
CHAPTER 7 NOTES EXPONENT PROPERTIES REVIEW

Product of Powers: <u>Multiplying</u> numbers or variables with the same base	Product of Powers: WHEN YOU SEE MULTIPLICATION, ADD!	 Each common base stays the same and moves directly to the answer. Then exponents are added. Numbers that do not have a common base are multiplied like normal.
1. $(-3)^4 \cdot (-3)^2$	2. $x^3 \cdot x^2$	** 3 . 7 ^{1/2} • 7 ^{3/2}
<u>Power</u> of a Power: Raising a power to another	Power of a Power: MULTIPLY A POWER TO A POWER!	 Identify the base and the exponent. Immediately put base into the answer. Multiply the exponent with the exponent and
power		 Simplify your answer as much as possible. **6. (7^{2/3})^{3/4}
4. (a ²) ⁴	5. (3 ²) ⁶	
<u>Quotient</u> of Powers: Dividing numbers or variables with the same base	Quotient of Powers: DIVISION IS SUBTRACTION!	 Each common base stays the same and goes to the numerator of the answer. Then, the exponents are subtracted. Numbers that do not have a common base are divided like normal. If they do not divide evenly, reduce them like a fraction.
7. $\frac{x^3}{x^{-2}}$	8. $\frac{2x^7}{x^5}$	**9. $\frac{7^{2/3}}{7^{1/3}}$

19. $\left(7^{\frac{4}{3}}\right)^{\frac{5}{4}}$	20. $\frac{13^{\frac{3}{7}}}{13^{\frac{5}{7}}}$
	-5/6
$21. \left(\frac{x^3}{y^5}\right)^2$	22. $\frac{3^{5/6}}{3^{1/3}}$
23. $\left(\frac{a^9}{b^6}\right)^{\frac{1}{3}}$	24. (36m ⁴ n ¹⁰) ^{1/2}

7.1 EVALUATING RATIONAL EXPONENTS ON THE CALCULATOR

Rational Exponent: We have a rational exponent when there is a fraction in the exponent position. What we'll find is that we can take a fraction in the exponent position and very easily convert it into a radical.

To evaluate the expressions with a calculator:

When you enter in that rational exponent, make sure you put it in as a fraction in parenthesis. As always, all negative bases should be put in parenthesis.

	Expression	Keystrokes		Display	
a.	91/5	9 ^ (1 ÷ 5) E	NTER	1.551845574	
b.	12 ^{3/8}	12 ^ (3 ÷ 8) E	NTER	2.539176951	
Evalı	uate the following using you	r calculator. NO DECIMAL ANSWERS!			
25.	$49^{\frac{1}{2}}$	26. $27^{-\frac{2}{3}}$	27. $25^{\frac{3}{2}}$		28. $8^{\frac{5}{3}}$

7.1 RADICALS WITH A LARGER INDEX: SIMPLIFYING & SOLVING

Radical: We know radicals as square roots. But really, radicals can be used to express any root:

∛8,	$\sqrt[4]{48}$,	$\sqrt[10]{256}$

Index: The index tells us exactly what type of root that it is. To determine whether we are looking for pairs in a square root, or sets of three of something in a cube root, the index tells us the size of the group that we are looking to pull out.

example with square roots!	ermining the index, use a facto	or tree looking for groups of whatever the inde:	k is. Let's look back at an
1 . √112	Index:	2 . $\sqrt{48}$	Index:
	Groups of		Groups of
3. ³ √250	Index:	4. ⁵ √128	Index:
	Groups of		Groups of

VOCABULARY	the <u>nth roo</u>	<mark>ot of a</mark> where a is a REAL nu	mber and <u>n is the inde</u>	<mark>ex</mark> .	
NTH ROOT	$\sqrt[n]{a}$				
	N	N is ODD (3, 5,) N is EVEN (2, 4, 6,))
	а	Any real #	Greater than 0 (positive)	0	Less than 0 (negative)
REAL NTH ROOTS	# real nth roots	ONE	TWO	ONE	NONE (imaginary)
	Examples	$\sqrt[3]{8} = 2; \sqrt[3]{-1} = -1$	$\sqrt[4]{16} = 2; -\sqrt[4]{16} = -2$	$\sqrt{0} = 0; \sqrt[4]{0} = 0$	$\sqrt[4]{-20}$, no real root

Solve the equations using nth roots.

5. $3x^4 = 768$	Index: # Answers: ONE TWO NONE	6. $(x-2)^3 = 16$	Index: # Answers: ONE TWO NONE
7. $6x^3 = 384$	Index: # Answers: ONE TWO NONE	8. $8(x+8)^4 = 128$	Index: # Answers: ONE TWO NONE

7.2 EVALUATE ROOTS AND RATIONAL EXPONENTS

Use a calculator to evaluate the following expressions. Circle if each is a radical expression or rational exponent!				
1. $\sqrt{16} =$	2 . $\sqrt[3]{125} =$		3. $64^{\frac{1}{3}} =$	
Radical Expression Rational Expon	ent Radical Expression	Rational Exponent	Radical Expression	Rational Exponent
4. $25^{3/2} =$	5. $(\sqrt[3]{27})^2 =$		6. $32^{-1/5} =$	
Radical Expression Rational Expon	ent Radical Expression	Rational Exponent	Radical Expression	Rational Exponent
7. $-\sqrt[4]{81} =$	8. $8^{4/3} =$		9. $144^{\frac{1}{2}} =$	
Radical Expression Rational Expon	ent Radical Expression	Rational Exponent	Radical Expression	Rational Exponent

VOCABULARY:		
Radical: We know radicals as square roots. Bu used to express any root: $\sqrt[3]{8}, \sqrt[4]{48}, \sqrt[10]{256}$		Index: The index tells us exactly what type of root that it is. To determine whether we are looking for pairs in a square root, or sets of three of something in a cube root, the index tells us the size of the group that we are looking to pull out.
Rational Exponent: We have a rational expon the exponent position and very easily convert it		in the exponent position. What we'll find is that we can take a fraction in
Every radical can be written as a base wi	ith a rational exponent. Loo base with a rational (fi	ook at the examples below. What you see is a radical turning into a (fractional) exponent!!
$\left(\sqrt[2]{25}\right)^{l} = 25$	$5^{\frac{1}{2}}$ $(\sqrt[3]{8})^{1}$	$\int^{1} = 8^{\frac{1}{3}}$ $(\sqrt[3]{x})^{2} = x^{\frac{2}{3}}$
Look at the pattern above: INDEX of the	radical → numerator OR	denominator of the rational exponent
EXPONENT with	the radical \rightarrow numerator	OR denominator of the rational exponent
How does one co	DNVERT FROM RADICAL FORM	$\left(\sqrt[2]{25}\right)^{l}$ to Rational exponent form $25^{\frac{1}{2}}$?
fraction created	d by:	egative, put it in parenthesis first. The base will then be raised by a
		nominator of the fraction. Think: index – denominator! s the numerator of the fraction.

Rewrite the expression	using rational exponent notation.	
10. $(\sqrt[5]{63})^3$	11. $(\sqrt[3]{-7})^4$	12. $(\sqrt[7]{-13})^9$
Rewrite the expression	using radical notation.	
13. 39 ⁵	14. $(-5)^{\frac{11}{6}}$	15. $(-24)^{\frac{4}{3}}$
	ries of RADICALS	
ADDING AND Subtracting Radicals	 You can add or subtract radicals as long as they have the same index and the same radicand (number underneath the radical). We will call these "like radicals" because much like "like terms" on the number in front of the radical will be affected, while the radicand will remain the same. 	Before you begin any addition or subtraction problem, you should simplify each radical as much as possible. For example: $3\sqrt{20} + 5\sqrt{45}$
$2\sqrt[3]{6} + 7\sqrt[3]{6} =$	1	$0\sqrt[4]{2x} - 3\sqrt[4]{2x} =$
12 ∜2 −7 ∜32		

MULTIPLYING RADICAL BY RADICALS	• You can multiply a radical by another radical as long as they both have the same index.	To multiply a radical by another radical, multiply the numbers in front, multiply the radicands, and keep the index the same. Then check your answer to see if anything can be pulled out. If not, it is in simplified form. $(6\sqrt[3]{3})(2\sqrt[3]{7})$
$5\sqrt[4]{64} \cdot 2\sqrt[4]{8} =$		$\sqrt[3]{40x}$ · $\sqrt[3]{5x^4}$ =

7.3 SOLVING RADICAL EQUATIONS

VOCABULARY	7.3 JULYING RADICAL EQUATIONS		
	A radical equation is an equation that contains radicals with the variable in the radicand.		
RADICAL EQUATION	EXAMPLE:		
	$\sqrt{x} + 6 = 3$		
	A solution that does not make the original equation true.		
Extraneous Solution	YOU MUST CHECK ALL OF YOUR SOLUTIONS TO MAKE SURE THAT THEY ARE NOT EXTRANEOUS SOLUTIONS!		
	To solve a radical equation, follow these steps:		
	Step 1 Isolate the radical on of the equation, if necessary.		
SOLVING RADICAL	Step 2 Raise each side of the equation to the		
EQUATIONS	same to eliminate the radical.		
	Step 3 Solve the resulting using techniques		
	that you learned in previous chapters.		
	Step 4 Check your solution.		

Solve each radical equation.

$\sqrt{x+6} = 3$	$\sqrt{2x+1} - \sqrt{10-x} = 0$
CHECK YOUR ANSWER(S):	CHECK YOUR ANSWER(S):

$\sqrt[3]{x-5} + 1 = -1$	$(3x + 4)^{2/3} = 16$
CHECK YOUR ANSWER(S):	CHECK YOUR ANSWER(S):
	·
$x - 2 = \sqrt{x + 10}$	<u> </u>
	CHECK YOUR ANSWER(S):
	<u> </u>

7.4 FUNCTION OPERATIONS AND COMPOSITION FUNCTIONS

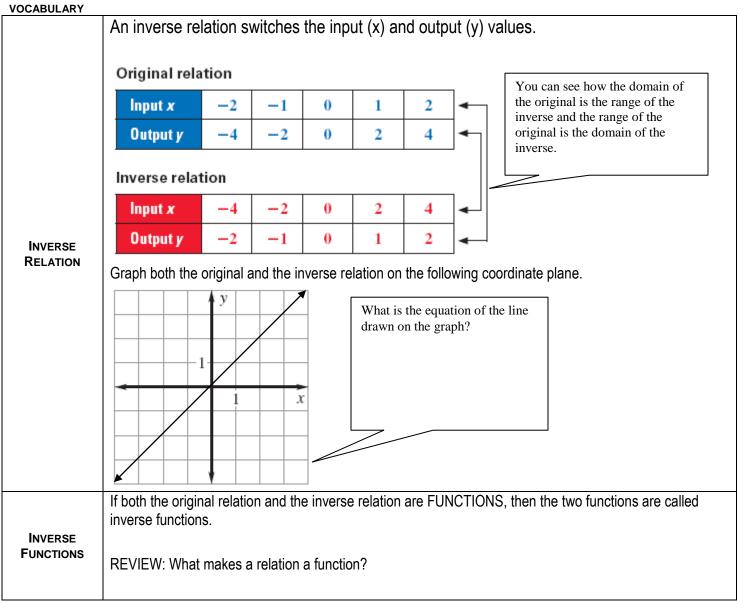
FUNCTION NOTATION	You can write an equation in function form by replacing the y with an f(x) or another variable. This is read "f of x".									
	Evaluate the function for the given value of x.									
	f(x) = 6x	g(x) = 3x + 5								
EVALUATING FUNCTIONS (REVIEW)	Evaluate $f(2)$	Evaluate $g(-3)$								
OPERATIONS ON FUNCTIONS FIND THE FOLLOWING:										
GIVEN: f	$(x) = 2x + 3 \qquad g(x)$	= x - 5								
f(x) + g(x)	;)	f(x) - g(x)								
g(x)+f((x)	g(x) - f(x)								

$GIVEN: f(x) = x^3$	g(x) = 7x	
$f(x) \cdot g(x)$		$\frac{f(x)}{f(x)}$
		g(x)
$g(x) \cdot f(x)$		g(x)
		f(x)

	•	with a function g is found by replacing each variable in f							
	with the expression for g.								
COMPOSITION OF FUNCTIONS	The composition of f with g is written as $f(g(x))$ or $(f \circ g)(x)$.								
	This is a process for which we s	This is a process for which we substitute an entire function into another function.							
	The composition of a function f with the expression for g.	with a function g is found by replacing each variable in f							
COMPOSITION OF FUNCTIONS	The composition of f with g is w	ritten as $f(g(x))$ or $(f \circ g)(x)$.							
	This is a process for which we s	substitute an entire function into another function.							
	f(x) = 6x	g(x) = 3x + 5							
Evaluate $f(g$	(2)).	COMPOSITION: START ON THE INSIDE							
		STEPS:							
		1) Find $g(2)$							
		 Substitute #1 in for x in the f function. 							
		3) Simplify							

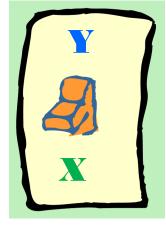
$f(x) = 6x \qquad g(x) =$	= 3x + 5			
Evaluate $g(f(2))$.	COMPOSITION: START ON THE INSIDE			
	 STEPS: 1) Find f(2) 2) Substitute #1 in for x in the g function. 3) Simplify 			
Find $f(g(x))$.	COMPOSITION: START ON THE INSIDE			
	 STEPS: 1) Take the inside function g(x) 2) Substitute #1 in for x in the f function. 3) Simplify (Your answer will be an expression) 			
	Plug the g function into the f function!			
Find $g(f(x))$.	COMPOSITION: START ON THE INSIDE			
	 STEPS: 1) Take the inside function f(x) 2) Substitute #1 in for x in the g function. 3) Simplify (Your answer will be an expression) 			
	Plug the f function into the g function!			

Notice how the order of the functions MATTER when it comes to the final answer!


You go to a hair salon to buy hair care products and you have two coupons. If you can use both, does it make a difference which one you use first? Let's say the total before the coupons is \$50.

\$10 off first	15% off first

7.5 INVERSE FUNCTIONS

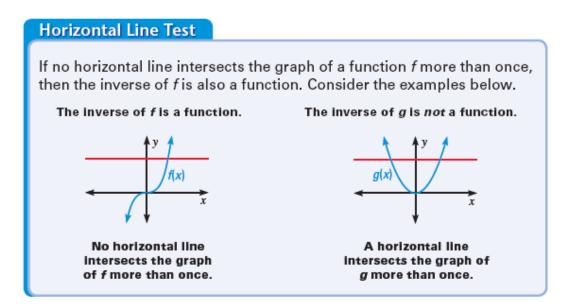


Find the inverse of each relation:

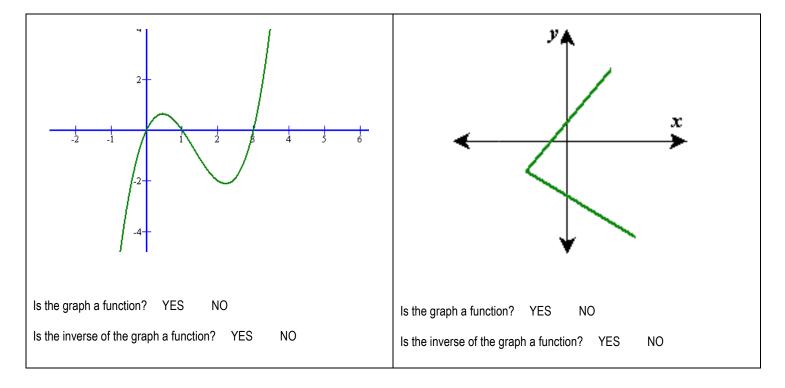
Γ		0		-	2	
	X	0		2	3	4
		-	~	_	_	
I	y	3	5	7	9	11
						1
	X					
	v					
	У					
I	s the or	iginal re	elation	a functi	on?	
1	s the in	verse re	elation	a functi	on?	
1	Are thes	e inver	se func	tions?		_

FINDIN	FINDING INVERSE FUNCTIONS							
You cai steps.	You can find the inverse of a function by following these steps.							
Step 1	Replace <i>f</i> (<i>x</i>) with (if the function is written using notation).							
Step 2	Switch x and y.							
Step 3	Solve for							

Find the inverse of each function. DON'T FORGET TO SWITCH X AND Y!!!


f(x) = -3x + 6

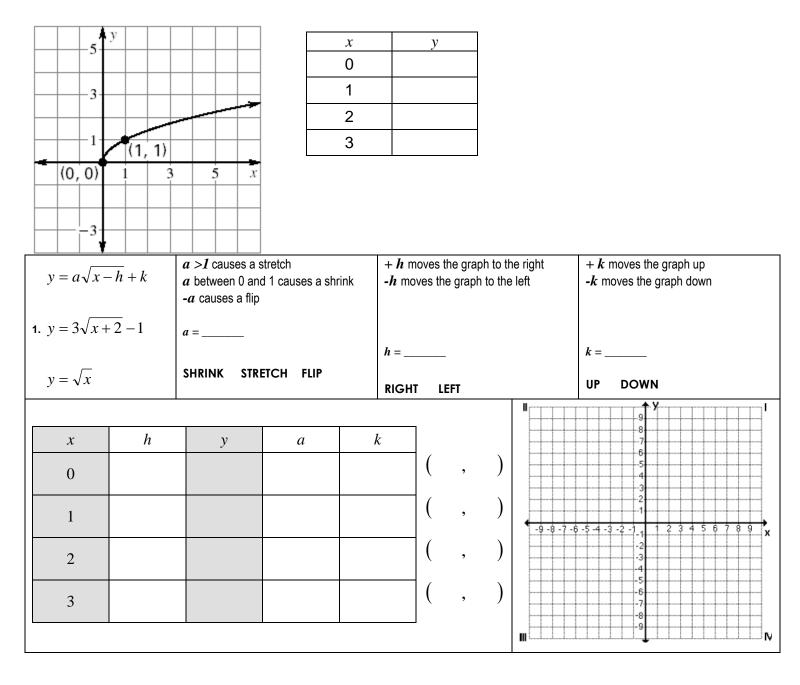
Find the inverse of the following functions.

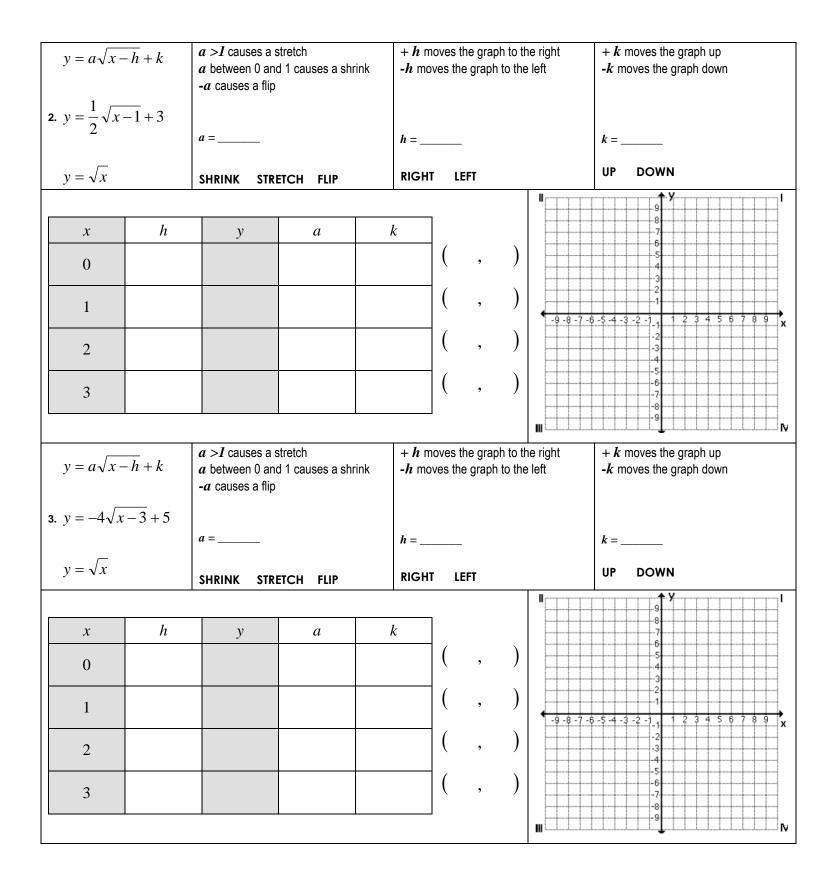

$$f(x) = 2x + 10$$

$$f(x) = x^2 - 3$$

To determine if the graph of the inverse is a function, use the HORIZONTAL LINE TEST. Rule:

Determine if each graph is a function and then if the graph's inverse is a function.

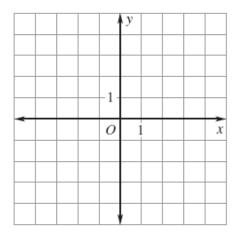


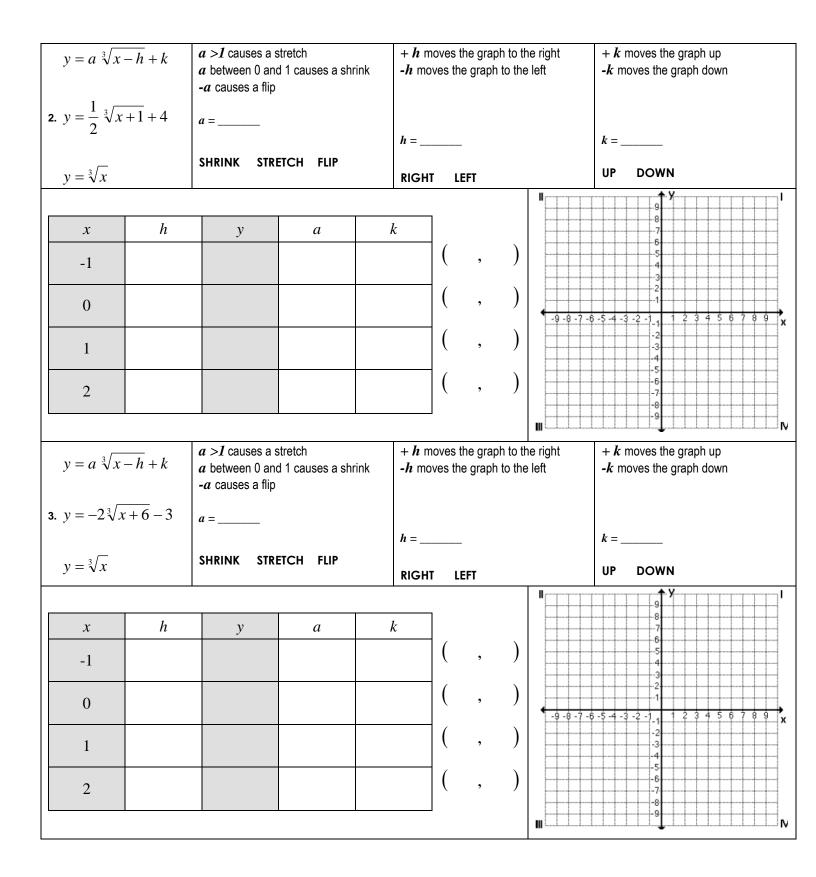

7.6 GRAPHING SQUARE ROOT FUNCTIONS

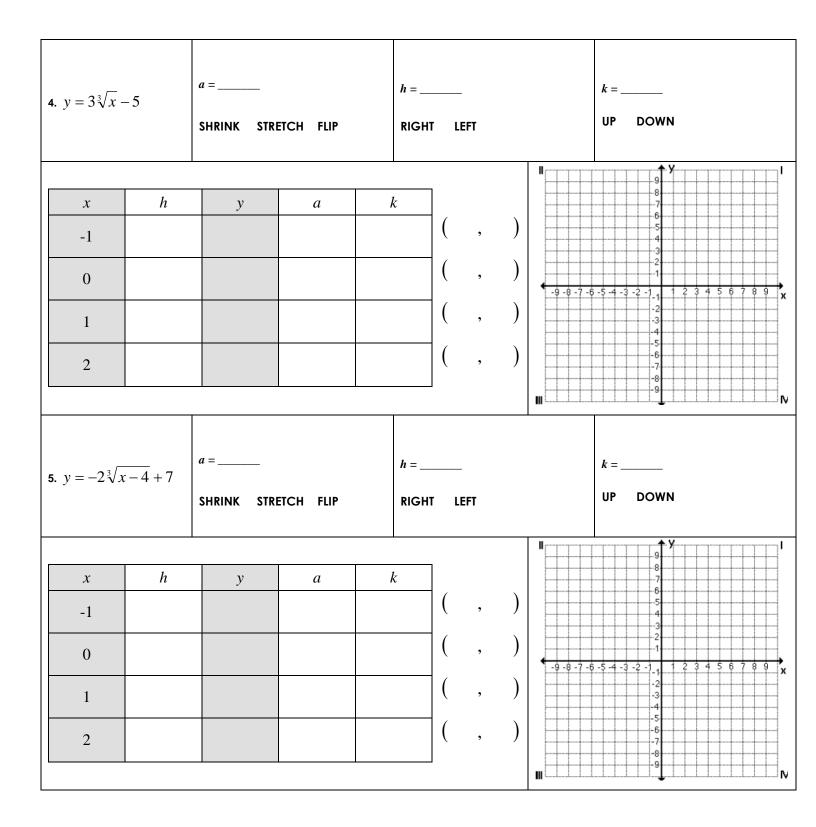
VOCABULARY	
Babioai	A radical function contains a radical with a variable in the radicand.
RADICAL FUNCTION	EXAMPLE:

PARENT SQUARE ROOT FUNCTION

The most basic square root function in the family of all square root functions, called the ______, is $y = \sqrt{x}$. The graph of the parent square root function is shown.




7.6 GRAPHING CUBE ROOT FUNCTIONS


The most basic cube root function in the family of all cube root functions, called the ______, Is $y = \sqrt[3]{x}$. Use the t-chart to help draw the parent graph.

x	У
-1	
0	
1	
2	

$y = a \sqrt[3]{x-h} + k$ a > I causes a stretch a between 0 and 1 causes a shrink -a causes a flip			 + h moves the graph to the right -h moves the graph to the left 				 + k moves the graph up -k moves the graph down 					
1. $y = 3\sqrt[3]{x-2} + 1$	<i>a</i> =			h =				<i>k</i> =				
$y = \sqrt[3]{x}$	SHRINK STRI	ETCH FLIP		RIGHI		FT		UP	DOWN			
							•	••••••	9 			1
x h	у	а	j	k								
-1					(,)						
0					(,)	-9 -8 -7 -	3 -5 -4 -3	-2 -1 1 2	3456	789	→ ×
1					(,)			-2			¢
2					(,)			6 7 8			
												Γv

