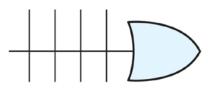
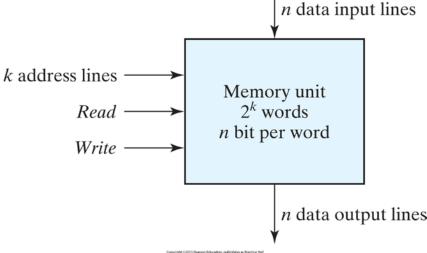

Chapter 7. Memory and Programmable Logic


7.1 Introduction

- Memory unit:
 - A device to which binary information is transferred for storage and from which information is retrieved when needed for processing
 - A collection of cells capable of storing a large quantity of binary information
- RAM
 - Random access memory
 - Write/read operations
- ROM
 - Read only memory
 - Programmable logic device (PLD), programmable logic array (PLA), programmable array logic (PAL), field-programmable gate array (FPGA)

Copyright ©2013 Pearson Education, publishing as Prentice Ha

(a) Conventional symbol



(b) Array logic symbol

FIGURE 7.1 Conventional and array logic diagrams for OR gate

7.2 Random-Access Memory

- Time to transfer information to or from any desired random location is same
- Words:
 - Binary information in groups of bits
 - Byte: A group of 8 bits
 - 16-bit word, 32-bit word
- Data input and output lines
- Address selection lines
 - Identification number for selecting one particular word
- Control lines specify the direction of transfer
- K(kilo=2¹⁰), M(mega=2²⁰), G(giga=2³⁰)

inclusion y c		
Binary	Decimal	Memory content
0000000000	0	1011010101011101
000000001	1	1010101110001001
000000010	2	0000110101000110
	• • •	•
1111111101	1021	1001110100010100
1111111110	1022	0000110100011110
1111111111	1023	1101111000100101

Memory address

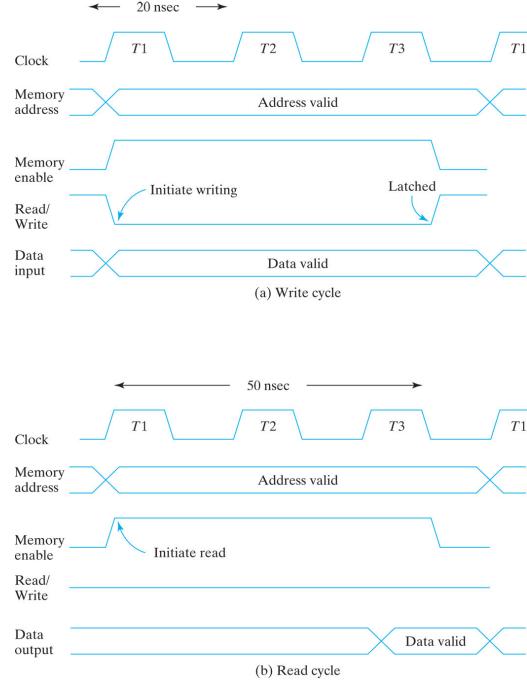
Copyright ©2013 Pearson Education, publishing as Prentice Hall

FIGURE 7.3 Contents of a 1024 × 16 memory

Write and Read Operations

- Write operation
 - 1. Apply the binary address of the desired word to the address lines
 - 2. Apply the data bits that must be stored in memory to the data input lines
 - 3. Activate the *write* input
- Read operation
 - 1. Apply the binary address of the desired word to the address lines
 - 2. Activate the read input

Table 7.1

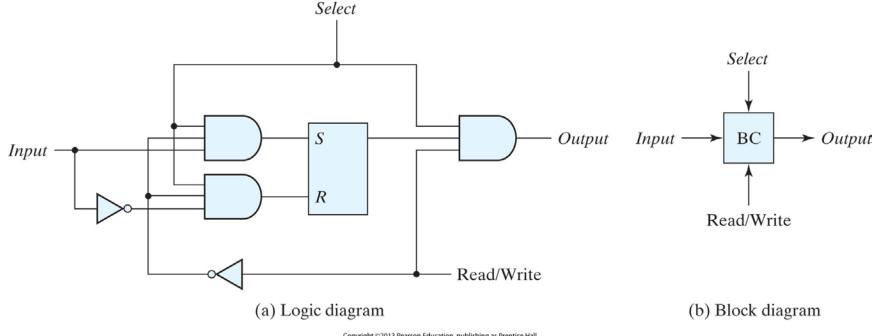

Control Inputs to Memory Chip

Memory Enable	Read/Write	Memory Operation
0	Х	None
1	0	Write to selected word
1	1	Read from selected word

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Timing Waveforms

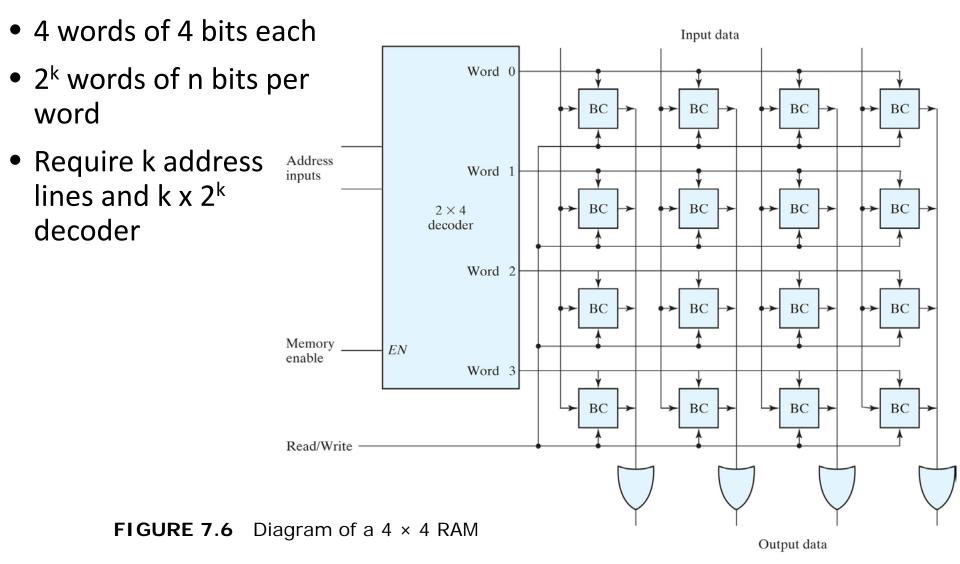
- Access time:
 - Time required to select a word and read it
- Cycle time:
 - Time required to complete a write operation
- Example
 - CPU 50MHz clock (20ns)
 - 50 ns maximum cycle time


Copyright ©2013 Pearson Education, publishing as Prentice Hall

Types of Memories

- Access time
 - Random-access memory: same access time
 - Sequential-access memory: magnetic disc or tape, variable access time
- Operating modes
 - Static RAM(SRAM): internal latches
 - Dynamic RAM(DRAM): MOS transistors for storing binary information as electric charges on the capacitors; require refreshing the dynamic memory (recharge)
- Volatile
 - Loss stored information when power down (CMOS integrated circuit RAM ; SRAM, DRAM)
- Nonvolatile
 - Retain the stored information after the removal of power(Magnetic disk)

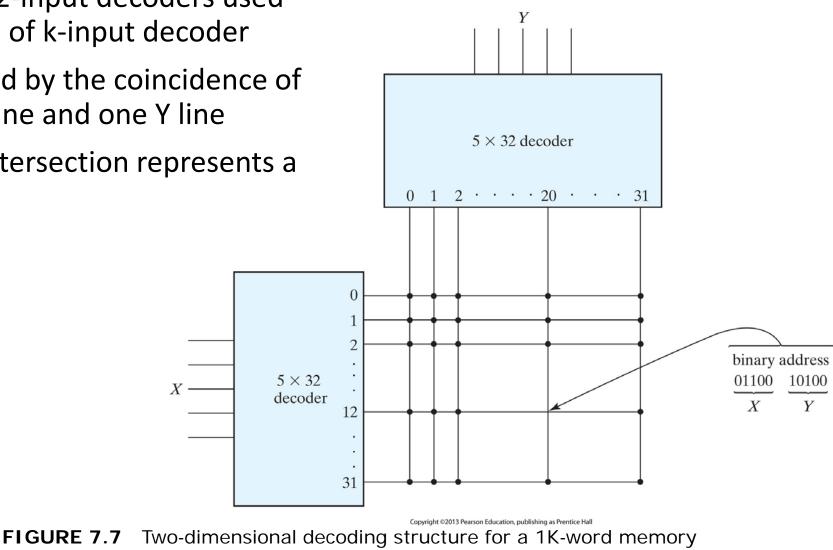
7.3 Memory Decoding


- RAM of m words and n bits per word: m X n binary storage cells
- Associated decoding circuits for selecting individual words
- SR latch
- To pack as many cells as possible in the small area

Copyright ©2013 Pearson Education, publishing as Prentice Hall

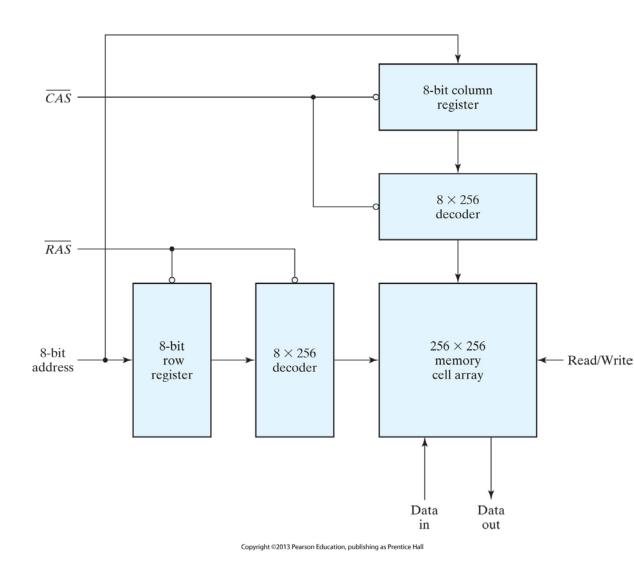
FIGURE 7.5 Memory cell

Logical Construction of RAM



Copyright ©2013 Pearson Education, publishing as Prentice Hall

Coincident Decording


- Two k/2-input decoders used instead of k-input decoder
- Selected by the coincidence of one X line and one Y line
- Each intersection represents a word

 $X \cdot$

Address Multiplexing

- Large capacity
- Reduce the size
- Row address strobe(RAS)
- Column address strobe(CAS)

FIGURE 7.8 Address multiplexing for a 64K DRAM

7.4 Error Detection and Correction

- Occasional errors in storing and retrieving the binary information
- Employing error-detecting and error-correcting codes
- Parity bit check (detect, but cannot correct)
- Syndrome: generate a unique pattern
- Hamming code
 - Add K parity bits to an n-bit data word
 - Positions numbers as a power of 2 for parity bits

1 2 3 4 5 6 7 8 9 10 Bit position: 11 12 $P_1 \quad P_2 \quad 1 \quad P_4 \quad 1 \quad 0 \quad 0 \quad P_8 \quad 0$ 1 0 0 $C_1 = \text{XOR of bits}(1, 3, 5, 7, 9, 11)$ $P_1 = XOR \text{ of bits } (3, 5, 7, 611) = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 0$ $P_2 = \text{XOR of bits} (3, 5, 7, 10, 11) = 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 0$ $C_2 = \text{XOR of bits}(2, 3, 6, 7, 10, 11)$ $P_4 = \text{XOR of bits}(5, 6, 7, 12) = 1 \oplus 0 \oplus 0 \oplus 0 = 1$ $C_4 = \text{XOR of bits}(4, 5, 6, 7, 12)$ $P_8 = \text{XOR of bits } (9, 10, 11, 12) = 0 \oplus 1 \oplus 0 \oplus 0 = 1$ $C_8 = \text{XOR of bits} (8, 9, 10, 11, 12)$

Bit position	: 1	2	3	4	5	6	7	8	9	10	11	12	
	0	0	1	1	1	0	0	1	0	1	0	0	No error
	1	0	1	1	1	0	0	1	0	1	0	0	Error in bit 1
	0	0	1	1	0	0	0	1	0	1	0	0	Error in bit 5
$C_1 = XOR \text{ of bits } (1, 3, 5, 7, 9, 11)$													
$C_2 = XOR \text{ of bits } (2, 3, 6, 7, 10, 11)$													
				<i>C</i> ₄	= X	OR	of bits	s (4, 5	5, 6, 7	7, 12)			
				C_8	= X	OR	of bits	s (8,	9, 10,	, 11, 1	2)		
						C_8		C_4			C_2		C_1
	For no			0		0			0		0		
	With er			0		0			0		1		
	With er	ror in	bit 5:			0		1			0		1

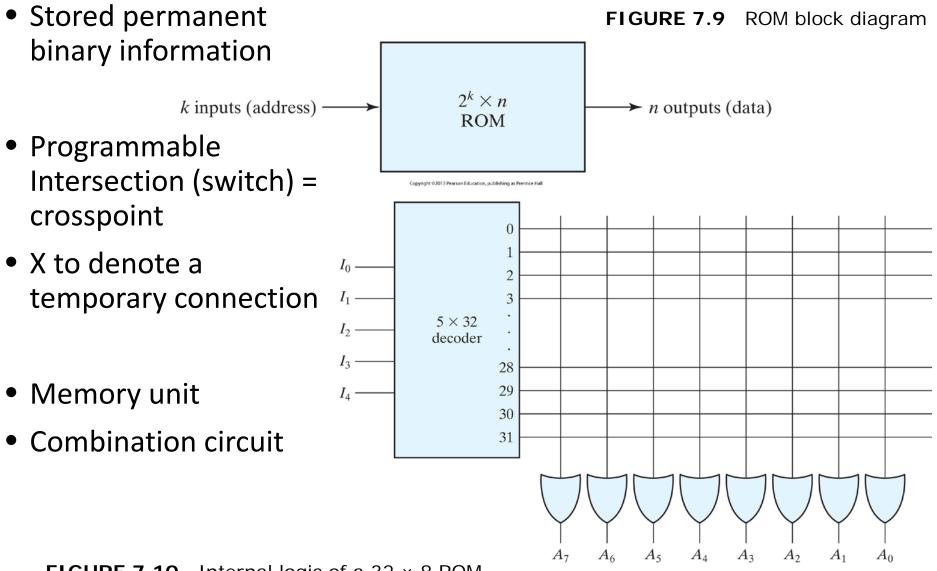
- Give the position of the bit in error
- Uniquely describe a bit in error $(2^k 1 \ge n + k)$

ange of Data Bits for k Check Bits	;
Number of Check Bits, k	Range of Data Bits, n
3	2–4
4	5–11
5	12–26
6	27–57
7	58-120

Copyright 03013 Pearson Education, publishing as Prentice Hall

Single-Error Correction, Double-Error Detection

- Hamming code: detect and correct only a single error
- By adding another parity bit to the coded word: correct a single error and detect double errors
- Ex 001110010100(P13)


If C = 0 and P = 0, no error occurred.

If $C \neq 0$ and P = 1, a single error occurred that can be corrected.

If $C \neq 0$ and P = 0, a double error occurred that is detected, but that cannot be corrected.

If C = 0 and P = 1, an error occurred in the P_{13} bit.

7.5 Read-Only Memory (ROM)

Copyright ©2013 Pearson Education, publishing as Prentice Hall

FIGURE 7.10 Internal logic of a 32 × 8 ROM

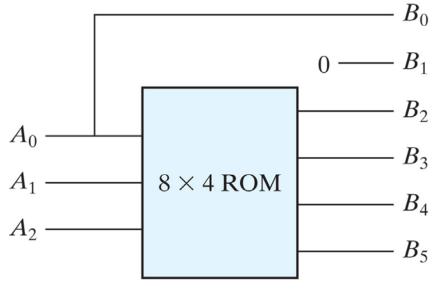
Table 7.3ROM Truth Table (Partial)

I4

Truth Ta	ble (Pa	rtial)												
	Input	s					Out	puts						
I ₃	l ₂	<i>I</i> 1	I ₀	A ₇	A 6	A5	A 4	A ₃	A ₂	A 1	Ao			
0	0	0	0	1	0	1	1	0	1	1	0			
0	0	0	1	0	0	0	1	1	1	0	1			
$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	1 1	0 1	1 1	$\begin{array}{c} 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 1 \\ 0 \end{array}$			
0	:	1	1	1	0	1	1	: 0	0	1	0			
1	i	0	0	0	0	0	0	. 1	0	0	1			
1	1	0	1	1	1	1	0	0	0	1	0			
1	1	1	0	0	1	0	0	1	0	1	0			
1	1	1	1	0	0	1	1	0	0	1	1			
				Copyrig					1					
								0	<u> </u>	*	_	-*	-*	
								1					_ *	*
				$I_0 = -$				2						
				7						\uparrow				
				$I_1 - $				3		*	_	-*	-*	
				$I_2 - $			$\times 32$							
				-2		de	ecodei	:						
				$I_3 - $	_			28						<u></u>
														Î
				$I_4 - $				29		Ť	1	Ť		
								30		-	-*			*
								31	<u> </u>	+	_	-*	*	
											$ \bot $			
													Л	Л
											\bigvee	\bigvee	\bigvee	\sum
										T	Ĭ	Ţ	Ţ	Ī
										\dot{A}_7	A_6	A_5	A_4 .	A_3
										,	0	5	-	5

Copyright ©2013 Pearson Education, publishing as Prentice Hall

 A_2


 A_1

 A_0

Example 7.1

Table 7.4 Truth Table for Circuit of Example 7.1

I	nput	s							
A ₂	A 1	A ₀	B 5	B 4	B ₃	B ₂	B ₁	Bo	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	1
0	1	0	0	0	0	1	0	0	4
0	1	1	0	0	1	0	0	1	9
1	0	0	0	1	0	0	0	0	16
1	0	1	0	1	1	0	0	1	25
1	1	0	1	0	0	1	0	0	36
1	1	1	1	1	0	0	0	1	49

(a) Block diagram

A_2	A_1	A_0	B_5	B_4	B_3	B_2
$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ $	0 0 0 0 0 0 1	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ $	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} $
1	1	1	1	1	0	0

(b) ROM truth table