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CHAPTER 7
ELECTRODYNAMICS

Michael Faraday James C. Maxwell
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Outlines

1. Electromotive Force

2. Electromagnetic Induction

3. Maxwell’s Equations

1/ 13/ 2015
C

h
apter 7 E

lectrodyn
am

ics

3

Summary of Electrostatics and 
Magnetostatics

· ρ/ε ·

This semester, we will study E&M phenomena that are 
time-dependent.  We start with Faraday’s law of induction 
and time dependent Maxwell’s equations to derive wave 
equations that govern the electromagnetic wave.  We then 
investigate the potential generated by a time-dependent 
charge distribution and radiation from accelerating 
charge distribution.  Last we study the relationship 
between electrodynamics and special relativity.
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Time dependent E&M phenomena

Charging a capacitor
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Applying a step voltage to an inductor
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Electromotive force
Ohm’s Law

In electrostatics, we said that 	 inside a conductor 
because if ,  the charges will re-arrange themselves 
until .
In magnetostatics, we assume that there is a “steady 
current” flows in a conducting wire and treated this 
“steady current” as a source in magnetostatics.  Under 
such condition, the is not required to be zero inside a 
conductor.
For most materials, 

∝ (force per unit charge)

σ -------- conductivity
⁄ ------- resistivity
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The force experienced by the charge is giving by the 
Coulomb force and the Lorentz force,

Since in general ≪ , so we can ignore the magnetic 
field 

Example 1 A wire with a conductivity σ

=

Define 
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Example 2  Two long coaxial metal cylindrical tubes with 
radii of a and b, are separated by material of conductivity σ.  
If they are maintained at a potential difference V, find the 
current flows between the cylinders. 

First we use Gauss’s law to find 
out the E field between the two 
cylinders to be

The current and voltage between the inner cylinder and the 
outer cylinder are giving by:

· · ·

·
σ

·
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For steady current inside a conductor that has a uniform 
conductivity, we can see that 

· · ·

Since 

·

So the above equation implies that inside a 
conductor.  All the charges reside on the surface of a 
conductor.

(ρ is the charge density)
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Electromotive Force

Electromotive force (emf) is not a force, it is the ability to drive 
current through a circuit.  So it is kind of like a voltage.  In the 
circuit below, the chemical energy in the battery generates the 
emf to drive a current through the circuit.

The current in the circuit is the same everywhere around the 
loop.  There is no charge accumulation anywhere as 
Kirchhoff’s law indicated.
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The Ohm’s Law stated that 

· ·

		 , the electromotive force is defined as the line 
integral of a force per unit charge. (Energy per unit charge)

	 · · ·

Let

--- force per unit charge
--- force due to source
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Motional emf

The motional emf is the electromotive force due to the 
motion of a conducting wire through a magnetic field.

This emf is caused by the 
Lorentz force acting on the 
charge carriers.

B

Charges will pile up at the two ends of the falling rod 
until the potential difference between the two ends is 
equal to the electromotive force generated by the 
movement of the rod inside the magnetic field.
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Now if we make the rod as part of a circuit, we can see 
that the motional emf generated will drive a current 
through the circuit.

·

Note: The Lorentz force does not do work because 	 .

The person pulling the rod is doing the work, because as 
emf generate the current I, moving upward, the force per 
unit charge is
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Now if we look from the charge point 
of view, its velocity is as shown on 

the left.  The work done by is

⋅

So the work done per unit charge is exactly equal to the emf.

The force of pull, contributes indirectly to the emf, 

even though it is perpendicular to the wire, whereas 
contributes indirectly to the work done, even it is 
perpendicular to the motion of the charge. (See AJP 42 295 1974)

See Fig 7.12
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Another way to look at motional emf

Define flux of a magnetic field through an area as

·

So the flux in the previous case is

And

· ·

Flux rule

The minus sign is called Lenz’s law, i.e. the induced 
emf will go against the flux change.
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Proof of the flux rule for an arbitrary shaped loop
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The flux change is 

·
	

--- velocity of the point P on the loop
--- velocity of the charge moving alone 

·

Since ∥ , so ,	 let ,

· ·

·
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Flux rule is very useful for finding motional emf.  However, 
occasionally we have to use Lorentz force law to find the 
motional emf.

Example 7-4

A metal disk rotates with in a uniform magnetic field , find the 
emf between the edge and the center of the disk.  

The magnetic force per unit charge is given by

The emf can be considered as the work done per unit charge

	 ·
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Electromagnetic Induction

In 1831, Faraday did a series of experiments showing the 
effects of motional emf on a closed loop of circuit.

A change of magnetic field induces an “electric field” 
that produces emf or current in a closed loop circuit.
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The above experiments can be expressed by the flux rule:

·

From Stoke’s theorem 

· · · ·

This is Faraday’s law 

Example 7-5
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The induced electric filed

In Ampere’s law we have

,	

In Faraday’s law of induction, we have

We can see that there are certain similarities and 
differences between the two cases.  For example, in the 1st

case, · in all situations, because there is no 
magnetic monopole;  while in the 2nd case, · is 
only true when no source is involved.

·

·
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We can even assume that the term as a “current 

density” term, and use an expression similar to the “Biot-
Savart law as follow:

Re-arrange the equation on the right

And

Note: This is only true for Coulomb gauge, where  · .

1/ 13/ 2015
C

h
apter 7 E

lectrodyn
am

ics

23

Example 7-7  A uniform magnetic field fills the shaded 
circular region as shown.  If field is changing with time, 
what is the induced field at ?

Use equation (7.18)

·

Therefore
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Example 7-8  A line charge  is glued on the rim of a wheel of radius b, 
in the center region out to radius a, there is a uniform magnetic field 
pointing up a shown.  What happen if the field is turn off?

From Faraday’s law

·

The torque on 

·

Total torque on the wheel

·

Total angular momentum gained

∆ · · ·
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Example 7.9
An infinitely long straight wire carries a slowly varying current I(t).  
Determine the induced electric field as a function of the distance s 
from the wire.

Apply Ampere law to the Ampere loop in 
the right figure.

· ·
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Induction

Here we will look into how two current-carrying loops 
interact with each other.

We ask the question, what is the 
magnetic flux through loop 2, when 
there is a current I1 on the loop 1?

			 ; · 			

From definition of vector potential, , and 
apply Stoke’s theorem, we obtain 

· · 				
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·

·

M21 is the mutual inductance between loop 1 and loop 2.
It is a purely geometric factor and from the symmetry 
of the equation, we can see that  M21 = M12

From Eq. 5-64

Substitute above eq. into eq. (3) on the previous page

And
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Now if the current is time-dependent, the magnetic flux is 
also depended on time,

A varying current in loop 1 will induce a varying current in a 
near-by loop 2.  Not only that, it can induct an ε on itself !!!

This means that a current I in loop 1 produce a flux in loop 2, 
and the same current in loop 2 will produce the same flux in 
loop 1, even if loop 1 and loop 2 are very different. 

and       

and
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Example 7.10.  A short solenoid (n1 turns per unit length) lies on 
the axis of a long solenoid (n2 turns per unit length) as shown.  

Current I flows in the short solenoid, find the flux through the long 
solenoid. 

First, the magnetic field inside the short solenoid due to 
current I on the solenoid is ,

· ·

The flux in one loop of solenoid 2 will be

This flux passing through · loops on the long 
solenoid, so the total flux of long solenoid is 
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Now we want to show that the mutual inductance of the 
long solenoid on the smaller solenoid is also the same.

First we will find the magnetic field due to current I 
on the outer long solenoid.

The flux passing through one loop of the smaller 
solenoid due to this magnetic field is 

·

The flux passing through the “whole” solenoid is

·

where M is
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Example 7.11.  Find the self-inductance of a toroid coil.

From Eq. 5-60, page 239 

The flux for one loop is

· · ·

Total flux
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Energy stored in the magnetic field

In Chap. 2, we discussed the energy storage in the field of 
a capacitor is given by:

·

Here we want to derive the following 
expression for the energy stored in a 
solenoid.

·
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Because of the self-induction, as the switch is turn on, the 
solenoid will induce a back-emf to oppose the current 
change, the work done to overcome this back-emf is  

ε ·

This is the work required to run a current through an 
inductor with a self-inductance L.  This is also the energy 
stored in the magnetic field 		 	 inductor.

·

Next, we are going to derive the above equation.
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We start with the definition of self-inductance

· · ·

·

· · ·

From Ampere’s law, the above equation becomes

·
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From the vector product rules on page 21 of Griffiths

· · ·

·

·

0

·

Keep in mind that in electrostatics,  we have (eq. 2-45)

·
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Maxwell equations
Electrodynamics before Maxwell

· (Gauss Law)

· (No magnetic point charge)

(Faraday’s Law)

(Ampere’s Law)

There are several things that would be desirable if we can 
add a few new terms in these equations.

First, it would be desirable, if the above equations are 
more symmetrical. However, we know that has not 
been found yet, so conventional wisdom assumes that 

, and     
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But a term that can be added to the Ampere’s law 

seems to be in order.

For example during the charging of a 
capacitor, the magnetic field inside 
the capacitor,  . Why?

The comes from the time-varying 
electric field inside the capacitor.

This is one indication that Ampere’s law should be 
modified as follow:
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Another way to look at this is to explore the inconsistency 
in the Ampere’s law.  By taking the divergence of the 
Ampere’s law we end up with

· ·

The left hand side always equals to zero from vector 
identity, eq. (1.46).  However on the right hand side, ·
is not always equal to zero.  From the continuity equation

·

We can see that only in the electrostatics case, where the 
charge density does not change with time, we have · .

So there is a need to add an extra term in 
Ampere’s Law to deal with dynamics.
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There is another way to see that Ampere’s law is bound to 
fail for the non-stead current such as charging a capacitor.

Ampere’s law in integral form

· ·

As we can see from the figure above, the figure on the top 
make sense.  However, when we re-draw the surface as a 
balloon-shape, there is no current going through the 
capacitor. So Maxwell solve this difficulty by assuming 
that “the rate of change of 	 "	is equivalent to a 
displacement current, .
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How Maxwell Fixed Ampere’s Law

He started with the continuity equation

·

Substitute Gauss law into the above equation

· ·

·

So if we broaden the concept of current density to 

include the term, and re-write the Ampere’s law as
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Maxwell called this extra term the displacement current:

With this extra term, several inconsistencies in electrodynamics 
are resolved

1. Ampere’s law is fixed,

2. Electrodynamics equations are more symmetric,

3. Charging capacitor puzzle is resolved. 

(In free space)
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When charging a capacitor, 

̂ ̂

̂ ̂

̂

· ·
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Maxwell Equations

After re-arrangement, the Maxwell equation can be written 
as follow: 

		 · , (3)  ,

(2)  · , (4)  .

Together with the force equation,

They can describe the entire theory of classical 
electrodynamics.  Even the continuity equation is 
contained in the modified Ampere’s law

·
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Magnetic charges

In free space, without any sources (ρ=0, ), the 
Maxwell equations are  even simpler 

· ,

· ,

There is a striking symmetry between the and , if we 
replace by , and replace by , the above 
Maxwell equations in free space remain the same.  

This gives us a hint that and are closely related or 
maybe “equivalent”.  But of course, if we put the 
sources into the equations, the symmetry breaks down.
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We know that so far no magnetic monopole has been 
observed.  However, it has not stopped people imaging what 
will happen if we do have magnetic monopole.  For one thing 
the Maxwell equation will be “perfectly” symmetrical.

·

·

No experimental data support the above view so far.

Paul Dirac showed in 1931 that the existence of magnetic 
charge could explain why electric charge is quantized. 
(See chapter 8 for details)

and
· , ·
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Maxwell Equations in Matter
When we deal with field inside matter, we want to deal with 

and , because polarization and magnetization are 
harder to deal with.  So we link them with the bound charge 

and bound current as follow:

Note: The time derivative of has nothing to do with .   
comes from polarization, while comes from magnetization.

When is a functions of time, we can see that there will be 
a current density associated with the rate of change of .

· ,

· ,
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We look at a rod-shaped volume element that 
has a polarization . On each end there are 
surface charge density .  

When the polarization increases, the surface charge density 
also increases, which can be viewed as current 

· ·

If we take the divergence of the above high-lighted eq.

This is the continuity equation for the bound charges.
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So the total charge density is 

And the total current density is 

Eq. (1)

Eq. (2)

Apply the Gauss law to eq. (1)

· · ·

·
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Apply Ampere’s law to eq. (2)

Define 
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Now combines all four equations

· ;     

· ;        

For linear dielectric materials, we also have

1+
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Boundary conditions

The boundary conditions will remain the same as in the 
static case.  They come out from the integral form of the 
Maxwell’s equations.

·

·

Perpendicular components
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Even though these two Maxwell equations contains time 
derivatives, the boundary conditions derived still are the 
same as in the statics case.  Namely the area on the right 
side of the equation can be arbitrarily small.

⋅ ⋅

∥ ∥

⋅ ⋅

∥ ∥

Parallel components


