
Chapter 7
Lossless Compression
Algorithms

Multimedia Data Compression

Part I

1

1. Introduction
2. Basics of Information Theory
3. Lossless Compression Algorithms

 Fix-Length Coding
 Run‐length coding
 Differential coding
 Dictionary‐based coding

 Variable - Length Coding
 Shannon-Fano Algorithm
 Huffman Coding Algorithm

2

Chapter 7
Lossless Compression
Algorithms

Introduction

• A digital file (Video, Image and Audio) can easily become very large

 we need Huge volume of multimedia data

• It can be useful or necessary to compress them for ease of storage
or delivery

 we need more efficient data storage, processing and transmission

• However, while compression can save space or assist delivery, it can
slow or delay the opening of the file, since it must be decompressed
when displayed.

• Some forms of compression will also compromise the quality of the
file. 3

• Compression: the process of coding that will effectively
reduce the total number of bits needed to represent
certain information.

•

4

Fig. 7.1: A General Data Compression Scheme.

Introduction

0

1

B

compressionratio
B


• Compression ratio denotes the relation between the size of
the original data before compression and the size of the
compressed data. Compression ratio therefore rates the
effectivity of a compression system in terms of data reduction
capability.

B0 – number of bits before compression

B1 – number of bits after compression

• In general, we would desire any codec (encoder/decoder
scheme) to have a compression ratio much larger than 1. The
higher the compression ratio, the better the lossless
compression scheme.

5

Introduction

• If the compression and decompression processes induce
no information loss, then the compression scheme is
lossless; otherwise, it is lossy.

6

• Lossy compression
means that the quality
of your file will be
reduced. The right side
of this image has been
saved using lossy
compression and
doesn't look as good as
the left.

Introduction

Introduction

Lossless Compression Algorithms
• There will be no data loss in this type of compression as it is

defined by the name. Both original data and the compressed
data are the same in this compression. The algorithms for the
compression and decompression are exact inverse of each
other in the Lossless Compression. The main mechanism in
this compression is removing the redundant data in the
compression and adding them in the decompression.

• Advantages: The original format of the data remains even it is
compressed.

• Disadvantages: Reduction of the size of the data is a small.
Sometimes the size can increase instead of decrease.

7

Introduction

Lossy Compression Algorithms
• It is the compression technique which will lose data in the

original source while trying to keep the visible quality at the
almost same amount. The compression ratio will be very high.
Most probably the ratio will be a value near 10. It reduces non
sensitive information to the human eyes and the compressed
media will not be the media that was available before
compression.

• Advantages: Can reduce the file size more than in the Lossless
Compression

• Disadvantages: The original file cannot be taken after the
decompression

8

Motivating Example

Transmit the data {250, 251, 251, 252, 253, 253, 254, 255} by
the network

• Rewrite the data sequence using binary vector {11111010,

• 11111011 ,11111011 ,11111100 ,11111101
,11111101,11111110, 11111111}

• Totally require 8*8‐bit = 64 bits for transmission

The available bandwidth is limited!!

• Only 16 bits available for the transmission of the data

•  Compression is necessary!!

9

Lossy Compression

• Encode: drop the least significant bits

• Encode data: 8 * 2‐bit = 16 bits

10

Lossless Compression

• Encode: encode the difference

• Encode data: 8‐bit + 7*1‐bit = 15 bits

11

Lossless Compression
Algorithms

12

Basics of Information Theory

Entropy

• The entropy η of an information source with alphabet S = {s1,
s2, . . . , sn} is:

(7.2)

(7.3)

pi – probability that symbol si will occur in S.

– indicates the amount of information (self information
as defined by Shannon) contained in si, which corresponds to
the number of bits needed to encode si.

13

2

1

1
() log

n

i

i i

H S p
p




 

2

1

 log
n

i i

i

p p


 

1log
2 pi

http://www.youtube.com/embed/JnJq3Py0dyM?rel=0

Basics of Information Theory
Distribution of Gray-Level Intensities Example

• For example, in an image with uniform distribution of gray-
level intensity, i.e. pi = 1/256, then the number of bits needed
to code each gray level is 8 bits. The entropy of this image is 8.

14

• Fig. 7.2(a) shows the histogram of an image with uniform distribution of
gray-level intensities, i.e., ∀i pi = 1/256. Hence, the entropy of this image is:

(7.4)

• Fig. 7.2(b) shows the histogram of an image with two possible values. Its
entropy is 0.92.

Fig. 7.2 Histograms for Two Gray-level Images.

Basics of Information Theory

Entropy and Code Length
• The most significant interpretation of entropy in the context of lossless

compression is that entropy represents the average amount of
information contained (in bits) per symbol in the source S.
(bits/symbol), i.e. to conduct lossless compression.

• Entropy therefore gives a lower bound on the number of bits required
to represent the source information, i.e. the minimum amount of bits
can be used to encode a message without loss.

15

Basics of Information Theory

Entropy Example

A. What is the entropy of the image below, where numbers
(0, 20, 50, 99) denote the gray-level intensities?

16

Entropy Example

17

Lossless Compression Algorithms

Lossless Compression

Algorithms

Fix-length coding

Run‐length coding

Differential coding

Dictionary‐based

coding

Variable-Length Coding

Shannon-Fano

Coding

Huffman

Coding

18

Fix-length coding

• The length of the codeword is fixed

1. Run‐length coding

2. Differential coding

3. Dictionary‐based coding

19

Fix-length coding

1. Run length coding

• Run-length coding is a data compression algorithm that
helps us encode large runs of repeating items by only
sending one item from the run and a counter showing
how many times this item is repeated.

• Unfortunately this technique is useless when trying to
compress natural language texts, because they don’t
have long runs of repeating elements. In the other hand
it is useful when it comes to image compression, because
images happen to have long runs pixels with identical
color.

20

Fix-length coding

1. Run length coding

• For example:

The string AAABBCDDDD would be encoded as  3A2B1C4D.

aaaabbaba ??

• A real life example where run-length encoding is quite effective is
the fax machine. Most faxes are white sheets with the occasional
black text. So, a run-length encoding scheme can take each line and
transmit a code for while then the number of pixels, then the code
for black and the number of pixels and so on.

• This method of compression must be used carefully. If there is not a
lot of repetition in the data then it is possible the run length
encoding scheme would actually increase the size of a file. 21

4a2b1a1b1a

• Original data: AAAAABBBAAAAAAAABBBB

Using ASCII code

• B = 20*8bit = 20 * 1Byte = 20 Bytes

Run length coding result: 5A3B8A4B

• Compressed data = 8 * 1‐Byte = 8 Bytes < 20 Bytes 

• Compression ratio: 20/8 = 2.5 > 1  good 

22

Fix-length coding

1. Run length coding (Example)

Extreme cases:

• Best case: AAAAAAAA ~ 8A

• Compression ratio: 8/2 = 4

• Worst case: ABABABAB ~1A1B1A1B1A1B1A1B

• Compression ratio: 8/16 = 0.5

• Negative compression: the resulting compressed file is larger
than the original one.

Example: Original data: ABABBABCABABBA, use RLC and
compute Compression ratio?

23

Fix-length coding

1. Run length coding (Example)

Run‐length coding: 1A1B1A2B1A1B1C1A1B1A2B1A

Compression ratio: 14/24 ~ negative compression

Fix-length coding

2. Differential coding

• In this method first a reference symbol is placed. Then
for each symbol in the data, we place the difference
between that symbol and the reference symbol used.

• For example, using symbol A as reference symbol, the
string:

AAABBC DDDD would be encoded as  A0001123333
(since A is the same as reference symbol, B has a difference of 1 from
the reference symbol and so on.)

24

Fix-length coding

3. Dictionary based coding

• One of the best known dictionary based encoding
algorithms is Lempel-Ziv (LZ) compression algorithm.

• In this method, a dictionary (table) of variable length
strings (common phrases) is built.

• This dictionary contains almost every string that is
expected to occur in data.

• When any of these strings occur in the data, then they
are replaced with the corresponding index to the
dictionary.

25

Fix-length coding

3. Dictionary based coding

• In this method, instead of working with individual
characters in text data, we treat each word as a string
and output the index in the dictionary for that word.

• For example, let us say that the word "compression" has
the index 4978 in one particular dictionary.

• To compress a body of text, each time the string
"compression" appears, it would be replaced by 4978.

26

Variable-length coding

• The length of the codeword is variable

1. Shannon-Fano Algorithm

2. Huffman Coding Algorithm

27

Shannon-Fano Algorithm — a top-down approach

1. Sort the symbols according to the frequency count of their
occurrences.

2. Recursively divide the symbols into two parts, each with
approximately the same number of counts, until all parts
contain only one symbol.

An Example: coding of “HELLO”

Frequency count of the symbols in ”HELLO”.

Symbol H E L O

Count 1 1 2 1

28

Variable-length coding

1. Shannon-Fano Algorithm

http://www.youtube.com/embed/Sn14oGVVzSY?rel=0

Fig. 7.3: Coding Tree for HELLO by Shannon-Fano.
29

Table 7.1: Result of Performing Shannon-Fano on HELLO

Symbol Count Log2 Code # of bits
used

L 2 1.32 0 2*1=2

H 1 2.32 10 2

E 1 2.32 110 3

O 1 2.32 111 3

TOTAL # of bits: 10

1
pi

1log
2 pi – indicates the amount of information (self-information as

defined by Shannon) contained in si, which corresponds to the number of bits
needed to encode si.

Entropy ŋ ==??

pi – probability that symbol si will occur in S.

30
PL . Log 1/PL + PH . Log 1/PH + PE . Log 1/PE + PO . Log 1/PO =

0.4 X 1.32 + 0.2 X 2.32 + 0.2 X 2.32 + 0.2 X 2.32 = 1.92

On average it uses 10/5 = 2 bits
to code each symbol  close
to the lower bound of 1.92 

the result is satisfactory 

Fig. 7.4 Another coding tree for HELLO by Shannon-Fano.

31

Symbol Count Log2 Code # of bits used

L 2 1.32 00 4

H 1 2.32 01 2

E 1 2.32 10 2

O 1 2.32 11 2

TOTAL # of bits: 10

1
pi

Example

• Suppose we have a message consisting :

[A(4), B(2), C(2), D(1), E(1)]

• Draw a Shannon for this distribution.

steps

• first you need to sort the symbols based on the frequency.

• Second, try to spilt the collection into 2 groups, where the
collection with large frequency in the right.

• Third, repeat (1,2) in each sub tree.

• “splitting is after sorting”

steps

• Only we can create 2 combinations:

A (4) B (2) C (2) D (1) E (1)

A (4) B (2) C (2) D (1) E (1)

OR

10

A(4) 6(B,C,D,E)

B(2) C,D,E (4)

C(2) D,E (2)

D(1) E (1)

• Average code length =
22 / 10 = 2.2 bits/symbol

• Compression Ratio = 8 / 2.2 = 3.64

Symbol Count pi Code Subtotal (#of bits)

A 4 0.4 0 4*1 bit = 4

B 2 0.2 10 2*2 bits = 4

C 2 0.2 110 2*3 bits = 6

D 1 0.1 1110 1*4 bits = 4

E 1 0.1 1111 1*4 bits = 4

Totals 10 1 22 bits

Huffman Coding Algorithm— a bottom-up approach

1. Initialization: Put all symbols on a list sorted according to
their frequency counts.

2. Repeat until the list has only one symbol left:
a. From the list pick two symbols with the lowest

frequency counts. Form a Huffman subtree that has
these two symbols as child nodes and create a parent
node.

b. Assign the sum of the children’s frequency counts to the
parent and insert it into the list such that the order is
maintained.

c. Delete the children from the list.
d. Assign a codeword for each leaf based on the path from

the root.
36

Variable-length coding

2. Huffman Coding Algorithm

http://www.youtube.com/embed/CMT-VnydheQ?list=PL52CFDE9DACB21419&showinfo=0" frameborder="0" allowfullscreen

Fig. 7.5: Coding Tree for “HELLO” using the Huffman Algorithm.

37

In the Figure, new symbols P1, P2, P3 are created to refer to the parent
nodes in the Huffman coding tree. The contents in the list are illustrated
below:

After initialization: L H E O

After iteration (a): L P1 H

After iteration (b): L P2

After iteration (c): P3

Properties of Huffman Coding

• Unique Prefix Property: No Huffman code is a prefix of
any other Huffman code - precludes any ambiguity in
decoding.

• Optimality: shortest tree minimum redundancy code
- proved optimal for a given data model (i.e., a given,
accurate, probability distribution):

• The two least frequent symbols will have the same length for
their Huffman codes, differing only at the last bit.

• Symbols that occur more frequently will have shorter Huffman
codes than symbols that occur less frequently.

38

Shannon-Fano VS Huffman Encoding - Tutorial

http://www.youtube.com/embed/8oCIR-YpzqE?rel=0

Huffman Example (1)

A. What is the entropy () of the image below, where numbers
(0, 20, 50, 99) denote the gray-level intensities?

B. Show step by step how to construct the Huffman tree to
encode the above four intensity values in this image. Show
the resulting code for each intensity value.

C. What is the average number of bits needed for each pixel,
using your Huffman code? How does it compare to ?

39

40

Huffman Example (2)

41

Huffman Example (2)

• A(64), D(16), B(13), C(12), E(9), F(5)

• A(64), D(16), P1(14), B(13), C(12)

• A(64), P2(25), D(16), P1(14)

• A(64), P3(30), P2(25)

• A(64), P4(55)

• P5(119)

42

• Average code length =

where P is the probability of the symbol and L is the code length of the symbol

• avg = 0.538 * 1 + 0.1092 * 3 + 0.1008 * 3 + 0.1345 * 3 + 0.0756 * 4 + 0.042 * 4
= 2.042

• Entropy = Average code length (bits/symbol)

Entropy = 2.042 bits/symbol

• Compression Ratio = Original Symbol Length before Compression / Average
Code Length after compression

• Compression Ratio = 8 / 2.042 = 3.918 ≈ 4

• 8 because we are using ASCII which stores each symbol in 1 byte , which is 8
bits

43

Huffman Example (2)

Decompression

Decompression is straight forward using the tree given :

• “100001010101011” 

• 100001010101011

• A

• 1 000 01010101011

• A C

• 1 000 0101 0101011

• A C E

• 1 000 0101 0101 011

• A C E E

• 1 000 0101 0101 011

• A C E E D

 100001010101011 = ACEED

44

