂r2

)
dt+w

∂B

∂r
dZ. (7.1.10)

If we write
dB

B
= µB(r, t) dt+ σB(r, t) dZ, (7.1.11a)

then

µB(r, t) =
1
B

(
∂B

∂t
+ u

∂B

∂r
+

1
2
w2 ∂

2B

∂r2

)
(7.1.11b)

and
σB(r, t) =

1
B
w
∂B

∂r
. (7.1.11c)

Here, µB(r, t) and σB(r, t)2 are the respective drift rate and variance rate of
the stochastic process of B(r, t). Since interest rate is not a traded security, it
cannot be used to hedge with the bond, like the role of the underlying asset
in an equity option. Instead we try to hedge bonds of different maturities.
The following portfolio is constructed: we buy a bond of dollar value V1 with
maturity T1 and sell another bond of dollar value V2 with maturity T2. The
portfolio value Π is given by

Π = V1 − V2. (7.1.12a)

According to the bond price dynamics defined by Eq. (7.1.11a), the change
in portfolio value in time dt is

dΠ = [V1µB(r, t; T1) − V2µB(r, t; T2)] dt
+ [V1σB(r, t; T1) − V2σB(r, t; T2)]dZ. (7.1.12b)

Suppose V1 and V2 are chosen such that

V1 =
σB(r, t; T2)

σB(r, t; T2) − σB(r, t; T1)
Π and V2 =

σB(r, t; T1)
σB(r, t; T2) − σB(r, t; T1)

Π,

(7.1.13)
then the stochastic term in Eq. (7.1.12b) vanishes and the equation becomes

dΠ = Π
µB(r, t; T1)σB(r, t; T2) − µB(r, t; T2)σB(r, t; T1)

σB(r, t; T2) − σB(r, t; T1)
dt. (7.1.14)

Since the portfolio is instantaneously riskless, it must earn the riskless short
interest rate, that is, dΠ = r(t)Π dt. Combining with the result in Eq.
(7.1.14), we obtain
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µB(r, t, T1) − r(t)
σB(r, t; T1)

=
µB(r, t; T2) − r(t)

σB(r, t; T2)
. (7.1.15)

The above relation is valid for arbitrary maturity dates T1 and T2, so the

ratio
µB(r, t)− r(t)

σB(r, t)
should be independent of maturity T . Let the common

ratio be defined by λ(r, t), that is,

µB(r, t)− r(t)
σB(r, t)

= λ(r, t). (7.1.16)

The quantity λ(r, t) is called the market price of risk (see Problem 7.1), since
it gives the extra increase in expected instantaneous rate of return on a bond
per an additional unit of risk. Since the interest rate is not a traded asset,
we are unable to eliminate the dependence of B(r, t) on preferences, as what
has been done in stock/option hedge. If we substitute µB(r, t) and σB(r, t)
defined in Eqs. (7.1.11b,c) into Eq. (7.1.16), we obtain the following governing
equation for the price of a zero-coupon bond

∂B

∂t
+

1
2
w2 ∂

2B

∂r2
+ (u− λw)

∂B

∂r
− rB = 0, t < T, (7.1.17)

with final condition: B(T, T ) = 1. Once the diffusion process for r(t) is de-
scribed and the market price of risk λ(r, t) is specified, the value of a bond
can be obtained by solving Eq. (7.1.17).

Representation of the bond price solution in stochastic integrals
The solution of the bond price Eq. (7.1.17) can be formally represented in an
integral form in terms of the underlying stochastic process, namely,

B(r, t; T ) = Et

[
exp

(
−
∫ T

t

r(u) − λ2(r(u), u)
2

du

−
∫ T

t

λ(r(u), u) dZ(u)

)]
, t ≤ T. (7.1.18)

To show the claim, we define the auxiliary function

V (r, t; ξ) = exp

(
−
∫ ξ

t

r(u) − λ2(r(u), u)
2

du−
∫ ξ

t

λ(r(u), u) dZ(u)

)
,

t ≤ ξ,(7.1.19)

and apply Ito’s differential rule to compute B(r, ξ; T )V (r, t; ξ). This gives
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d(BV ) = V dB + B dV + dB dV

= V

(
∂B

∂ξ
+ u

∂B

∂r
+
w2

2
∂2B

∂r2

)
dξ + V w

∂B

∂r
dZ

+BV

(
−r − λ2

2

)
dξ −BV λ dZ +

λ2

2
BV dξ − V λw

∂B

∂r
dξ

= V

[
∂B

∂ξ
+ (u− λw)

∂B

∂r
+
w2

2
∂2B

∂r2
− rB

]
dξ

−BV λ dZ + V w
∂B

∂r
dZ

= −BV λ dZ + V w
∂B

∂r
dZ.

(7.1.20)
Next, we integrate the above equation from t to T and take the expectation.

Since Et

[∫ T

t

dZ

]
= 0, we obtain

Et[B(r, T ; T )V (r, t; T )− B(r, t; T )V (r, t; t)] = 0. (7.1.21)

Applying the terminal conditions: B(r, T ; T ) = 1 and V (r, t; t) = 1, we then
obtain

B(r, t; T ) = Et[V (r, t; T )]. (7.1.22)

Market price of risk
The drift parameter u(r, t) and variance parameter w(r, t) in the bond price
equation may be obtained by statistical analysis of the observable process
of r(t). Once u and w are available, the market price of risk λ(r, t) can be
estimated using the following relation (see Problem 7.3)

∂R

∂T

∣∣∣∣
T=t

=
1
2

[u(r, t)−w(r, t)λ(r, t)] , (7.1.23)

where
∂R

∂T

∣∣∣∣
T=t

is the slope of the yield curve R(t, T ) at immediate maturity.

We now explore the solution of the above one-factor short rate model
with different assumptions of the stochastic process for r(t). The two most
popular models are the Vasicek mean reversion model and the Cox-Ingersoll-
Ross square root process model.

7.1.3 Vasicek mean reversion model

Vasicek (1977) proposed the stochastic process for the short rate r(t) to be
governed by the Ornstein-Uhlenbeck process

dr = α(γ − r) dt+ ρ dZ, α > 0. (7.1.24)
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The above process is sometimes called the elastic random walk or mean rever-
sion process. The instantaneous drift α(γ− r) represents the effect of pulling
the process towards its long-term mean γ with magnitude proportional to
the deviation of the process from the mean. Such mean reversion assumption
agrees with the economic phenomenon that interest rates appear over time to
be pulled back to some long-run average value. To explain the mean reversion
phenomenon, we argue that when interest rates increase, the economy slows
down and that there is less demand for loans and a natural tendency for rates
to fall. The reverse situation of rates dropping can be argued similarly in the
reverse sense. Also, the reversion phenomena in interest rates do not violate
the principle of market efficiency. One may devise trading rules on a stock
that give above average returns if mean reversion occurs in the stock price
movement. However, interest rate is not the price of a traded security. We
only trade on interest rate instruments whose prices depend on interest rates,
where the mean reversion features in interest rates have been incorporated
in the derivative prices.

Given the current level of short rate r(t), the mean of short rate at T , r̄(T ),
can be obtained by integrating the differential equation: dr(t) = α(r − r) dt
(see Problem 7.4). This gives

r̄(T ) = γ + [r(t) − γ]e−α(T−t). (7.1.25)

The variance of the mean reversion process at time T can be obtained by
solving

d

dt
var[r(t)] = −2α var[r(t)] + ρ2 (7.1.26a)

and taking the variance at the current time to be zero (see Problem 7.4). We
then obtain

var[r(T )] =
ρ2

2α

[
1 − e−2α(T−t)

]
, T > t. (7.1.26b)

Analytic bond price formula
Suppose we assume the market price of risk λ to be constant, independent of
r and t, then it is possible to derive analytic bond price formula. The Vasicek
mean reversion model corresponds to u = α(γ− r) and w = ρ in Eq. (7.1.9),
so the equation for the bond price becomes

∂B

∂t
+
ρ2

2
∂2B

∂r2
+ [α(γ − r) − λρ]

∂B

∂r
− rB = 0. (7.1.27)

Suppose we assume the solution to be of the form

B(r, t; T ) = a(t, T )e−b(t,T )r, (7.1.28)

and substitute into Eq. (7.1.27), the following pair of differential equations
are obtained:
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da

dt
+ (λρ− αγ)ab +

1
2
ρ2ab2 = 0, t < T (7.1.29a)

db

dt
− αb+ 1 = 0, t < T, (7.1.29b)

with final conditions: a(T, T ) = 1 and b(T, T ) = 0. First, we solve for
b(t, T ) from Eq. (7.1.29b). Substituting the known solution of b(t, T ) into Eq.
(7.1.29b), we then subsequently solve for a(t, T ) [also see Eqs. (7.2.9a,b)].
Combining the solution, we obtain

B(r, t; T ) = exp
(

1
α

[
1 − e−α(T−t)

]
(R∞ − r)

−R∞(T − t) − ρ2

4α3

[
1 − e−α(T−t)

]2)
, t < T, (7.1.30)

where R∞ = γ − ρλ

α
− ρ2

2α2
[R∞ is actually equal to lim

T→t
R(t, T ), see Eq.

(7.1.32) below]. Using Eqs. (7.1.11b,c), the mean and standard deviation of
the instantaneous rate of return of a bond maturing at time T are found to
be

µB(r, t; T ) = r(t) − ρλ

α

[
1 − e−α(T−t)

]
(7.1.31a)

σB(r, t; T ) =
ρ

α

[
1 − e−α(T−t)

]
. (7.1.31b)

Also, according to the definition in Eq. (7.1.3), the yield to maturity or the
term structure of interest rates can be easily found to be

R(t, T ) = R∞ +
[r(t) −R∞][1− e−α(T−t)]

α(T − t)
+

ρ2

4α3(T − t)
[1 − e−α(T−t)]2.

(7.1.32)
The long-term internal rate of return deduced from the present model is seen
to be constant. Note that R(t, T ) and lnB(r, t; T ) are linear functions of r(t);
and since r(t) is normally distributed, it then follows that R(t, T ) is also
normally distributed and B(r, t; T ) is lognormally distributed. Suppose we
set T = T1 and T = T2 in Eq. (7.1.32), and subsequently eliminate r(t),
we obtain a relation between R(t, T1) and R(t, T2) that is dependent only
on the parameter values. This implies that under the present Vasicek model,
the instantaneous returns on bonds of different maturities are perfectly corre-
lated. However, in reality, bond returns over a finite period are not correlated
perfectly.

Readers are invited to explore more properties on the term structures of
rates associated with the Vasicek model in Problem 7.5. Also, a discussion
on a discrete version of the Vasicek model is presented in Problem 7.6.
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7.1.4 Cox-Ingersoll-Ross model

In the Vasicek model, it may happen that interest rates become negative. To
rectify the problem, Cox, Ingersoll and Ross (1985) proposed the following
square root diffusion process for the short rate:

dr = α(γ − r) dt+ ρ
√
r dZ, α, γ > 0. (7.1.33)

With an initially non-negative interest rate, r(t) will never be negative. This
is attributed to the mean-reverting drift rate that tends to pull r(t) towards
the long-run average γ and the diminishing volatility as r(t) declines to zero
(recall that volatility is constant in the Vasicek model). It can be shown that
r(t) can reach zero only if ρ2 > 2αγ; while the upward drift is sufficiently
strong to make r(t) = 0 impossible when 2αγ ≥ ρ2. Whenever r(t) becomes
zero, it bounces up into the positive region instantaneously. The probability
density of the interest rate at time T , conditional on its value at the current
time t, is given by

g(r(T ); r(t)) = ce−u−v
( v
u

)q/2
Iq

(
2(uv)1/2

)
(7.1.34a)

where

c =
2α

ρ2
[
1− e−α(T−t)] , u = cr(t)e−α(T−t), v = cr(T ), q =

2αγ
ρ2

− 1,

(7.1.34b)
and Iq is the modified Bessel function of the first kind of order q [see Feller
(1951) for details]. The mean and variance of r(T ) are given by

E[r(T )|r(t)] = r(t)e−α(T−t) + γ
[
1 − e−α(T−t)

]
(7.1.35a)

var[r(T )|r(t)] = r(t)
(
ρ2

α

)[
e−α(T−t) − e−2α(T−t)

]
+
γρ2

2α

[
1 − e−α(T−t)

]2
. (7.1.35b)

The distribution of the future interest rates has the following properties:
(i) as α→ ∞, the mean tends to γ and the variance to zero,
(ii) as α→ 0+, the mean tends to r(t) and the variance to ρ2(T − t)r(t).

To find the price of a zero-coupon bond based on the present squqre root
diffusion process for the short rate, we assume the same form of solution as
given in Eq. (7.1.28). The corresponding new pair of differential equations
for a(t, T ) and b(t, T ) become

da

dt
− αγab = 0, t < T, (7.1.36a)

db

dt
− (α+ λρ)b − 1

2
ρ2b2 + 1 = 0, t < T, (7.1.36b)
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where the market price of risk is taken to be λ
√
r, and λ is assumed to be

constant. The final conditions are: a(T, T ) = 1 and b(T, T ) = 0. The solutions
to the above equations are found to be (Cox et al., 1985)

a(t, T ) =

{
2θe(θ+ψ)(T−t)/2

(θ + ψ)
[
eθ(T−t) − 1

]
+ 2θ

}2αγ/ρ2

(7.1.37a)

b(t, T ) =
2
[
eθ(T−t) − 1

]
(θ + ψ)

[
eθ(T−t) − 1

]
+ 2θ

, (7.1.37b)

where
ψ = α+ λρ, θ =

√
ψ2 + 2ρ2. (7.1.37c)

Note that the market price of risk λ appears only through the sum ψ in the
above solution. The properties of the comparative statics for the bond price
and the yield to maturity of the Cox-Ingersoll-Ross model are addressed in
Problems 7.8 and 7.9.

7.1.5 Generalized one-factor short rate models

Besides the Vasicek and Cox-Ingersoll-Ross models, an array of one-factor
short rate models have also been proposed in the literature. Many of these
models can be nested within the stochastic process represented by

dr = (α+ βr) dt+ ρrγ dZ, (7.1.38)

where the parameters α, β, γ and ρ are constants. For example, the Vasicek
and Cox-Ingersoll-Ross models correspond to γ = 0 and γ = 1/2, respectively,
and the Geometric Brownian model corresponds to α = 0 and γ = 1. The
stochastic interest rate model used by Merton (1973, Chap. 1) can be nested
within the Vasicek model with β = 0 and γ = 0. Other examples of one-factor
interest rate models nested within the stochastic process represented by Eq.
(7.1.38) are

Dothan model (1978) dr = ρr dZ
Brennan-Schwartz model (1979) dr = (α+ βr) dt+ ρr dZ
Cox-Ingersoll-Ross variable rate model (1980) dr = ρr3/2 dZ
Constant elasticity of variance model dr = βr dt+ ρrγ dZ

Note that when γ > 0, the volatility increases with the level of interest rate.
This is called the level effect .

Chan et al. (1992) did a comprehensive empirical analysis on the above
list of one-factor short rate models. They found that the most successful
models which capture the dynamics of the short-term interest rate are those
that allow the volatility of interest rate changes to be highly sensitive to
the level of the interest rate. The findings confirm the financial intuition
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that the volatility of the term structure is an important factor governing
the value of contingent claims. Using the data of one-month Treasury bill
yields, they discovered that those models with γ ≥ 1 can capture the dy-
namics of the short-term interest rate better than those models with γ < 1.
The relation between interest rate volatility and the level of r is more im-
portant, as compared to the mean reversion feature, in the characterization
of dynamic interest rate models. The incorporation of mean reversion fea-
ture usually causes much complexity in the analysis of the term structure;
and since mean reversion plays the lesser role, the additional generality of
adding mean reversion in a model may not be well justified. The Vasicek and
Merton models have always been criticized for allowing negative interest rate
values. However, their far more serious deficiency is the assumption of γ = 0
in the models. This assumption implies the conditional volatility of changes
in the interest rate to be constant, independent on the level of r. Another
disquieting conclusion deduced from their empirical studies is that the range
of possible call option values varies significantly across various models. This
indicates that the present framework of the one-factor diffusion process for
the short rate may not be adequate to describe the true term structure of
the interest rates over time.

One serious concern for these one-factor interest rate models is that the
term structures derived from these models only provide a limited family which
cannot correctly price many traded bonds. This stems from the inherent
shortcomings that these models price interest rate derivatives with reference
to a theoretical yield curve rather than the actually observed curve. Once the
process for r is fully defined, everything about the initial term structure and
how it can evolve at future times are then fully defined. The initial term struc-
ture is an output from the model rather than an input to the model. In the
next section, we discuss the construction of no arbitrage interest rate models
where the current market information about the term structure of interest
rates and the term structure of interest rate volatilities are incorporated into
the models.

7.2 Yield curve fitting and no-arbitrage models

In the short rate models discussed in Sec. 7.1, there are several unobservable
parameters but there is no mechanism for which the parameters in the models
are chosen such that the term structure obtained from the model fits today’s
observable term structure. Since the information of the current term struc-
ture is available, an interest rate model should take the data on initial term
structure as an input rather than an output. Arbitrage exists if the theoreti-
cal bond prices solved from the model do not agree with the observed bond
prices. In this section, we discuss no-arbitrage short rate models that contain
time dependent parameter functions and the functions are determined in such
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a way that the current bond prices obtained from the model coincide with
the observed market prices. The initial term structure may be prescribed as
term structure of bond prices or forward rates. The most popular models in
this class include:

Ho-Lee (HL) model
This is the first no arbitrage model proposed in the literature (Ho and Lee,
1986), where the initial formulation is in the form of a binomial tree. The
continuous time limit of the model takes the form

dr = θ(t) dt+ σr dZ, (7.2.1)

where r is the short rate and σr is the constant instantaneous standard de-
viation of the short rate. The time dependent drift function θ(t) is chosen to
ensure that the model fits the initial term structure (see Problem 7.11).

Hull-White (HW) model
The Ho-Lee model assumes constant volatility structure and incorporates no
mean reversion. Hull and White (1990) proposed the following model for the
short rate

dr = [θ(t) − α(t)r] dt+ σ(t)rβ dZ. (7.2.2)

The mean reversion level is given by
θ(t)
α(t)

. The model can be considered as

the extended Vasicek model when β = 0 and the extended Cox-Ingersoll-Ross
model when β = 1/2.

Black-Derman-Toy (BDT) model
Similar to the Ho-Lee model, the original formulation of the Black-Derman-
Toy model (Black et al., 1990) is in the form of a binomial tree. The contin-
uous time equivalent of the model can be shown to be

d ln r =
[
θ(t) − σ′

r(t)
σr(t)

ln r
]
dt+ σr(t) dZ. (7.2.3)

In this model, the changes in the short rate in the model are lognormally
distributed, and that the short rates are always non-negative. The first short
θ(t) is chosen so that the model fits the term structure of short rates and
the second function σr(t) is chosen to fit the term structure of short rate
volatilities. When the volatility function σr(t) is taken to be constant, the
BDT model reduces to a lognormal version of the HL model.

Suppose the reversion rate and volatility in the BDT model are decoupled,
we then have

d ln r = [θ(t) − α(t) ln r] dt+ σr(t) dZ. (7.2.4)

The new version is called the Black-Karasinski (BK) model (1991).
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7.2.1 Hull-White model

A special class of the generalized Hull-White model is now considered, where
the drift term containing θ(t) is the only time dependent function in the
model. First, we examine the analytic procedure to determine θ(t) using the
information of the initial term structure of bond prices or forward rates.

This special class of models take the following form

dr = [θ(t) − αr] dt+ σrβ dZ, (7.2.5)

where α, σ and β ≥ 0 are constant, θ(t) is an unknown function of time.
The particular case β = 0 deserves the most special attention here. With
β = 0, the model can be considered an extension of the Vasicek model, and
it becomes the continuous version of the HL model when α = 0 (see Problem
7.11). Likewise, it possesses the mean reversion property and good analytic
tractability.

With β = 0 in the short rate process defined in Eq. (7.2.5), the governing
equation for the bond price B(r, t; T ) can be found to be [see Eq. (7.1.27)]

∂B

∂t
+
σ2

2
∂2B

∂r2
+ [φ(t)− αr]

∂B

∂r
− rB = 0, (7.2.6)

where φ(t) = θ(t) − σλ(t), λ(t) is the market price of risk. Here, we make
the simplifying assumption that the market price of risk is a function of time
only. The nice analytic tractability of the Hull-White model derives from the
property that the bond price admits solution of the form

B(r, t; T ) = a(t, T )e−b(t,T )r. (7.2.7)

By substituting the assumed form into Eq. (7.2.6), we obtain a pair of ordi-
nary differential equations

db

dt
− αb+ 1 = 0 (7.2.8a)

da

dt
− φ(t)ab+

σ2

2
ab2 = 0, (7.2.8b)

with terminal conditions at t = T :

a(T, T ) = 1 and b(T, T ) = 0. (7.2.8c)

Solving the above system of ordinary differential equations, we obtain

b(t, T ) =
1
α

[
1 − e−α(T−t)

]
(7.2.9a)

ln a(t, T ) =
σ2

2

∫ T

t

b2(u, T ) du−
∫ T

t

φ(u)b(u, T ) du. (7.2.9b)

In Problem 7.20, we outline an alternative approach using stochastic calculus
method to solve for B(r, t; T ).
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Our goal is to determine φ(T ) in terms of the current bond prices
B(r, t; T ). From Eq. (7.2.8b) and the relation: lnB(r, t; T ) + rb(t, T ) =
ln a(t, T ), we have∫ T

t

φ(u)b(u, T ) du =
σ2

2

∫ T

t

b2(u, T ) du− lnB(r, t; T )− rb(t, T ). (7.2.10)

To solve for φ(u), the first goal is to obtain an explicit expression for∫ T

t

φ(u) du. This may be achieved by differentiating
∫ T

t

φ(u)b(u, T ) du with

respect to T and subtracting those terms involving
∫ T

t

φ(u)e−α(T−t) du. The

derivative of the left hand side of Eq. (7.2.10) with respect to T gives

∂

∂T

∫ T

t

φ(u)b(u, T ) du = φ(u)b(u, T )
∣∣∣∣
u=T

+
∫ T

t

φ(u)
∂

∂T
b(u, T ) du

=
∫ T

t

φ(u)e−α(T−u) du. (7.2.11a)

In a similar manner, we differentiate the right hand side with respect to T .
By equating the derivatives on both sides,∫ T

t

φ(u)e−α(T−u) du =
σ2

α

∫ T

t

[1 − e−α(T−u)]e−α(T−u) du

− ∂

∂T
lnB(r, t; T ) − re−α(T−t). (7.2.11b)

We multiply Eq. (7.2.10) by α and add it to Eq. (7.2.11b) to obtain∫ T

t

φ(u) du =
σ2

2α

∫ T

t

[1 − e−2α(T−u) du]− r

− ∂

∂T
lnB(r, t; T )− α lnB(r, t; T ). (7.2.12)

Lastly, by differentiating the above equation with respect to T again, we
obtain

φ(T ) =
σ2

2α
[1 − e−2α(T−t)] − ∂2

∂T 2
lnB(r, t; T )

− α
∂

∂T
lnB(r, t; T ). (7.2.13)

One may express φ(T ) in terms of the current forward rate F (t, T ). Recall

that − ∂

∂T
lnB(r, t; T ) = F (t, T ) [see Eq. (7.1.5b)] so that we may rewrite

φ(T ) in the form

φ(T ) =
σ2

2α
[1 − e−2α(T−t)] +

∂

∂T
F (t, T ) + αF (t, T ). (7.2.14)
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An alternative representation of the drift function φ(T ) in terms of current
yield curve R(t, T ) can also be derived [see Problem 7.13].

From Eq. (7.1.11c), the bond price volatility σB(t, T ) is given by

σB(t, T ) =
σ

β

∂B

∂r
= −σb(t, T ) = −σ

α
[1 − e−α(T−t)]. (7.2.14)

By virtue of Ito’s lemma and applying the relation (7.2.7), the stochastic
differential equation for the bond price B(r, t; T ) is found to be

dB(r, t; T )
B(r, t; T )

= r dt− σb(t, T ) dZ. (7.2.15a)

Since the bond is a traded security, the drift rate of bond price under the risk
neutral measure is simply given by r. To be consistent with the usual con-
vention, we choose to express the bond price volatility as a positive quantity.
We then have

dB(r, t; T )
B(r, t; T )

= r dt+
σ

α
[1 − e−α(T−t)] dZ. (7.2.15b)

As the bond volatility is independent of r, so the distribution of the bond
price at any given time conditional on its price at an earlier time is lognormal.

The above analytic tractability property of determining the drift term
by matching data of the initial bond price and/or initial forward rate can
be extended to the following generalized Vasicek mean reversion short rate
model of the form (Hull and White, 1990)

dr = [θ(t) + α(t)(d− r)] dt+ σr(t) dZ. (7.2.16)

The details are found in Problem 7.14.

7.3 Heath-Jarrow-Morton framework

Recall that the bond prices B(t, T ), the yields R(t, T ) and the forward rates
F (t, T ) all provide the same information on the term structure of interest
rates. The Heath-Jarrow-Morton (HJM) framework (Heath et al., 1990a,
1990b, 1992) attempts to construct a family of continuous time stochastic
processes for the term structure, consistent with the observed initial term
structure data. The driving state variable of the model is chosen to be F (t, T ),
the forward rate at time t for instantaneous borrowing at a later time T . In
the most general form of the model, the stochastic process for F (t, T ) is
assumed to be

F (t, T ) = F (0, T ) +
∫ t

0

αF (u, T ) du+
n∑
i=1

∫ t

0

σiF (u, T ) dZi(u), (7.3.1a)
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or in differential form,

dF (t, T ) = αF (t, T ) dt+
n∑
i=1

σiF (t, T ) dZi(t), 0 ≤ t ≤ T. (7.3.1b)

Here, F (0, T ) is the known initial forward rate curve, αF (t, T ) is the in-
stantaneous forward rate’s drift, σiF (t, T ) are the volatilities of the forward
rates, and dZi is the ith Wiener process. Note that there are n independent
Wiener processes determining the stochastic fluctuation of the forward rate
curve, αF (T, T ) and σiF (t, T ) are adapted processes. The forward rate pro-
cess starts with initial value F (0, T ), then evolves under a drift and several
Wiener processes.

For arbitrary set of drift and volatility structures, the interest rate dy-
namics as posed in Eq. (7.3.1a) is not necessarily arbitrage free. For the
existence of a unique equivalent martingale measure, it is necessary that the
drift αF (t, T ) must be related to the volatility functions σiF (t, T ). In Sec.
7.3.1, we illustrate how to relate the drift with the volatility in order that
the derived system of bond prices admits no arbitrage opportunities. In Sec.
7.3.2, we demonstrate how short rate models can be formulated into the HJM
framework.

7.3.1 No-arbitrage restrictions on drifts

For simplicity of discussion, we assume that a single stochastic state variable
drives the whole term structure. Under the risk netural measure, the drift
rate of the discount bond price B(r, t) must be r(t). We express the price
dynamics for B(t, T ) under the risk neutral measure as follows:

dB(t, T )
B(t, T )

= r(t) dt+ σB(t, T ) dZ, (7.3.2)

where σB(t, T ) is an adapted process so that bond price volatility at time
t are dependent on the past and present values of bond prices. Also, the
bond price volatility must decline to zero at maturity due to the pull-to-par
phenomenon so that

σB(T, T ) = 0. (7.3.3)

According to the definition of f(t, T1 , T2) defined in Eq. (7.1.4), its differential
is given by

df(t, T1, T2) =
d lnB(t, T1) − d lnB(t, T2)

T2 − T1
. (7.3.4)

By Ito’s lemma, the log derivative of the bond price is given by

d lnB(t, Ti) =
[
r(t) − σB(t, Ti)2

2

]
dt+ σB(t, Ti) dZ, i = 1, 2,(7.3.5)
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so that Eq. (7.3.4) can be rewritten as

df(t, T1, T2) =
σB(t, T2)2 − σB(t, T1)2

2(T2 − T1)
dt

+
σB(t, T1) − σB(t, T2)

T2 − T1
dZ. (7.3.6)

Equation (7.3.6) indicates that the risk neutral process for f depends only
on the volatilities σB ’s. It depends on r and B only through the dependence
of σB ’s on these variables.

Suppose we let T1 = T and T2 = T + ∆T and take the limit ∆T →
0, f(t, T1, T2) becomes the instantaneous forward rate F (t, T ). In addition,
we observe

lim
∆T→0

σB(t, T ) − σB(t, T +∆T )
∆T

= −∂σB
∂T

(t, T ) (7.3.7a)

and

lim
∆T→0

σB(t, T +∆T )2 − σB(t, T )2

2∆T
= σB(t, T )

∂σB
∂T

(t, T ). (7.3.7b)

Since dZ is a Wiener process, there is no loss of generality to change the sign
of dZ. Therefore, we can express dF (t, T ) in the form

dF (t, T ) = σB(t, T )
∂σB
∂T

(t, T ) dt+
∂σB
∂T

(t, T ) dZ. (7.3.8)

Note that the risk neutral processes for all instantaneous forward rates are
known once the volatilities σB(t, T ) are specified for all t and T . Hence,
σB(t, T )’s are sufficient to fully define a one-factor interest rate model.

The one-factor version of Eq. (7.3.16) can be expressed as

dF (t, T ) = αF (t, T ) dt+ σF (t, T ) dZ. (7.3.9)

Comparing Eqs. (7.3.8) and (7.3.9), we obtain the following relation between
the volatilities of the forward rate and bond price

σF (t, T ) =
∂σB
∂T

(t, T ), (7.3.10)

and the drift αF (t, T ) is related to the volatility σF (t, T ) by

αF (t, T ) = σB(t, T )
∂σB
∂T

(t, T ) = σF (t, T )
∫ T

t

σF (t, u) du. (7.3.11)

The class of HJM interest rate models specify the volatilities of all instan-
taneous forward rates σF (t, T ) at all future times. Once the volatility struc-
ture σF (t, T ) is specified, the drift αF (t, T ) can be found using Eq. (7.1.11).
Somewhat similar in spirit as the Black-Scholes equity option model, the only
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inputs to HJM are an underlying and a measure of its volatility. The under-
lying is the entire term structure and the volatility structure describes how
this term structure evolves over time. The initial term structure plays the
same role as the asset price in the Black-Scholes model.

7.3.2 Formulation of short rate models in HJM framework

Recall that the short rate is given by

r(t) = F (t, t) = F (0, t) +
∫ t

0

dF (u, t) du. (7.3.12)

From Eq. (7.3.8), we have

r(t) = F (0, t) +
∫ t

0

σB(u, t)
∂σB
∂t

(u, t) du+
∫ t

0

∂σB
∂t

(u, t) dZ(u). (7.3.13)

Differentiating the above result and observing that σB(t, t) = 0, we obtain

dr(t) =
∂F

∂t
(0, t) dt+

{∫ t

0

[
σB(u, t)

∂2σB
∂t2

(u, t) +
(
∂σB
∂t

(u, t)
)2
]
du

}
dt

+
{∫ t

0

∂2σB
∂t2

(u, t) dZ(u)
}
dt+

[
∂σB
∂t

(u, t)

∣∣∣∣∣
u=t

]
dZ(t). (7.3.14)

Some special cases
Consider the following simple choice for σB(t, T )

σB(t, T ) = σ(T − t), σ is a constant, (7.3.15)

Eq. (7.3.14) is then reduced to

dr(t) =
[
∂F

∂t
(0, t) + σ2t

]
dt+ σ dZ(t). (7.3.16)

This happens to have similar functional representation as that of the contin-
uous time version of the HL model (see Problem 7.11). The short rate process
is seen to be Markovian.

Consider the more general form of σB(t, T ) as follows:

σB(t, T ) = x(t)[y(T ) − y(t)]. (7.3.17)

Substituting into Eq. (7.3.11) and performing the differentiation accordingly,
it can be shown that Eq. (7.3.14) can be expressed in the form

dr = [θ(t) − α(t)r] dt+ σr(t) dZ(t), (7.3.18)
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for some appropriate functions θ(t), α(t) and σr(t) (see Problem 7.12). This
is precisely the extended Vasicek model within the class of HW models. The
process for r as indicated by Eq. (7.3.18) is obviously Markovian.

Indeed, Hull and White (1993b) showed a stronger result. For non-
stochastic σB(t, T ), the process for r is Markovian if and only if σB(t, T )
assumes the form given in Eq. (7.3.17).

Non-Markovian nature
By examining Eq. (7.3.14), the second term shows the dependence on the
history of σB(u, t), while the third term shows the dependence on the history
of both σB(u, t) and dZ(u). Note that σB(u, t), u < t, may depend on the
value of stochastic variables observed at times earlier than t and this may
cause the nature of the second term to be non-Markovian. When σB(u, t) is
dependent only on u and t, the third term becomes the only source which
may cause the process of r to become non-Markovian since it depends also
on the history of dZ(u), u < t.

Hence, the evolution of the term structure under the HJM framework is
in general path dependent. In this way, an upward movement followed by
a downward movement of rates does not necessarily lead to the same term
structure as a downward movement followed by an upward movement. Con-
sequently, the discrete HJM tree is non-recombining and the number of nodes
grows exponentially causing the amount of computation insurmountable even
at a moderate number of time steps. This “bushy tree” phenomenon poses
problems of computational infeasibility which makes the HJM approach less
popular compared to other short rate models. A review on the development
process of the HJM term structure models can be found in Jarrow’s paper
(1997).

7.5 Problems

7.1 (Market price of risk) Consider two securities, both of them are depen-
dent on the short rate. Suppose security A has an expected return of
4% per annum and a volatility of 10% per annum, while security B has
a volatility of 20% per annum. Suppose the riskless interest rate is 7%
per annum. Find the market price of interest rate risk and the expected
returns from security B per annum. Give a financial argument why the
market price of the interest rate risk is usually negative.
Hint: The returns on the stocks and bonds are negatively correlated to

changes in interest rates.

7.2 Suppose the price of a bond is dependent on the price of a commodity,
denoted by Q. Let the stochastic process followed by Q be governed by
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dQ

Q
= µ dt+ σ dZ.

Following the arbitrage pricing approach, show that the governing equa-
tion for the bond price B(Q, t) is given by [see Eq. (7.1.17)]

∂B

∂t
+
σ2

2
Q2∂

2B

∂Q2
+ (µ− λσ)Q

∂B

∂Q
− rB = 0,

where λ is the market price of risk and r is the riskless interest rate.
Since the commodity is a traded security (unlike the interest rate),
so the price of the commodity should also satisfy the same governing
differential equation as that of the bond price. Substituting Q for B
into the differential equation, show that

µ− λσ = r.

Argue why the governing equation for the bond price now resembles
the Black-Scholes equation, which exhibits independence of the risk
preference.

7.3 From the bond price representation formula (7.1.18), use Ito’s differen-
tiation to show

∂2B

∂T 2

∣∣∣∣
T=t

= r2(t) − u(r, t) +w(r, t)λ(r, t).

Next, deduce from Eq. (7.1.3) that

∂2B

∂T 2

∣∣∣∣
T=t

= r2(t) − 2
∂R

∂T

∣∣∣∣
T=t

.

Lastly, try to relate the market price of risk λ(r, t) to
∂R

∂T

∣∣∣∣
T=t

[see Eq.

(7.1.23)].

7.4 Consider the linear stochastic differential equation

dr = [a(t)r+ b(t)] dt+ ρ(t) dZ.

Show that the mean, E[r(t)], is governed by the following deterministic
linear differential equation

d

dt
E[r(t)] = a(t)E[r(t)] + b(t),

while the variance, var[r(t)], is governed by (Arnold, 1974)

d

dt
var[r(t)] = 2a(t)var[r(t)] + ρ(t)2.
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7.5 For the yield curve associated with the Vasicek model [see Eq. (7.1.32)],
show that the yield curve is monotonically increasing when r(t) ≤ R∞−
ρ2

4α2
, monotonically decreasing when r(t) ≥ R∞ +

ρ2

2α2
, and it is a

bumped curve when R∞ − ρ2

4α2
< r(t) < R∞ +

ρ2

2α2
. Further, suppose

we define the liquidity premium of the term structure as

π(τ ) = F (t, t+ τ ) − Et[r(t+ τ )], τ ≥ 0,

where F (t, t+τ ) is the forward rate and Et is the expectation operator.
Show that the liquidity premium for the Vasicek model is given by
(Vasicek, 1977)

π(τ ) =
(
R∞ − γ +

ρ2

2α2
e−ατ

)(
1 − e−ατ

)
, τ ≥ 0.

7.6 Consider the following discrete version of the Vasicek model when the
spot interest rate r(t) follows the discrete mean reversion binary ran-
dom walk

r(t + 1) = ρr(t) + α± σ.

Let V (t) denote the value of an interest rate contingent claim at current
time t, Vu(t+ 1) and Vd(t+ 1) be the corresponding values of the con-
tingent claim at time t+ 1 when the interest rate moves up and down,
respectively. Let B(t, T ) be the price of a zero-coupon bond that pays
one unit at time T ; and observe that B(t, t+1) = e−r(t). By adopting a
similar approach as the Cox-Ross-Rubinstein binomial pricing model,
show that the binomial formula that relates V (t), Vu(t+1) and Vd(t+1)
is given by (Heston, 1995)

V (t) =
pVu(t + 1) + (1 − p)Vd(t+ 1)

er(t)
,

where

p =
er(t) − d

u− d
, u =

e−[α+ρr(t)+σ]

B(t, t+ 2)
, d =

e−[α+ρr(t)−σ]

B(t, t + 2)
.

7.7 Show that the steady state density function of the short rate at time T
in the Cox-Ingersoll-Ross model [see Eq. (7.1.34a)] is given by (Cox et
al., 1985)

lim
T→∞

g(r(T ); r(t)) =
ων

Γ (ν)
rν−1e−ωr ,

where ω = 2α/ρ2 and ν = 2αγ/ρ2. Show that the corresponding steady

state mean and variance of r(T ) are γ and
γρ2

2α
, respectively.
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7.8 Show that the bond price for the Cox-Ingersoll-Ross model [see Eqs.
(7.1.37a,b,c)] is a decreasing convex function of the interest rate and a
decreasing function of time to maturity. Further, show that the bond
price is a decreasing convex function of the mean interest rate level
γ and an increasing concave function of the speed of adjustment α if
r(t) > γ. What would be the effects on the bond price when the interest
rate variance ρ2 and the market price of risk λ increase?

7.9 Consider the yield to maturity R(t, T ) corresponding to the Cox-
Ingersoll-Ross model. Show that [see Eqs. (7.1.37a,b,c)]

lim
T→∞

R(t, T ) =
2αγ
θ + ψ

.

Explain why an increase in the current interest rate increases yields for
all maturities, but the effect is more significant for shorter maturities,
while an increase in the steady state mean γ increases all yields but
the effect is more significant for longer maturities. What would be the
effect on the yields when the interest rate variance ρ2 and the market
price of risk λ increase?

7.10 Suppose the duration D of a coupon-bearing coupon bond B at the
current time t is defined by

D(B, t) =

[
n∑
i=1

ci(ti − t)e−R(ti−t) + (tn − t)Fe−R(tn−t)
]/

B,

where ci, i = 1, 2, · · · , n, is the ith coupon on the bond paid at time
ti, F is the face value. Here, R is the yield to maturity on the bond,
which is given by the solution of the following equation

B =
n∑
i=1

cie
−R(ti−t) + Fe−R(tn−t).

Show that

D(B, t) = − 1
B

∂B

∂R
.

Give a financial interpretation of duration.

7.11 Consider the continuous time equivalent of the Ho-Lee model can be
considered as a degenerate case of the Hull-White model, the diffusion
process for the short rate r(t) is

dr = θ(t) dt+ σr dZ.

Let F (t, T ) be the instantaneous forward rate for a contract maturing
at T and let B(t, T ) be the price at time t of a discount bond maturing
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at time T . Show that the parameter θ(t) is related to the slope of the
initial forward rate curve through the following formula

θ(t) =
∂F

∂T
(0, T )

∣∣
T=t

+ σ2
rt.

Suppose we assume the bond price to be of the form

B(t, T ) = a(t, T )e−b(t,T )r,

show that

b(t, T ) = T − t

lna(t, T ) = ln
B(0, T )
B(0, t)

+ (T − t)F (0, t) − σ2
r

2
t(T − t)2.

Since the short rates are normally distributed, the discount bond prices
are lognormally distributed; so the value of option on discount bonds
can be expressed as a variant of the Black-Scholes formula. Show that
the value of a European call option on a discount bond is given by (Hull
and White, 1994)

c(B, t; TB, T ) = B(t, TB)N(d) −XB(t, T )N(d − σB),

where TB is the maturity date of the bond underlying the option, X is
the strike price, T is the expiration date of the option,

d =
1
σB

ln
B(t, TB)
XB(t, T )

+
σB
2
, σ2

B = σ2
r(TB − T )2(T − t).

7.12 The expression for lna(t, T ) derived from in Eq. (7.2.9b) involves φ(t).
It may be desirable to express lna(t, T ) solely in terms of B(0, T ), the
initial bond prices for all maturities. Show that (Hull and White, 1994)

ln a(t, T ) = ln
B(0, T )
B(0, t)

− b(t, T )
∂

∂t
lnB(0, t)

− σ2

4α3
(e−αT − e−αt)2(e2αt − 1).

Hence, the bond prices B(t, T ) for all maturities at time t can be de-
termined from known initial bond prices for all maturities.

7.13 Consider the extended Vasicek model where the short rate is defined
by

dr = [θ(t) − αr] dt+ σ dZ.

Suppose we define a new variable x(t) where

dx(t) = −αx(t) dt+ σ dZ,
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and let ψ(t) = r(t) − x(t), show that θ(t) and ψ(t) are related by

ψ′(t) + αψ(t) = θ(t), ψ(0) = r(0).

Let Y (t) = R(0, t) where R(t, T ) is the yield to maturity. Show that

ψ(t) =
d

dt
[tY (t)] +

σ2

2α2
(1 − e−αt)2.

Also, show that the bond price B(t, T ) can be expressed as (Kijima and
Nagayama, 1994)

lnB(t, T ) = ln
B(0, T )
B(0, t)

+
1
α

[
e−α(T−t) − 1

]
[r(t) − ψ(t)]

+
σ2

4α3

{
1− [2 − e−α(T−t)]2 + (2 − e−αT )2 − (2 − e−αt)2

}
.

7.14 An extended version of the Vasicek model takes the form (Hull and
White, 1990)

dr = [θ(t) + α(t)(d− r)] dt+ σr(t) dZ.

Let λ(t) denote the time dependent market price of risk. Show that the
bond price equation is given by

∂B

∂t
+ [φ(t) − α(t)r]

∂B

∂r
+
σr(t)2

2
∂2B

∂r2
− rB = 0,

where

φ(t) = α(t)d+ θ(t) − λ(t)σ(t).

Suppose we write the bond price B(r, t; T ) in the form

B(r, t; T ) = a(t, T )e−b(t,T )r,

show that a(t, T ) and b(t, T ) are governed by

∂a

∂t
− φ(t)ab+

σr(t)2

2
ab2 = 0

∂b

∂t
− α(t)b+ 1 = 0,

with auxiliary conditions: a(T, T ) = 1 and b(T, T ) = 0. Solve for a(t, T )
and b(t, T ) in terms of α(t), φ(t) and σr(t). It is desirable to express
a(t, T ) and b(t, T ) in terms of a(0, t) and b(0, t) instead of α(t) and φ(t).
Show that the new set of governing equations for a(t, T ) and b(t, T ),
independent of α(t) and φ(t), are given by
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∂b

∂t

∂b

∂T
− b

∂2b

∂t∂T
+
∂b

∂T
= 0

ab
∂2a

∂t∂T
− b

∂a

∂t

∂a

∂t
− a

∂a

∂t

∂b

∂T
+
σ(t)2

2
a2b2

∂b

∂T
= 0.

The auxiliary conditions are the known values of a(0, T ) and b(0, T ),
a(T, T ) = 1 and b(T, T ) = 0. Finally, show that the solutions for b(t, T )
and a(t, T ), expressed in terms of b(0, T ) and a(0, T ), are given by

b(t, T ) =
b(0, T ) − b(0, t)
∂b
∂T (0, T )

∣∣
T=t

lna(t, T ) = ln
a(0, T )
a(0, t)

− b(t, T )
∂

∂T
[lna(0, T )]

∣∣
T=t

− 1
2

[
b(t, T )

∂b

∂T
(0, T )

∣∣
T=t

]2 ∫ t

0

[
σ(u)

∂b
∂T (0, T )

∣∣
T=u

]2

du.

7.15 Consider the Vasicek short rate model of the form

dr = (θ − αr) dt+ σ dZ,

where α, θ and σ are constant. Suppose we translate the above Vasicek
model into the Heath-Jarrow-Morton framework, show that the volatil-
ity structure and the initial term structure of the forward rate are given
by

σF (t, T ) = σe−α(T−t)

f(0, T ) =
θ

α
+ e−αT

[
r(0) − θ

α

]
− σ2

2α2
(1 − e−αT )2.

7.16 Suppose the bond price volatility σB(t, T ) takes the form

σB(t, T ) = x(t)[y(T ) − y(t)],

show that the differential of the short rate can be represented in the
following form (Hull and White, 1993a)

dr = [θ(t) − α(t)r] dt+ σr(t) dZ.

Express θ(t), α(t) and σr(t) in terms of x(t) and y(t).
Hint: Use Eqs. (7.3.14-15). In particular, explore the relation between

the terms involving the integration of dZ(τ ), namely,∫ t

0

∂σB
∂t

(τ, t) dZ(τ ) and
∫ t

0

∂2σB
∂t2

(τ, t) dZ(τ ).

These two terms appear in r(t) and dr(t), respectively.
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7.17 Empirical evidence reveals that the long interest rate and the spread
(short interest rate minus long interest rate) are almost uncorrelated.
Suppose we choose the stochastic state variables in the two-factor in-
terest rate model to be the spread s and the long rate �, where

ds = βs(s, �, t) dt+ ηs(s, �, t) dZs, s = r − �,

d� = β�(s, �, t) dt+ η�(s, �, t) dZ�.

Assuming zero correlation between the above processes, show that the
price of a default free bond B(s, �, τ) is governed by

∂B

∂τ
=

1
2
η2
s

∂2B

∂s2
+

1
2
η2
�

∂2B

∂�2
+ (βs − ληs)

∂B

∂s

+
(
η2
�

�
− s�

)
∂B

∂�
− (s+ �)B,

where λ is the market price of spread risk. Schaefer and Schwartz (1984)
proposed the following stochastic processes for s and �

ds = m(µ − s) dt+ γ dZs

d� = β�(s, �, t) dt+ σ
√
� dZ�.

Show that the above bond price equation becomes

∂B

∂τ
=

1
2
γ2 ∂

2B

∂s2
+

1
2
σ2�

∂2B

∂�2
+ (mµ − λγ −ms)

∂B

∂s

+ (σ2 − �s)
∂B

∂�
− (s+ �)B.

The payoff function at maturity is B(s, �, 0) = 1. Schaefer and Schwartz
(1984) proposed the following analytic approximation procedure to

solve the above equation. They take the coefficient of
∂B

∂�
to be con-

stant by treating s as a frozen constant ŝ. Now, we write the bond price
as the product of two functions, namely,

B(s, �, τ) = X(s, τ)Y (�, τ).

Show that the bond price equation can be split into the following pair
of equations:

∂X

∂τ
=

1
2
γ2 ∂

2X

∂s2
+ (mµ − λγ −ms)

∂X

∂s
− sX, X(s, 0) = 1,

and
∂Y

∂τ
=

1
2
σ2�

∂2Y

∂�2
+ (σ2 − �ŝ)

∂Y

∂�
− �Y, Y (�, 0) = 1.

Assuming that all parameters are constant, solve the above two equa-
tions for X(s, τ) and Y (�, τ).
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7.18 Consider the continuous version of the Ho-Lee short rate model

dr = θ(t) dt+ σ dZ,

where θ(t) is deterministic and σ is constant. Show that the HJM for-
mulation of the above model is given by

dF (t, T ) = σ2(T − t) dt+ σ dZ

with

F (0, T ) = r(0) − σ2T 2

2
+
∫ T

0

θ(u) du.

7.19 Consider the pricing of a futures contract on a zero-coupon bond, where
the interest rate r is assumed to follow the Vasicek process defined by
Eq. (24) in Sec. 7.1. On the expiration date TF of the futures, a bond of
unit par value with maturity date TB is delivered. Let B(r, t; TB) and
V (r, t; TF , TB) denote, respectively, the bond price and futures price at
the current time t. Show that the governing equation for the futures
price is given by

∂V

∂t
+
ρ2

2
∂2V

∂r2
+ [α(γ − r) − λρ]

∂V

∂r
= 0, t < TF ,

with terminal payoff condition: V (r, TF ; TF , TB) = B(r, TF ; TB). By
assuming the solution of the futures price to be the form:

V (r, t; TF , TB) = e−rX(t)−Y (t),

show that (Chen, 1992)

X(t) = E(t, TB) − E(t, TF )

Y (t) = D[TB − TF −X(t)] − ρ2

2α2

[
X(t) − α

2
X(t)2 − E(TF , TB)

]
where

D = γ − ρλ

α
− ρ2

2α2
and E(t, T ) =

1 − e−α(T−t)

α
.

7.20 Consider the Hull-White model where the interest rate process follows

dr(t) = [φ(t) − αr] dt+ σ dZ,

where Z(t) is a Brownian process under the probability measure P .
Using the relation

d[r(t)eαt] = φ(t)eαt dt+ σeαt dZ,

show that
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t

r(u) du = r(t)
1 − e−α(T−t)

α
+
∫ T

t

∫ u

t

φ(s)e−α(u−s)ds du

+
∫ T

t

∫ u

t

σe−α(u−s)dZ(s) du

= r(t)
1 − e−α(T−t)

α
+
∫ T

t

φ(s)
1 − e−α(T−s)

α
ds

+
∫ T

t

σ

α
[1 − e−α(T−s)] dZ(s).

Accordingly, the mean and variance of
∫ T

t

r(u) du are found to be

EP

[∫ T

t

r(u) du

]
= r(t)

1 − e−α(T−t)

α
+
∫ T

t

φ(s)
1 − e−α(T−s)

α
ds

var

(∫ T

t

r(u) du

)
=
∫ T

t

σ2

α2
[1 − e−α(T−s)]2 ds.

The bond price B(r, t; T ) is given by [see Eq. (2.3.18)]

B(r, t; T ) = EP [e−
∫ T

t
r(u) du]

= exp

(
−EP

[∫ T

t

r(u) du

]
+

1
2
var

(∫ T

t

r(u) du

))
.

Show that the above result agrees with that given by Eq. (7.2.9a,b).

7.21 Suppose the forward rate as a function of time t evolves as

df(t, T ) = µ(t, T ) dt+ σ dZt

where µ(t, T ) is a deterministic function of t and T . Explain why the
forward rates at different maturities are perfectly correlated.
Hint: Show that the forward rate is normally distributed where

f(t, T ) = f(0, T ) +
∫ t

0

µ(u, T ) du+ σZt.

Hence, f(t, T ) − f(t, S) is purely deterministic.


