
Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

1 | P a g e

Chapter-7

INTRODUCTION TO C++

 History of C++:

 Until 1980, C programming was widely popular, and slowly people started realizing the drawbacks of

this language, at the same time a new programming approach that was Object Oriented Programming.

 The C++ programming language was created by Bjarne Stroustrup and his team at Bell Laboratories

(AT&T, USA) to help implement simulation projects in an object-oriented and efficient way.

 C++ is a superset of C because; any valid C program is valid C++ program too but not the vice versa

is not true.

 C++ can make use of existing C software libraries with major addition of “Class Construct”.

 This language was called “C with classes” and later in 1983, it was named “C++” by Rick Mascitii.

 As the name C++ implies, C++ was derived from the C programming language: ++ is the increment

operator in C.

 Characteristics of C++:

 Object-Oriented Programming: It allows the programmer to design applications like a

communication between object rather than on a structured sequence of code. It allows a greater

reusability of code in a more logical and productive way.

 Portability: We can compile the same C++ code in almost any type of computer & operating system

without making any changes.

 Modular Programming: An application’s body in C++ can be made up of several source code files

that are compiled separately and then linked together saving time.

 C Compatibility: Any code written in C can easily be included in a C++ program without making

any changes.

 Speed: The resulting code from a C++ compilation is very efficient due to its duality as high-level

and low-level language.

 Machine independent: It is a Machine Independent Language.

 Flexibility: It is highly flexible language and versatility.

 Wide range of library functions: It has huge library functions; it reduces the code development time

and also reduces cost of software development.

 System Software Development: It can be used for developing System Software Viz., Operating

system, Compilers, Editors and Database.

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

2 | P a g e

 C++ Character Set:

 Character Set means the valid set of characters that a language can recognizes.

 The character set of C++ includes the following:

Alphabets
Upper letters case A, B, C, D……….X, Y, Z

Lower letters case a, b, c, d………….x, y, z

Digits 0,1,2,3………9

Special

Characters

, comma . Period ` Apostrophe

: Colon ; Semicolon ? Question mark

! Exclamation _ Underscore | Pipeline

{Left brace } Right Brace # Hash

[Left bracket] Right Bracket ^ Caret

(Left parenthesis) Right parenthesis & ampersand

/ Slash \ Back slash ~ Tilde

+ Plus sign - Minus Sign < Less Than

* Asterisk % Percentage > Greater Than

 C++ Tokens:

 The smallest individual unit in a program is known as token.

 These elements help us to construct statements, definitions, declarations, and so on, which in turn

helps us to construct complete program.

 Tokens used in C++ are:

1. Identifier

2. Reserved Keywords

3. Constants or Literals

4. Punctuators

5. Operators

 Identifiers:

 Identifiers is a name given to programming elements such as variables, functions, arrays, objects,

classes, etc.

 It contains letters, digits and underscore.

 C++ is a case sensitive; it treats uppercase and lowercase characters differently.

 The following are some valid identifiers: Pen time580 s2e2r3 _dos _HJI3_JK

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

3 | P a g e

 Rules to be followed while creating identifiers:

o Identifiers are a sequence of characters which should begin with the alphabet either from A-Z

(uppercase) or a-z (lowercase) or _ (underscore).

o C++ treats uppercase and lowercase characters differently. For example, DATA is not same as

data.

o No Special character is allowed except underscore “_”.

o Identifier should be single words i.e. blank spaces cannot be included in identifier.

o Reserved Keywords should not be used as identifiers.

o Identifiers should be of reasonable length.

 Keywords:

 Keyword is a predefined word that gives special meaning to the complier. The programmer is not

allowed to change its meaning.

 These are reserve for special purpose and must not be used as identifier name.

 Example: for, if, else, this, do, float, while, switch etc.

 There are keywords in C++ as mentioned below:

 Constants:

 A constant are identifiers whose value does not change during program execution.

 Constants are sometimes referred to as literal

 A constant or literal my be any one of the following:

o Integer Constant

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

4 | P a g e

o Floating Constant

o Character Constant

o String Constant

 Integer Constant:

 An integer constant is a whole number which can be either

positive or negative.

 They do not have fractional part or exponents.

 We can specify integer constants in decimal, octal or hexadecimal form.

o Decimal Integer Constant: It consists of any combination of digits taken from the set 0 to 9.

For example:

int a = 100; //Decimal Constant

int b = -145 // A negative decimal constant

int c = 065 // Leading zero specifies octal constant, not decimal

o Octal Integer Constant: It consists of any combination of digits taken from the set 0 to 7.

However the first digit must be 0, in order to identify the constant as octal number.

For example:

int a = 0374; //Octal Constant

int b = 097; // Error: 9 is not an octal digit.

o Hexadecimal Integer Constant: A Sequence of digits begin the specification with 0X or 0x,

followed by a sequence of digits in the range 0 to 9 and A (a) to F(f).

For example:

int a = 0x34;

int b = -0XABF;

o Unsigned Constant: To specify an unsigned type, use either u or U suffix. To specify a long

type, use either the l or L suffix.

For example:

unsigned a = 328u; //Unsigned value

long b = 0x7FFFFFL; //Long value specified as hex constant

unsigned long c = 0776745ul; //Unsigned long values as octal constant

 Floating Point Constant:

 Floating point constants are also called as “real constants”.

 These values contain decimal points (.) and can contain exponents.

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

5 | P a g e

 They are used to represent values that will have a fractional part and can be represented in two forms

(i.e. fractional form and exponent form)

 Floating-point constants have a “mantissa”, which specifies the value of the number, an “exponent”

which specifies the magnitude of the number, and an optional suffix that specifies the constant’s type.

 The mantissa is specified as a sequence of digits followed by a period, followed by an optional

sequence of digits representing the fractional part of the number.

 The exponent, if present, specifies the magnitude of the number as a power of 10.

 Example: 23.46e0 // means it is equal to 23.46 x 100 = 23.46 x 1 = 23.46

 It may be a positive or negative number. A number with no sign is assumed to be a positive number.

For example, 345.89, 3.142

 Character Constants:

 Character constants are specified as single character enclosed in pair of single quotation marks.

 For example char ch = ‘P’; //Specifies normal character constant

 A single character constant such as ‘D’ or ‘r’ will have char data type. These character constants will

be assigned numerical values.

 The numerical values are the ASCII values which are numbered sequentially for both uppercase and

lowercase letters.

 For example, ASCII value of A is 65, B is 66, …..Z is 90 (uppercase), a is 97, b is 98……. Z is 122

(lowercase), 0 is 48, 1 is 49, …… 9 is 57 (digits).

 There are certain characters used in C++ which represents character constants. These constants start

with a back slash (\) followed by a character. They are normally called as escape sequence. Some

of the commonly used escape sequences are.

Escape Sequence Meaning Escape Sequence Meaning

\’ Single Quote \” Double Quote

\? Question Mark \\ Back Slash

\0 Null Character \a Audible Bell

\b Backspace \f New Page

\n New Line \r Carriage Return

\t Horizontal Tab \v Vertical Tab

\nnn Arbitrary octal value \xnn Arbitrary Hexa Value

 Escape Sequence is a special string used to control output on the monitor and they are represented by

a single character and hence occupy one byte.

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

6 | P a g e

 String Constants:

 A string constant consists of zero or more character enclosed by double quotation marks (“).

 Multiple character constants are called string constants and they are treated as an array of char.

 By default compiler adds a special character called the “Null Character” (\0) at the end of the string

to mark the end of the string.

 For example: char str[15] = “C++ Programming” ;

 This is actually represented as char str[15] = “C++ Programming\0” in the memory.

 Punctuators:

 Punctuators in C++ have syntactic and semantic meaning to the compiler.

 Some punctuators can be either alone or in combination.

 The following characters are used as punctuators which are also known as separators in C++.

Punctuator Name Function

! Exclamation Used along with “=” to indicate “not equal to”

% Percentage Used along with format specifiers

& Ampersand Used to represent address location or bitwise operation

; Semicolon Used to represent statement terminator.

[] Brackets Used to array subscripts

() Parenthesis Used to represent function calls and function parameters.

{ } Braces Used to represent start and end of a block of code.

Ash sign Used to represent preprocessor directives.

\ Back slash Used to represent escape sequence

: Colon Used to represent labeled statement

= Equal to Used to represent an assigning operator.

 C++ Operators:

 An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations.

 C++ is rich in built-in operators and there are almost 45 different operators.

 Operators in C++ are can be divided into the following classes:

o Arithmetic Operator

o Relational Operator

o Logical Operator

o Unary Operator

o Conditional Operator

o Bitwise Operator

o Assignment Operator

o Other Operator

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

7 | P a g e

 Operator operates on constants and variables which are called operands. Operators may also be

classified on the number of operands they act on either:

Unary Binary Ternary

Unary operators operate

on only one operand.

The binary operator

operates on two operands.

The ternary operator

operates on three

operands.

Example: ++, - - +, -, *, /, %, &&, || ?:

 Unary Operators

 Unary operators have only one operand; they are evaluated before any other operation containing

them gets evaluated.

 The following are the list of unary operators.

Operator Name Function

! Logical NOT
If a condition is true then Logical NOT operator will
make false.

& Address-of Used to give the address of the operand

~
One’s

Complement
Converts 1 to 0 and 0 to 1

*
Pointer

dereference
Used along with the operand to represent the pointer data
type.

+ Unary plus Used to represent a signed positive operand
++ Increment Used to increment an operand by 1
- Unary negation Used to represent a signed negative operand

- - Decrement Used to represent an operand by 1

 Increment Operator

Increment operator is used to increasing the value of an integer by one. This is represented by “++”.

Example: a++, a+1

 Decrement Operator

Decrement operator is used to decreasing the value of an integer by one. This is represented by “--”.

Example: a--, a-1

Hint

Let a=10 and b=5

a++; //a becomes 11

b--; //b becomes 4

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

7 | P a g e

 Operator operates on constants and variables which are called operands. Operators may also be

classified on the number of operands they act on either:

Unary Binary Ternary

Unary operators operate

on only one operand.

The binary operator

operates on two operands.

The ternary operator

operates on three

operands.

Example: ++, - - +, -, *, /, %, &&, || ?:

 Unary Operators

 Unary operators have only one operand; they are evaluated before any other operation containing

them gets evaluated.

 The following are the list of unary operators.

Operator Name Function

! Logical NOT
If a condition is true then Logical NOT operator will
make false.

& Address-of Used to give the address of the operand

~
One’s

Complement
Converts 1 to 0 and 0 to 1

*
Pointer

dereference
Used along with the operand to represent the pointer data
type.

+ Unary plus Used to represent a signed positive operand
++ Increment Used to increment an operand by 1
- Unary negation Used to represent a signed negative operand

- - Decrement Used to represent an operand by 1

 Increment Operator

Increment operator is used to increasing the value of an integer by one. This is represented by “++”.

Example: a++, a+1

 Decrement Operator

Decrement operator is used to decreasing the value of an integer by one. This is represented by “--”.

Example: a--, a-1

Hint

Let a=10 and b=5

a++; //a becomes 11

b--; //b becomes 4

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

7 | P a g e

 Operator operates on constants and variables which are called operands. Operators may also be

classified on the number of operands they act on either:

Unary Binary Ternary

Unary operators operate

on only one operand.

The binary operator

operates on two operands.

The ternary operator

operates on three

operands.

Example: ++, - - +, -, *, /, %, &&, || ?:

 Unary Operators

 Unary operators have only one operand; they are evaluated before any other operation containing

them gets evaluated.

 The following are the list of unary operators.

Operator Name Function

! Logical NOT
If a condition is true then Logical NOT operator will
make false.

& Address-of Used to give the address of the operand

~
One’s

Complement
Converts 1 to 0 and 0 to 1

*
Pointer

dereference
Used along with the operand to represent the pointer data
type.

+ Unary plus Used to represent a signed positive operand
++ Increment Used to increment an operand by 1
- Unary negation Used to represent a signed negative operand

- - Decrement Used to represent an operand by 1

 Increment Operator

Increment operator is used to increasing the value of an integer by one. This is represented by “++”.

Example: a++, a+1

 Decrement Operator

Decrement operator is used to decreasing the value of an integer by one. This is represented by “--”.

Example: a--, a-1

Hint

Let a=10 and b=5

a++; //a becomes 11

b--; //b becomes 4

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

8 | P a g e

 Both the increment & decrement operators come in two versions:

Prefix increment/decrement:

 When an increment or decrement operator precedes its operand, it is called prefix increment or

decrement (or pre-increment / decrement).

 In prefix increment/decrement, C++ performs the increment or decrement operation before using the

value of the operand.

 Example: If sum = 10 and count =20 then

Sum = sum + (++count);

 First count incremented and then evaluate sum = 31.

Postfix increment/decrement:

 When an increment or decrement operator follows its operand, it is called postfix increment or

decrement (or post-increment / decrement).

 In postfix increment/decrement, C++ first uses the value of the operand in evaluating the expression

before incrementing or decrementing the operand’s value.

 Example: If sum = 10 and count =20 then

Sum = sum + (count++);

 First evaluate sum = 30, and then increment count to 21.

 Binary Operators

 The binary operators are those operators that operate on two operands. They are as arithmetic,

relational, logical, bitwise, and assignment operators.

 Arithmetic Operator

 Arithmetic operators are used to performing the basic arithmetic operations such as arithmetic,

subtraction, multiplication, division and modulo division (remainder after division).

Operator Description Example(a=10, b=20)

+ Adds two operand a + b = 30

- Subtracts second operand from the first a - b = -10

* Multiply both operand a * b = 200

/ Divide numerator by denominators b / a = 2

%
Modulus operators and remainder of after an

integer division
b % a = 0

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

9 | P a g e

 Relational Operator

 Relational Operator is used to comparing two operands given in expressions.

 They define the relationship that exists between two constants.

 For example, we may compare the age of two persons or the price of two items….these comparisons

can be done with the help of relational operators.

 The result in either TRUE(1) or FALSE(0).Some of the relational operators are:

Operator Description Example (a=10, b=5)

<
Checks if the value of left operand is less than the

value of right operand
a < b returns false(0)

<=
Checks if the value of left operand is less than or equal

to the value of right operand
a <= b returns false(0)

>
Checks if the value of left operand is greater than the

value of right operand
a > b returns true(1)

>=
Checks if the value of left operand is greater than or

equal to the value of right operand
a >= b returns false(0)

= = Checks if the value of two operands is equal or not a = = b returns false(0)

! = Checks if the value of two operands is equal or not a != b returns true(1)

 Logical Operators

 Logical operators are used to testing more than one condition and make decisions. Some of the logical

operators are

Operator Meaning Description Example

&& Logical AND
If both the operands are non-zero

then condition becomes true.

If a=10 and b=5 then,

((a==10) && (b>5)) returns false.

|| Logical OR
If any of the two operands is non-

zero then condition becomes true.

If a=10 and b=5 then,

((a==10) || (b>5)) returns true.

! Logical NOT
If a condition is true then the Logical

NOT operator will make false.

If a=10 then,

!(a==10) returns false.

 Bitwise Operators

 A bitwise operator works on bits and performs bit by bit operation.

 Bitwise operators are used in bit level programming.

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

10 | P a g e

Operators Meaning of operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ Bitwise complement

 The truth table for bitwise AND (&), Bitwise OR(|), Bitwise XOR (^) are as follows:

A B A&B (Bitwise AND) A | B (Bitwise OR) A ^ B (Bitwise XOR)

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

 Assume A = 60 and B =13; the following operations take place:

Step 1: Converts A and B both to its binary equivalent.

A = 0011 1100

B = 0000 1101

Step 2: Then performs the bitwise and, or and not operation. The result is given below.

A & B = 0000 1100 = 12

A | B = 0011 1101 = 61

A^B = 0011 0001 = 49

~A = 1100 0011 = -60

The Bitwise operators supported by C++ are listed in the following table:

Operator Description Example

& Binary AND Operator copies a bit to the result if it

exists in both operands

(A&B) will give 12 which is

0000 1100

| Binary OR Operator copies a bit if it exists in either

operand.

(A|B) will give 61 which is

0011 1101

^ Binary XOR Operator copies the bit if it is set in one

operand but not both.

(A^B) will give 49 which is

0011 0001

~ Binary Ones complement Operator is unary and has the

effect of ‘Flipping’ bits

(~A) will give -60 which is

1100 0011

<< Binary Left Shift Operator. The left operands value is

moved left by the number of bits specified by the right

A<<2 will give 240 which is

1111 0000

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

11 | P a g e

operand.

>> Binary Right Shift Operator. The left operands value is

moved right by the number of bits specified by the right

operand.

A>>2 will give 15 which is

0000 1111

 Assignment Operators

 The most common assignment operator is =. This operator assigns the value on the right side to the

left side.

 Example: var = 5 //5 is assigned to var

a = b; //value of b is assigned to a

5 = b; // Error! 5 is a constant.

The assignment operators supported by C++ are listed below:

Operator Example Same as

= a=b a=b

+= a+=b a=a+b

-= a-=b a=a-b

= a=b a=a*b

/= a/=b a=a/b

%= a%=b a=a%b

<< = a<<=2 a = a<<2

>>= a>>=2 a = a>>2

&= a & = 2 a = a & 2

^= a ^ = 2 a = a ^ 2

|= a | = 2 a = a | 2

 C++ Shorthand’s:
 C++ Offers special shorthand’s that simplify the coding of a certain type of assignment statements.

 The general format of C++ shorthand’s is:

 Variable Operator = Expression

 Following are some examples of C++ shorthand’s:

x - = 10; Equivalent to x = x – 10;

x * = 5; Equivalent to x = x * 5;

x / = 2 ; Equivalent to x = x / 2;

x % = z; Equivalent to x = x % z;

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

12 | P a g e

 Conditional Operator:

 A ternary operator pair ”? :” is available in C++ to construct conditional expressions of the form:

exp1? exp2: exp3, where exp1,exp2, and exp3 are expressions,

 The operator “?:” works as follows: exp1 is evaluated first. If it is true, then the expression exp 2 is

evaluated and becomes the value of the expression. If exp1 is false, exp3 is evaluated and its value

becomes the value of the expression.

 Example: a=10; b=5;

x = (a>b) ? a:b;

 Special Operator:

Operators Meaning of operators

sizeof()
It is a unary operator which is used in finding the size of the data

type. Example: sizeof(a)

, (comma)
Comma operators are used to linking related expressions

together. Example: int a=10, b=5

. (dot) and

-> (arrow)

Member Operator used to reference individual members of

classes, structure and unions.

cast Casting Operator convert one data type to another.

& Address Operator & returns the address of the variable.

* Pointer Operator * is pointer to a variable.

 Precedence of Operators or Hierarchy of Operators In C++:

 An expression is a combination of opcode and operand.

 The operators would be arithmetic, relational, and logical operators.

 If the expression contains multiple operators, the order in which operations carried out is called the

precedence of operators. It is also called as priority or hierarchy.

 The Operators with highest precedence appear at the top of the table and those with the lowest appear

at the bottom.

Category Operator Associativity

Postfix () [] -> . ++ -- Left to Right

Unary = - ! ~ ++ -- (type) * & sizeof Right to Left

Multiplicative * / % Left to Right

Additive + - Left to Right

Shift << >> Left to Right

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

13 | P a g e

Relational <<= >>= Left to Right

Equality == != Left to Right

Bitwise AND & Left to Right

Bitwise XOR ^ Left to Right

Bitwise OR | Left to Right

Logical AND && Left to Right

Logical OR || Left to Right

Conditional ?: Right to Left

Assignment = += -= *= /= %= Right to Left

Comma , Left to Right

What is operator precedence in C++?

 “The order in which different types of operators are evaluated is called as operator precedence”.

 It is also known as hierarchy of operators.

 In any expression, Operators having higher precedence are evaluated first.

 The expression is evaluated in the following sequence.

o Arithmetic

o Relational

o Logical

 There are some operators which are given below. The higher the position of an operator is, higher is

its priority.

Operator Meaning

! Logical NOT

() Parenthesis

*, /, % Arithmetic and modulus

+, - Arithmetic

<, >, <=, >= Relational

==, != Relational

&& Logical AND

|| Logical OR

= Assignment

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

14 | P a g e

 Type Conversion:

 Converting an expression of a given type into another type is known as type-casting or type

conversion.

 Type conversions are of two types, they are:

o Implicit Conversion

o Explicit Conversion

 Implicit Conversion:

 Implicit Conversions do not require any operator.

 They are automatically performed when a value is copied to a compatible type.

 The C++ compiler will implicitly convert or promote values if it can be done safely.

 If not it will generate a warning or an error depending on the conversion required.

 For Example:

short a = 2000;

int b;

b = a;

 Explicit Conversion:

 C++ is a strong-typed language. Many coversions, eqpecially those that imply a different

interpretation of the value, require an explicit conversion.

 For Example:

short a = 2000;

int b;

b = (int) a; //c-like cast notation

b = int (a) // functional notation

 Implicit Conversions do not require any operator.

 Translating a C++ program:

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

14 | P a g e

 Type Conversion:

 Converting an expression of a given type into another type is known as type-casting or type

conversion.

 Type conversions are of two types, they are:

o Implicit Conversion

o Explicit Conversion

 Implicit Conversion:

 Implicit Conversions do not require any operator.

 They are automatically performed when a value is copied to a compatible type.

 The C++ compiler will implicitly convert or promote values if it can be done safely.

 If not it will generate a warning or an error depending on the conversion required.

 For Example:

short a = 2000;

int b;

b = a;

 Explicit Conversion:

 C++ is a strong-typed language. Many coversions, eqpecially those that imply a different

interpretation of the value, require an explicit conversion.

 For Example:

short a = 2000;

int b;

b = (int) a; //c-like cast notation

b = int (a) // functional notation

 Implicit Conversions do not require any operator.

 Translating a C++ program:

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

14 | P a g e

 Type Conversion:

 Converting an expression of a given type into another type is known as type-casting or type

conversion.

 Type conversions are of two types, they are:

o Implicit Conversion

o Explicit Conversion

 Implicit Conversion:

 Implicit Conversions do not require any operator.

 They are automatically performed when a value is copied to a compatible type.

 The C++ compiler will implicitly convert or promote values if it can be done safely.

 If not it will generate a warning or an error depending on the conversion required.

 For Example:

short a = 2000;

int b;

b = a;

 Explicit Conversion:

 C++ is a strong-typed language. Many coversions, eqpecially those that imply a different

interpretation of the value, require an explicit conversion.

 For Example:

short a = 2000;

int b;

b = (int) a; //c-like cast notation

b = int (a) // functional notation

 Implicit Conversions do not require any operator.

 Translating a C++ program:

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

15 | P a g e

 General Structure of C++ Program:

General Syntax Example Program

/* General Structure */

Pre-processor Directives

main ()

{

Variable Declarations;

Executable Statements;

}

/* A Simple Program to display a Message * /

#include<iostream.h>

void main()

{

cout<<” This is the first C++ Program”;

}

Different programming languages have their own format of coding. The basic components of a C++

program are:

 Comments or Documentation Section:

 Comments are the pieces of code that compiler ignores to compile. There are two types of comments

in C++.

1. Single line comment: The comments that begin with // are single line comments. The Compiler

simply ignores everything following // in the same line.

2. Multiline comment: The multiline comment begin with /* and end with */ . This means

everything that falls between /* and */ is consider a comment even though it is spread across

many lines.

 Pre-processor Directives (Linker Section):

 The linker section begins with a hash (#) symbol. #include …… is a preprocessor directive.

 It is a signal for preprocessor which runs the compiler.

 The statement directs the compiler to include the header file from the C++ Standard library.

 Example:

include<iostream.h>

#include<conio.h>

include<math.h>

 Definition:

 In this section, we can define constants, expressions, structures, functions, classes and objects.

 After the linker section gets executed, the definition section is executed by the compiler and this

section is optional.

 Example:
define PI 3.14

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

16 | P a g e

 Global Declaration

 We can declare variables here and those variables which are declared before the main function or any

other function then the life or scope of such variables remain throughout function and can be used by

other functions of the program.

 main() Function:

 As the name itself indicates, this is the main function of every C++ program.

 Execution of a C++ program starts with main ().

 No C++ program is executed without the main () function.

 The function main () should be written in the lowercase letter and shouldn’t be terminated with a

semicolon.

 It calls other library functions and user-defined functions.

 There must be one and only main () in every C++ program.

 Braces { }:

{

…………..;

…………..;

}

 The statements inside any function including the main () function is enclosed with the opening and

the closing braces.

 Declarations:

 The declaration is the part of the C++ program where all the variables, arrays, and functions are

declared with their basic data types.

 This helps the compiler to allocate the memory space inside the computer memory.

 Example:

int sum, x, y;

 Statements:

 These are instructions to the computer to perform some specific operations.
 These statements can be expressions, input-output functions, conditional statements, looping

statements, function call and so on. They also include comments.
 Every statement end with semicolon “;” except control statements.
 Semicolon “;” also known as Terminator.

 Example:
cout<<”Welcome to Computer Science Class”;

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

17 | P a g e

Example: A Simple C++ program to display a message on the screen:

#include<iostream.h>

#include<conio.h>

void main ()

{

clrscr();

cout<< “Welcome to Computer Science Class”;

getch();

}

The program produces following output:

Welcome to Computer Science Class

 Library Function:

 C++ provides many built-in functions that save the programming time.

 They include mathematical functions, character functions, string functions, and console input-output

functions.

 Mathematical Function:

 Some of the important mathematical functions in header file math.h are

Function Meaning

sqrt(x) Square Root of X

pow(x, y) x raised to the power y

sin(x) Sine of an angle x (measured in radians)

cos(x) Cosine of an angle x (measured in radians)

tan(x) Tangent of an angle x (measured in radians)

asin(x) Sin-1(x) where x (measured in radians)

acos(x) Cos-1(x) where x (measured in radians)

exp(x) Exponential function of x (ex)

log(x) Logarithm of x

log 10(x) Logarithm of number x to base 10

abs(x) Absolute value of integer number x

fabs(x) Absolute value of real number x

 Character Function:

 Some of the important mathematical functions in header file ctype.h are

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

18 | P a g e

Function Meaning

isalpha(c) It returns True if C is an uppercase letter and false if c is lowercase.

isdigit(c) It returns True if c is a digit (0 to 9) otherwise false

isalnum(c)
It returns True if c is digit from 0 through 9 or an alphabetic character

(either uppercase or lowercase) otherwise false

islower(c) It returns True if c is a lowercase letter otherwise False

isupper(c) It returns True if c is a uppercase letter otherwise False

toupper(c) It converts c to uppercase letter

tolower(c) It converts c to lowercase letter.

 String Function:

 Some of the important mathematical functions in header file string.h are

Function Meaning

strlen(s) It gives the no. of characters including spaces present in a string s.

strcat(s1, s2)
It concatenates the string s2 onto the end of the string s1. The

string s1 must have enough locations to hold s2.

strcpy(s1, s2)
It copies character string s2 to string s1. The s1 must have enough

storage locations to hold s2.

strcmp((s1,s2)==0)

strcmp((s1,s2)>0)

strcmp((s1,s2)<0)

It compares s1 and s2 and find out whether s1 equal s2, greater
than s2 or s1 less than s2.

strcmpi((s1,s2)==0)

strcmpi((s1,s2)>0)

strcmpi((s1,s2)<0)

It compares s1 and s2 ignoring case and find out whether s1 equal
s2, greater than s2 or s1 less than s2.

strrev(s) It converts a string into its reverse.

strupr(s) It converts a string s into upper case.

strlwr(s) It converts a string into lower case.

 Console I/O Function:

 Some of the important mathematical functions in header file stdio.h are

Function Meaning

getchar()
It returns a single character from a standard input device (keyboard). It takes

no parameter and the returned value is the input character.

putchar() It takes one argument, which is the character to be sent to the output device.

Chapter 7- Review of C++ I PUC, MDRPUC, Hassan

19 | P a g e

It also returns this character as a result.

gets()
It gets a string terminated by a newline character from the standard input

stream stdlin.

puts() It takes a string which is to be sent to output device.

 General Purpose standard Library Function:

 Some of the important mathematical functions in header file stdio.h are

Function Meaning

randomize() It initialize/seeds the random number generator with a random number.

random(n) It generates a random number between 0 to n-1.

atoi(s) It converts string s into a numerical representation.

itoa(n) It converts a number to a string.

 Some more Function:

 getch() and getche() functions

 The genral form of the getch() and getche() is

ch = getche();

ch1 = getch();

 ch and ch1 are the variables of type character. They take no argument and require the conio.h header

file.

 On execution, the cursor blinks, the user must type a character and press enter key.

 The value of the character returned from getche() is assigned to ch.

 The getche() function echoes the character on the screen.

 Another function, getch(), is similar to getche() but does not echo character to the screen.

CHAPTER 7 – INTRODUCTION TO C++ BLUE PRINT

VSA (1 marks) SA (2 marks) LA (3 Marks) Essay (5 Marks) Total

01 Question - 01 Question 01 Question 09 Marks
