Chapter 7 — Kinetic energy, potential energy, work

|.  Kinetic energy.

Il. Work.

lll. Work - Kinetic energy theorem.

V. Work done by a constant force: Gravitational force
V. Work done by a variable force.

- Spring force.
- General: 1D, 3D, Work-Kinetic Energy Theorem

V1. Power

VII. Potential energy - Energy of configuration
VIII. Work and potential energy

|X. Conservative / Non-conservative forces

X. Determining potential energy values: gravitational potential energy,
elastic potential energy




scalar quantity associated with a state (or condition) of one or
more objects.

|. Kinetic energy

Energy associated with the state of motion of an object. RS Emv2 (7.1

Units: 1 Joule = 1J =1 kgm?/s?= N m

1. Work

Energy transferred “to” or “from” an object by means of a force acting on

the object. ToS  +W
From > -W

- Constant force:

2 2

2 2
Vei=Vvs+2a.d —>a, =
0 X X 2d

F =ma, :lm(v2 —v§)%—> ma,d =%m(v2 —Vv7)

X

1 > o ~ - Work done by the force = Energy
=MV Vo) =K mi =Rd = transfer due to the force.




- To calculate the work done on an object by a force during a displacement,
we use only the force component along the object’s displacement. The
force component perpendicular to the displacement does zero work.

e F
W=Fd=Fcosg-d=F-d (7.3) A«p

- Assumptions: 1) F=cte, 2) Object particle-like. ¢ <90" > +W
180° > ¢ >90" > -W
»=90"—>0

Units: 1 Joule = 1J = 1 kgm?/s?

A force does +W when it has a vector component in the same direction
as the displacement, and —W when it has a vector component in the
opposite direction. W=0 when it has no such vector component.

Net work done by several forces = Sum of works done by individual forces.

Calculation: 1)W, =W, +W,+W,+...

net™

—

2)F, > W _=F..d

net net—




ll. Work-Kinetic Energy Theorem

AK =K - K; =W (7.4)
Change in the kinetic energy of the particle = Net work done on the particle

Ill. Work done by a constant force

SCICVIEIER{ICHN \\ = F - d = mgd cos ¢ (7.5)

Rising object: W= mgd cos180° = -mgd > F transfers
mgd energy the object’s kinetic energy.

Falling object: W= mgd cos 0° = +mgd = F transfers
mgd energy = the object’s kinetic energy.




- External applied force + Gravitational force:

AK = K —K; =W, +W, (7.6)

Object stationary before and after the lift: W, +W,=0

The applied force transfers the same amount of
energy to the object as the gravitational force
transfers from the object.

V. Work done by a variable force

- Spring force: [=E—_——"] (7.7)

Hooke’s law

Block
attached

: C to spring
k = spring constant = measures spring’s pHig

stiffness.
Units: N/m




Hooke’s law

x positive 1 { X negative

F negative 32 I positive
1D - F, = —kx

Work done by a spring force:

- Assumptions: Spring is massless 2 Mg << Mpyo0,

|deal spring = obeys Hooke’s law exactly.
Contact between the block and floor is frictionless.

Block is particle-like.
F,

- Calculation:

1) The block displacement must be divided into
many segments of infinitesimal width, Ax.

2) F(x) = cte within each short Ax segment.




W, =Y FAXx= Ax—>0 =W, =["Fdx=["(-kx) dx

Xy 1 2 K _E 2 2
W = k[ xdx:(—zkj[x [ _( Zk)(xf X2)

Work done by an applied force + spring force: AK =K =K; =W, +W,

Block stationary before and after the displacement: AK=0 >W_= -W,

- The work done by the applied force displacing the block is the negative
of the work done by the spring force.




Work done by a general variable force:

1D-Analysis

AWJ. =F._AX

J.avg

W => AW, => F, . AX
better approximation = more AX, AX — 0

=W =|ImF; 22X =

J.avg

AX—0

Geometrically: Work is the area between the curve F(x) and the x-axis.




3D-Analysis

F=Fi+Fj+Fk; F=F®X), F,=F(y), F,=F(2)

dF =dx i +dy j+dz k

- rf Xf yf Zf
dW =F .df = F,dx+ F dy+ F,dz = |W = [dW = [F,dx+ [ F dy + [ F,dz
g X, Y, Z

Work-Kinetic Energy Theorem - Variable force

W =XfF(x)dx:XJIma dx

v |
dt dx

ma dx =m dx RN mﬁv dx = mvdv

(dv_ dv dx _ dVVj
dt dxdt dx
\ V; 1 1
W= [mvdv=mlv dv:Emv? —Emvi2 =K; -K, = AK
V.

Vi




V. Power

Time rate at which the applied force does work.

- Average power: amount of work done in an amount of time At by a force.
5 W

avg — A_t (7.12)

- Instantaneous power: instantaneous time rate of doing work.

(7.13)

dw Fcose dx

T odt dt

P

Units: 1 Watt=1W =1J/s

1 kilowatt-hour =1 kW-h=3.60x 106J =3.6 MJ




In the figure (a) below a 2N force is applied to a 4kg block at a downward
angle 6 as the block moves rightward through 1m across a frictionless floor. Find
an expression for the speed v; at the end of that distance if the block’s initial
velocity is: (a) 0 and (b) 1m/s to the right. (c) The situation in (b) is similar in that
the block is initially moving at 1m/s to the right, but now the 2N force is directed

downward to the left. Find an expression for the speed of the block at the end of
the 1m distance.

W =F -d = (F cos8)d
W = AK =0.5m(v§ —v{)

(a) v, =0— AK =0.5mv?
(2N)cos @ = 0.5(4kg)v?
— V; =+/C0SE m/s

(b) v, =Im/s — AK =0.5mv% —0.5-(4kg) - (Im/s)* () vg=Im/s—> AK = O.5mv% -2
(2N)cos 6 = 0.5(4kg)vs —2J —(2N)cos @ = 0.5(4kg)vs —2J
—>V,; =+/1+c0s6 m/s —V; =+/1-cosd m/s




In the figure below a horizontal force F_ of magnitude 20N is applied to a 3kg
psychology book, as the book slides a distance of d=0.5m up a frictionless ramp.
(a) During the displacement, what is the net work done on the book by F_, the
gravitational force on the book and the normal force on the book? (b) If the book
has zero kinetic energy at the start of the displacement, what is the speed at the
end of the displacement?

Nld—oW=0

Only F,, F, do work

gx’

(8) W =Wy, ~W

Fg or

F. =Fa, —Fg, =20c0s30° —mgsin30°
W . =(17.32N -14.7N)0.5m =1.31]

W =1.31J =0.5mv; - v, =0.93m/s




A 2kg lunchbox is sent sliding over a frictionless surface, in the positive
direction of an x axis along the surface. Beginning at t=0, a steady wind pushes
on the lunchbox in the negative direction of x, Fig. below. Estimate the kinetic

energy of the lunchbox at (a) t=1s, (b) t=5s. (c) How much work does the force
from the wind do on the lunch box from t=1s to t=5s7?

Motion — concave downward parabola

1
X=—1t(10-t
10 ( )

v=%:1
dt
dv
a=—=
dt

F =cte=ma=(2kg)(-0.2m/s?) = —0.4N

(b) t=5s—>v, =0
W =F -x = (-0.4N)(t—0.1t%)

(a) t=1s—>v; =0.8m/s

(c) W =AK =K, (5s) - K; (15)
K, =0.5(2kg)(0.8m/s)* = 0.64J

W =0-0.64=-0.64J




(a) Find the work done on the particle by the force represented in

the graph below as the particle moves from x=1 to x=3m. (b) The curve
is given by F=a/x?, with a=9Nm?. Calculate the work using integration

(a) W = Area under curve
W = (11.5squares)(0.5m)(IN) =5.75]

3
(6) W =]y~

17 1
[—} — —9(5—1) ~6J

X

An elevator has a mass of 4500kg and can carry a maximum load of
1800kg. If the cab is moving upward at full load at 3.8m/s, what power is
required of the force moving the cab to maintain that speed?

‘ R o = 500kg + 1800Kg = 6300ks

F,+mg=Fp=0-F,—F, =0 P=F .V =(61.74kN)(3.8m/s)

P =234.61kW

' F, = mg = (6300kg)(9.8m/s%) = 61.74kN
yle




A single force acts on a body that moves along an x-axis. The figure below shows
the velocity component versus time for the body. For each of the intervals AB, BC,
CD, and DE, give the sign (plus or minus) of the work done by the force, or state
that the work is zero.

W =AK =K; - K, :%m(\/? _Vg)

AB > vg >v, >W >0

CD —>vp <V >W <0

DE - vg <0, vp =0>W >0




A 2509 block is dropped onto a relaxed vertical spring that has a spring
constant of k=2.5N/cm. The block becomes attached to the spring and
compresses the spring 12 cm before momentarily stopping. While the spring is
being compressed, what work is done on the block by (a) the gravitational force on
it and (b) the spring force? (c) What is the speed of the block just before it hits the

spring? (Friction negligible) (d) If the speed at impact is doubled, what is the
maximum compression of the spring?

(a) W, = F,d = mgd = (0.25kg)(9.8m/s?)(0.12m) = 0.29

(b) W, = —%kd 2 —_0.5-(250N /m)(0.12m)? = 1.8

(€) W = AK =0.5mv§ —0.5mv?

Vi =0 K; =0 AK =—-K; = -0.5mv; =W, +W,

0.29J —1.8J =—0.5-(0.25kg)v;
—>V; =3.47m/s

(d) If vi'=6.95m/s — Maximum spring compression?v; =0

W, = mgd'—0.5kd 2 = AK = —0.5m; "
d'=0.23m




In the figure below, a cord runs around two massless, frictionless pulleys; a
canister with mass m=20kg hangs from one pulley; and you exert a force F on the
free end of the cord. (a) What must be the magnitude of F if you are to lift the

canister at a constant speed? (b) To lift the canister by 2cm, how far must you pull
the free end of the cord? During that lift, what is the work done on the canister by
(c) your force (via the cord) and (d) the gravitational force on the canister?

(a) Pulley 1: v=cte > F,,=0—->2T —-mg=0—T =98N

Hand — cord : T—F=o—>F=m—;=98N

(b) To rise “m” 0.02m, two segments of the cord must
be shorten by that amount. Thus, the amount of the
string pulled down at the left end is: 0.04m

(c) Wy = F -d = (98N)(0.04m) = 3.92J

(d) Wg, =-mgd = (-0.02m)(20kg)(9.8m/s?) = -3.92J

We+We,=0  There is no change in kinetic energy.



l. Potential energy

Energy associated with the arrangement of a system of objects that exe
forces on one another.

Units: J
Examples:

- Gravitational potential energy: associated with the state of separatio
between objects which can attract one another via the gravitational fo

- Elastic potential energy: associated with the state

of
ompression/extensiaon of an elastic object. Positive
Il. Work' and 1 ‘

pO en Ia energy r,‘r ; work done

by the
, gravitational
force

s ” tomato’s kinetic energy “ ” the gravitational
potential energy of the tomato-Earth system.

If tomato falls down - gravitational force transfers
energy “ ” the gravitational potential energy “ ”
the tomato’s kinetic energy.




WSEEER/AAIso valid for elastic potential energy

Spring compression

does -W on block -> energy
transfer from kinetic energy of the block to
potential elastic energy of the spring.

Spring extension

does +W on block -
energy transfer from potential energy

of the spring to kinetic energy of the
block.

General:

- System of two or more objects.

- A force acts between a particle in the system and the rest of the system.




- When system configuration changes - force does work on the
object (W,) transferring energy between KE of the object and some
other form of energy of the system.

- When the configuration change is reversed -> force reverses the energ
transfer, doing W,.

lll. Conservative / Nonconservative forces

-If W,=W, always - conservative force.

Examples: Gravitational force and spring force > associated potential
energies.

- If W,#W, & nonconservative force.

Examples: Drag force, frictional force > KE transferred into thermal
energy. Non-reversible process.

- Thermal energy: Energy associated with the random movement of atoms
and molecules. This is not a potential energy.




- Conservative force: The net work it does on a particle moving around
every closed path, from an initial point and then back to that point is

zero.
- The net work it does on a particle moving between two points does

not depend on the particle’s path.
Conservative force > W, =W, ,

Proof:
Wap 1t Wpao=0 2> W, . =-W, .,

W= -Wpao > W, 2= Wy 4

IV. Determining potential energy values

W = j; HEIVEEVI\OM Force F is conservative

Gravitational potential energy:
Change in the gravitational

potential energy of the
particle-Earth system.

AU =~[7" (-mg)dy = mg[y[;' =mg(y; - y;) =mgay




U; =0, y; =0—->U(y)=mgy

The gravitational potential energy associated with particle-Earth
system depends only on particle’s vertical position “y” relative to the
reference position y=0, not on the horizontal position.

1 1

Elastic potential energy: WIS —j:f (—kx)dx = g lxz ]ﬁ: — B kx% - kXi2

Change in the elastic potential energy of the spring-block system.

when the spring is at its relaxed length and th
block is at x;=0.

U =0, x =O—>U(x)=%kx2

Remember! Potential energy is always associated with a
system. _ _
V. Conservation of mechanical energy

Mechanical energy of a system: Sum of its potential (U) and kinetic (K)
energies.




E..=U+K

Assumptions: - Only conservative forces cause energy transfer within
the system.

- The system is isolated from its environment -> No external force
from an object outside the system causes energy changes inside the

AE_..=AK+AU=0

- In an isolated system where only conservative forces cause energy
changes, the kinetic energy and potential energy can change, but
their sum, the mechanical enerqgy of the system cannot change.

- When the mechanical energy of a system Is conserved, we can
relate the sum of kinetic energy and potential energy at one instant
to that at another instant without considering the intermediate
motion and without finding the work done by the forces involved.




mec— constant

AE .. =AK+AU =0

mec

Potential energy curves

Finding the force analytically:

dU (x)

AU (X) =W =—F(X)AXx > F(x) =— (1D motion)

- The force is the negative of the slope of the curve U(x) versus x.

- The particle’s kinetic energy is: K(x) = E, .. — U(x)




Turning point: a point x at
which the particle
reverses its motion (K=0).

Turning point

/K= 5.0 T at x,
K=1.0Jat x> x4 K always >0 (K=0.5mV2 20 )

Examples:

X= X4 2E o= 5J=5J+K 2> K=0

X<Xq 2 E .= 5J=>5J+K>
K<0 - impossible

Equilibrium points: where the slope of the U(x) curve is zero - F(x)=
AU = -F(x) dx = AU/dx = -F(x)




U (J)s Epec (J)
AU(x)/dx = -F(x) = Slope

|

Equilibrium points

Example: x2x; 2 E_..4=4J=4J+K - K=0 and also F=0 > Xx; neutral equilibrium

mec,1™

Xo>X>X4, Xs>X>Xy 2 E o= 3J= 3J+K &> K=0 - Turning points

mec,2”

X3 = K=0, F=0 - particle stationary - Unstable equilibrium

x, 2 E
9

=1J=1J+K > K=0, F=0, it cannot move to x>x, or x<x,, since then K<0

mec,3

Stable equilibrium




Review: Potential energy

W= -AU

- The zero is arbitrary = Only potential energy differences have
physical meaning.

- The potential energy is a scalar function of the position.

- The force (1D) is given by: F = -dU/dx




P1. The force between two atoms in a diatomic molecule can be
represented by the following potential energy function:

i) Calculate the force F, IECIESS dL:I(X) = —U{lZ(_?j(
X X

a X

13
U, [-12a2x 8 4 12a%% 7] =10 3) —(

i) Minimum value of U(x).

du(x)

if .
dx

U (x)

min

—>x=a U(@)=U1-2]=-U,

U, is approx. the energy necessary to dissociate the tw
atoms.




