Chapter 7:

P7.2-2, 4, 5, 7
P7.3-1, 2, 5
P7.4-1, 4
P7.5-2, 4, 13, 14, 20
P7.6-1, 3
P7.7-2, 6
P7.8-1, 3, 5, 6, 13

Section 7-2: Capacitors

P 7.2-2 The voltage, $v(t)$, across a capacitor and current, $i(t)$, in that capacitor adhere to the passive convention. Determine the current, $i(t)$, when the capacitance is $C=0.125 \mathrm{~F}$ and the voltage is $v(t)=12 \cos \left(2 t+30^{\circ}\right) \mathrm{V}$.
Hint: $\frac{d}{d t} A \cos (\omega t+\theta)=-A \sin (\omega t+\theta) \cdot \frac{d}{d t}(\omega t+\theta)$

$$
=-A \omega \sin (\omega t+\theta)
$$

$$
=A \omega \cos \left(\omega t+\left(\theta+\frac{\pi}{2}\right)\right)
$$

Answer: $i(t)=3 \cos \left(2 t+120^{\circ}\right)$ A
Solution:

$$
i(t)=C \frac{d}{d t} v(t)=\frac{1}{8} \frac{d}{d t} 12 \cos \left(2 t+30^{\circ}\right)=\frac{1}{8}(12)(-2) \sin \left(2 t+30^{\circ}\right)=3 \cos \left(2 t+120^{\circ}\right) \mathrm{A}
$$

P 7.2-4 Determine $v(t)$ for the circuit shown in Figure $\mathrm{P} 7.2-4 a$ when the $i_{s}(t)$ is as shown in Figure P 7.2-4b and $v_{0}\left(0^{-}\right)=-1 \mathrm{mV}$.

Figure P 7.2-4

Solution:

$$
\begin{aligned}
& v(t)=\frac{1}{C} \int_{0}^{t} i(\tau) d \tau+v(0)=\frac{1}{2 \times 10^{-12}} \int_{0}^{t} i(\tau) d \tau-10^{-3} \\
& 0<t<2 \times 10^{-9} \\
& i_{s}(t)=0 \Rightarrow v(t)=\frac{1}{2 \times 10^{-12}} \int_{0}^{t} 0 d \tau-10^{-3}=-10^{-3} \\
& 2 \times 10^{-9}<t<3 \times 10^{-9} \quad i_{s}(t)=4 \times 10^{-6} \mathrm{~A} \\
& \Rightarrow \quad v(t)=\frac{1}{2 \times 10^{-12}} \int_{2 \text { ns }}^{t}\left(4 \times 10^{-6}\right) d \tau-10^{-3}=-5 \times 10^{-3}+\left(2 \times 10^{6}\right) t \\
& \text { In particular, } v\left(3 \times 10^{-9}\right)=-5 \times 10^{-3}+\left(2 \times 10^{6}\right)\left(3 \times 10^{-9}\right)=10^{-3} \\
& 3 \times 10^{-9}<t<5 \times 10^{-9} \quad i_{s}(t)=-2 \times 10^{-6} \mathrm{~A} \\
& \Rightarrow \quad v(t)=\frac{1}{2 \times 10^{-12}} \int_{3 \mathrm{~ns}}^{t}\left(-2 \times 10^{-6}\right) d \tau+10^{-3}=4 \times 10^{-3}-\left(10^{6}\right) t \\
& \text { In particular, } v\left(5 \times 10^{-9}\right)=4 \times 10^{-3}-\left(10^{6}\right)\left(5 \times 10^{-9}\right)=-10^{-3} \mathrm{~V} \\
& 5 \times 10^{-9}<t \quad i_{s}(t)=0 \Rightarrow v(t)=\frac{1}{2 \times 10^{-12}} \int_{5 \text { ns }}^{t} 0 d \tau-10^{-3}=-10^{-3} \mathrm{~V}
\end{aligned}
$$

P 7.2-5 The voltage, $v(t)$, and current, $i(t)$, of a 1-F capacitor adhere to the passive convention. Also, $v(0)=0 \mathrm{~V}$ and $i(0)=0 \mathrm{~A}$. (a) Determine $v(t)$ when $i(t)=x(t)$, where $x(t)$ is shown in Figure P 7.2-5 and $i(t)$ has units of A. (b) Determine $i(t)$ when $v(t)=x(t)$, where $x(t)$ is shown in Figure P 7.2-5 and $v(t)$ has units of V.
Hint: $x(t)=4 t-4$ when $1<t<2$, and $x(t)=-4 t+12$ when $2<t<3$.

Figure \mathbf{P} 7.2-5

Solution:

(b)

$$
i(t)=C \frac{d}{d t} v(t)=\left\{\begin{array}{cc}
0 & 0<t<1 \\
4 & 1<t<2 \\
-4 & 2<t<3 \\
0 & 3<t
\end{array}\right.
$$

(a) $\quad v(t)=\frac{1}{C} \int_{0}^{t} i(\tau) d \tau+v(0)=\int_{0}^{t} i(\tau) d \tau$

For $0<t<1, i(t)=0$ A so $\quad v(t)=\int_{0}^{t} 0 d \tau+0=0 \mathrm{~V}$
For $1<t<2, i(t)=(4 t-4)$ A so

$$
\begin{aligned}
& v(t)=\int_{1}^{t}(4 \tau-4) d \tau+0=\left.\left(2 \tau^{2}-4 \tau\right)\right|_{1} ^{t}=2 t^{2}-4 t+2 \mathrm{~V} \\
& v(2)=2\left(2^{2}\right)-4(2)+2=2 \mathrm{~V} . \text { For } 2<t<3, i(t)=(-4 t+12) \mathrm{A} \text { so } \\
& v(t)=\int_{2}^{t}(-4 \tau+12) d \tau+2=\left.\left(-2 \tau^{2}+12 \tau\right)\right|_{1} ^{t}+2=\left(-2 t^{2}+12 t-14\right) \mathrm{V} \\
& v(3)=-2\left(3^{2}\right)+12(3)-14=4 \mathrm{~V}
\end{aligned}
$$

For $3<t, i(t)=0 \mathrm{~A}$ so $v(t)=\int_{0}^{t} 0 d \tau+4=4 \mathrm{~V}$

P 7.2-7 The voltage across a $40-\mu \mathrm{F}$ capacitor is 25 V at $t_{0}=0$. If the current through the capacitor as a function of time is given by $i(t)=6 e^{-6 t} \mathrm{~mA}$ for $t<0$, find $v(t)$ for $t>0$.
Answer: $v(t)=50-25 e^{-6 t} \mathrm{~V}$
Solution:

$$
\begin{aligned}
v(t)=v(0)+\frac{1}{C} \int_{0}^{t} i(\tau) d \tau & =25+2.5 \times 10^{4} \int_{0}^{t}\left(6 \times 10^{-3}\right) e^{-6 \tau} d \tau \\
& =25+150 \int_{0}^{t} e^{-6 \tau} d \tau \\
& =25+150\left[-\frac{1}{6} e^{-6 \tau}\right]_{0}^{t}=\underline{50-25 e^{-6 t} \mathrm{~V}}
\end{aligned}
$$

Section 7-3: Energy Storage in a Capacitor

P 7.3-1 The current, i, through a capacitor is shown in Figure P 7.3-1. When $v(0)=0$ and $C=$ 0.5 F, determine and plot $v(t), p(t)$, and $w(t)$ for $0 \mathrm{~s}<t<6 \mathrm{~s}$.

Figure \mathbf{P} 7.3-1

Solution:

Given

$$
i(t)=\left\{\begin{array}{cc}
0 & t<2 \\
0.2(t-2) & 2<t<6 \\
0.8 & t>6
\end{array}\right.
$$

The capacitor voltage is given by

For $t<2$

$$
\begin{gathered}
v(t)=\frac{1}{0.5} \int_{0}^{t} i(\tau) d \tau+v(0)=2 \int_{0}^{t} i(\tau) d \tau+v(0) \\
v(t)=2 \int_{0}^{t} 0 d \tau+0=0
\end{gathered}
$$

In particular, $v(2)=0$. For $2<t<6$

$$
v(t)=2 \int_{2}^{t} 2(\tau-2) d \tau+0=\left.\left(0.2 \tau^{2}-0.8 \tau\right)\right|_{2} ^{t}=\left(0.2 t^{2}-0.8 t+0.8\right) \mathrm{V}=0.2\left(t^{2}-4 t+4\right) \mathrm{V}
$$

In particular, $v(6)=3.2 \mathrm{~V}$. For $6<t$

$$
v(t)=2 \int_{6}^{t} 0.8 d \tau+3.2=\left.1.6 \tau\right|_{2} ^{t}+3.2=(1.6 t-6.4) \mathrm{V}=1.6(t-4) \mathrm{V}
$$

Now the power and energy are calculated as

$$
p(t)=v(t) i(t)=\left\{\begin{array}{cc}
0 & t<2 \\
0.04(t-2)^{2} & 2<t<6 \\
1.28(t-4) & 6<t
\end{array}\right.
$$

These plots were produced using three MATLAB scripts:

```
capvol.m function \(\mathrm{v}=\mathrm{CapVol}(\mathrm{t})\)
    if \(\mathrm{t}<2\)
                \(\mathrm{v}=0\);
    elseif \(\mathrm{t}<6\)
        \(\mathrm{v}=0.2^{*} \mathrm{t}^{*} \mathrm{t}-.8^{*} \mathrm{t}+.8 ;\)
    else
        \(v=1.6^{*} t-6.4 ;\)
    end
function \(\mathrm{i}=\mathrm{CapCur}(\mathrm{t})\)
    if \(\mathrm{t}<2\)
        \(\mathrm{i}=0\);
    elseif \(\mathrm{t}<6\)
        \(\mathrm{i}=.2^{*} \mathrm{t}\)-.4;
    else
        i =.8;
    end
c7s4p1.m t=0:1:8;
for \(\mathrm{k}=1: 1\) :length( t )
    \(\mathrm{i}(\mathrm{k})=\mathrm{Cap} \operatorname{Cur}(\mathrm{k}-1)\);
    \(\mathrm{v}(\mathrm{k})=\mathrm{Cap} \operatorname{Vol}(\mathrm{k}-1)\);
    \(\mathrm{p}(\mathrm{k})=\mathrm{i}(\mathrm{k})^{*} \mathrm{v}(\mathrm{k})\);
    \(\mathrm{w}(\mathrm{k})=0.5^{*} \mathrm{v}(\mathrm{k}) * \mathrm{v}(\mathrm{k})\);
end
plot(t,i,t,v,t,p)
text(5,3.6,'v(t), V')
text(6,1.2,'i(t), A')
text(6.9,3.4,'p(t), W')
title('Capacitor Current, Voltage and Power')
xlabel('time, s')
\% plot(t,w)
\% title('Energy Stored in the Capacitor, J')
\% xlabel('time, s')
```

P 7.3-2 In a pulse power circuit the voltage of a $10-\mu \mathrm{F}$ capacitor is zero for $t<0$ and

$$
v=5\left(1-e^{-4000 t}\right) \mathrm{V} \quad t \geq 0
$$

Determine the capacitor current and the energy stored in the capacitor at $t=0 \mathrm{~ms}$ and $t=10 \mathrm{~ms}$.
Solution:

$$
\begin{aligned}
& i_{c}=C \frac{d v}{d t}=\left(10 \times 10^{-6}\right)(-5)(-4000) e^{-4000 t}=\underline{0.2 e^{-4000 t} \mathrm{~A}} \Rightarrow\left\{\begin{array}{c}
\frac{i_{c}(0)=0.2 \mathrm{~A}}{i_{c}(10 \mathrm{~ms})=8.5 \times 10^{-19} \mathrm{~A}}
\end{array}\right. \\
& \boldsymbol{W}(t)=\frac{1}{2} C v^{2}(t) \text { and } v(0)=5-5 e^{0}=0 \Rightarrow \underline{W}(0)=0 \\
& v\left(10 \times 10^{-3}\right)=5-5 e^{-40}=5-21.2 \times 10^{-18} \cong 5 \Rightarrow \underline{\mathcal{W}(10)}=1.25 \times 10^{-4} \mathrm{~J}
\end{aligned}
$$

P 7.3-5 A capacitor is used in the electronic flash unit of a camera. A small battery with a constant voltage of 6 V is used to charge a capacitor with a constant current of $10 \mu \mathrm{~A}$. How long does it take to charge the capacitor when $C=10 \mu \mathrm{~F}$? What is the stored energy?

Solution:

$$
\begin{aligned}
& \text { Max. charge on capacitor }=C v=\left(10 \times 10^{-6}\right)(6)=60 \mu \mathrm{C} \\
& \Delta t=\frac{\Delta q}{i}=\frac{60 \times 10^{-6}}{10 \times 10^{-6}}=\underline{6 \text { sec }} \text { to charge } \\
& \text { stored energy }=\mathscr{W}=\frac{1}{2} C v^{2}=\frac{1}{2}\left(10 \times 10^{-6}\right)(6)^{2}=\underline{180 \mu \mathrm{~J}}
\end{aligned}
$$

Section 7-4: Series and Parallel Capacitors

P 7.4-1 Find the current $i(t)$ for the circuit of Figure P 7.4-1.
Answer: $i(t)=-1.2 \sin 100 t \mathrm{~mA}$

Figure P 7.4-1

Solution:

$$
2 \mu \mathrm{~F} \| 4 \mu \mathrm{~F}=6 \mu \mathrm{~F}
$$

$6 \mu \mathrm{~F}$ in series with $3 \mu \mathrm{~F}=\frac{6 \mu \mathrm{~F} \cdot 3 \mu \mathrm{~F}}{6 \mu \mathrm{~F}+3 \mu \mathrm{~F}}=2 \mu \mathrm{~F}$

$$
i(t)=2 \mu \mathrm{~F} \frac{d}{d t}(6 \cos 100 t)=\left(2 \times 10^{-6}\right)(6)(100)(-\sin 100 t) \mathrm{A}=\underline{-1.2 \sin 100 t \mathrm{~mA}}
$$

P7.4-4 The circuit shown in Figure P 7.4-4 contains seven capacitors, each having capacitance C. The source voltage is given by

$$
v(t)=4 \cos (3 t) \mathrm{V}
$$

Find the current $i(t)$ when $C=1 \mathrm{~F}$.

Figure P 7.4-4
Solution: Replacing series and parallel capacitors by equivalent capacitors, the circuit can be reduced as follows:

Then

$$
i(t)=\frac{8 C}{21} \frac{d}{d t} v(t)=\frac{8 C}{21} \frac{d}{d t} 4 \cos (3 t)=\frac{8 \times 1}{21}[-12 \sin (3 t)]=-\frac{32}{7} \sin (3 t) \mathrm{V}
$$

Section 7-5: Inductors

P 7.5-2 The model of an electric motor consists of a series combination of a resistor and inductor. A current $i(t)=4 t e^{-t}$ A flows through the series combination of a $10-\Omega$ resistor and $0.1-$ H inductor. Find the voltage across the combination.

Answer: $v(t)=0.4 e^{-t}+39.6 t e^{-t} \mathrm{~V}$

Solution:

$$
\begin{aligned}
& \xrightarrow[+]{i} \underbrace{10 \Omega}_{V} \text { - } 0.1 \mathrm{H} \text { - } \\
& v=L \frac{d i}{d t}+R i=(.1)\left(4 e^{-t}-4 t e^{-t}\right)+10\left(4 t e^{-t}\right)=0.4 e^{-t}+39.6 t e^{-t} \mathrm{~V}
\end{aligned}
$$

P 7.5-4 The voltage, $v(t)$, across an inductor and current, $i(t)$, in that inductor adhere to the passive convention. Determine the voltage, $v(t)$, when the inductance is $L=250 \mathrm{mH}$ and the current is $i(t)=120 \sin \left(500 t-30^{\circ}\right) \mathrm{mA}$.
Hint: $\quad \frac{d}{d t} A \sin (\omega t+\theta)=A \cos (\omega t+\theta) \cdot \frac{d}{d t}(\omega t+\theta)=A \omega \cos (\omega t+\theta)=A \omega \sin \left(\omega t+\left(\theta+\frac{\pi}{2}\right)\right)$
Answer: $v(t)=15 \sin \left(500 t+60^{\circ}\right) \mathrm{V}$

Solution:

$$
\begin{aligned}
v(t)=\left(250 \times 10^{-3}\right) \frac{d}{d t}\left(120 \times 10^{-3}\right) \sin \left(500 t-30^{\circ}\right) & =(0.25)(0.12)(500) \cos \left(500 t-30^{\circ}\right) \\
& =15 \cos \left(500 t-30^{\circ}\right)
\end{aligned}
$$

P 7.5-13 The inductor current in the circuit shown in Figure P 7.5-13 is given by

$$
i(t)=5-3 e^{-4 t} \mathrm{~A} \quad \text { for } t \geq 0
$$

Determine $v(t)$ for $t>0$.

Figure P 7.5-13

Solution:

We'll write and solve a mesh equation. Label the meshes as shown. Apply KVL to the center mesh to get

$$
24 i_{\mathrm{a}}+24\left(i_{\mathrm{a}}-i(t)\right)+24\left(i_{\mathrm{a}}-10\right)=0 \quad \Rightarrow \quad i_{\mathrm{a}}=\frac{i(t)+10}{3}=5-e^{-4 t} \text { A for } t>0
$$

Then

$$
v(t)=24 i_{\mathrm{a}}=120-24 e^{-4 t} \mathrm{~V} \quad \text { for } t>0
$$

(checked: LNAP 6/25/04)

P 7.5-14 The inductor current in the circuit shown in Figure P 7.5-14 is given by

$$
i(t)=3+2 e^{-3 t} \mathrm{~A} \quad \text { for } t \geq 0
$$

Determine $v(t)$ for $t>0$.

Figure P 7.5-14
Solution: Apply KVL to get

$$
v(t)=6 i(t)+5 \frac{d}{d t} i(t)=6\left(3+2 e^{-3 t}\right)+5 \frac{d}{d t}\left(3+2 e^{-3 t}\right)=18\left(1-e^{-3 t}\right) \mathrm{V} \quad \text { for } t>0
$$

P7.5-20 Consider the inductor shown in Figure P7.5-20. The current and voltage are given by

$$
i(t)=\left\{\begin{array}{cc}
5 t-4.6 & 0 \leq t \leq 0.2 \\
a t+b & 0.2 \leq t \leq 0.5 \\
c & t \geq 0.5
\end{array} \quad \text { and } \quad v(t)=\left\{\begin{array}{cc}
12.5 & 0<t<0.2 \\
25 & 0.2<t<0.5 \\
0 & t>0.5
\end{array}\right.\right.
$$

where a, b and c are real constants. (The current is given in Amps, the
 voltage in Volts and the time in seconds.) Determine the values of a, b and c.
Answer: $a=10 \mathrm{~A} / \mathrm{s}, \quad b=-5.6 \mathrm{~A}$ and $c=-0.6 \mathrm{~A}$
Solution: At $t=0.2 \mathrm{~s}$

$$
i(0.2)=5(0.2)-4.6=-3.6 \mathrm{~A}
$$

For $0.2 \leq t \leq 0.5$

$$
i(t)=\frac{1}{2.5} \int_{0.2}^{t} 25 d \tau-3.6=\left.10 \tau\right|_{0.2} ^{t}-3.6=10(t-0.2)-3.6=10 t-5.6 \mathrm{~A}
$$

At $t=0.5 \mathrm{~s}$

$$
i(0.5)=10(0.5)-5.6=-0.6 \mathrm{~A}
$$

For $t \geq 0.5$

$$
i(t)=\frac{1}{2.5} \int_{0.5}^{t} 0 d \tau-0.6=-0.6
$$

Checks:

At $t=0.2 \mathrm{~s} \quad i(0.2)=10(0.2)-5.6=-3.6 \mathrm{~A} \quad V$
For $0.2 \leq t \leq 0.5 \quad v(t)=2.5 \frac{d}{d t} i(t)=2.5 \frac{d}{d t}(10 t-5.6)=2.5(10)=25 \mathrm{~V} \quad \sqrt{ }$

$$
-0.6-(-3.6)=i(0.5)-i(0.2)=\frac{1}{2.5} \int_{0.2}^{0.5} 25 d \tau=10(0.5-0.2)=3 \mathrm{~A} \quad \sqrt{ }
$$

Section 7-6: Energy Storage in an Inductor

P 7.6-1 The current, $i(t)$, in a $100-\mathrm{mH}$ inductor connected in a telephone circuit changes according to

$$
i(t)=\left\{\begin{array}{cc}
0 & t \leq 0 \\
4 t & 0 \leq t \leq 1 \\
4 & t \geq 1
\end{array}\right.
$$

where the units of time are seconds and the units of current are amperes. Determine the power, $p(t)$, absorbed by the inductor and the energy, $w(t)$, stored in the inductor.
Answer: $p(t)=\left\{\begin{array}{cc}0 & t \leq 0 \\ 1.6 t & 0<t<1 \\ 0 & t \geq 1\end{array}\right.$ and $w(t)=\left\{\begin{array}{cc}0 & t \leq 0 \\ 0.8 t^{2} & 0<t<1 \\ 0.8 & t \geq 1\end{array}\right.$
The units of $p(t)$ are W and the units of $w(t)$ are J .

Solution:

$$
\begin{aligned}
& v(t)=100 \times 10^{-3} \frac{d}{d t} i(t)=\left\{\begin{array}{cc}
0 & \mathrm{t}<0 \\
0.4 & 0 \leq \mathrm{t} \leq 1 \\
0 & \mathrm{t}>1
\end{array}\right. \\
& p(t)=v(t) i(t)=\left\{\begin{array}{cc}
0 & t<0 \\
1.6 t & 0 \leq t \leq 1 \\
0 & t>1
\end{array}\right. \\
& W(t)=\int_{0}^{t} p(\tau) d \tau=\left\{\begin{array}{cc}
0 & t<0 \\
0.8 t^{2} & 0<t<1 \\
0.8 & t>1
\end{array}\right.
\end{aligned}
$$

P 7.6-3 The voltage, $v(t)$, across a $25-\mathrm{mH}$ inductor used in a fusion power experiment is

$$
v(t)=\left\{\begin{array}{cc}
0 & t \leq 0 \\
6 \cos 100 t & t \geq 0
\end{array}\right.
$$

where the units of time are s and the units of voltage are V . The current in this inductor is zero before the voltage changes at $t=0$. Determine the power, $p(t)$, absorbed by the inductor and the energy, $w(t)$, stored in the inductor. Hint: $2(\cos \mathrm{~A})(\sin \mathrm{B})=\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B})$

Answer: $p(t)=7.2 \sin 200 t \mathrm{~W}$ and $w(t)=3.6[1-\cos 200 t] \mathrm{mJ}$

Solution:

$$
i(t)=\frac{1}{25 \times 10^{-3}} \int_{0}^{t} 6 \cos 100 \tau d \tau+0=\frac{6}{\left(25 \times 10^{-3}\right)(100)}\left[\left.\sin 100 \tau\right|_{0} ^{t}\right]=2.4 \sin 100 t
$$

$$
\begin{aligned}
p(t)=v(t) i(t)=(6 \cos 100 t)(2.4 \sin 100 t) & =7.2[2(\cos 100 t)(\sin 100 t)] \\
& =7.2[\sin 200 t+\sin 0]=7.2 \sin 200 t \\
W(t)=\int_{0}^{t} p(\tau) d \tau=7.2 \int_{0}^{t} \sin 200 \tau d \tau & =-\frac{7.2}{200}\left[\left.\cos 200 \tau\right|_{0} ^{t}\right] \\
& =0.036[1-\cos 200 t] \mathrm{J}=36[1-\cos 200 t] \mathrm{mJ}
\end{aligned}
$$

Section 7-7: Series and Parallel Inductors

P 7.7-2 Find the voltage $v(t)$ for the circuit of Figure P 7.7-2.
Answer: $v(t)=-6 e^{-250 t} \mathrm{mV}$

Figure P 7.7-2

Soluton:

$$
\begin{aligned}
& 4 \mathrm{mH}+4 \mathrm{mH}=8 \mathrm{mH} \quad, \quad 8 \mathrm{mH} \| 8 \mathrm{mH}=\frac{\left(8 \times 10^{-3}\right) \times\left(8 \times 10^{-3}\right)}{8 \times 10^{-3}+8 \times 10^{-3}}=4 \mathrm{mH} \\
& \text { and } \quad 4 \mathrm{mH}+4 \mathrm{mH}=8 \mathrm{mH} \\
& v(t)=\left(8 \times 10^{-3}\right) \frac{d}{d t}\left(5+3 e^{-250 t}\right)=\left(8 \times 10^{-3}\right)\left(0+3(-250) e^{-250 t}\right)=-6 e^{-250 t} \mathrm{~V}
\end{aligned}
$$

P 7.7-6 Determine the value of the equivalent inductance, $L_{\text {eq }}$, for the circuit shown in Figure P 7.7-6.

Answer: $\mathrm{L}_{\text {eq }}=120 \mathrm{H}$

Figure P 7.7-6
Solution: $\quad L_{\text {eq }}=60+\frac{15 \times 10}{15+10}+30+\frac{40 \times 60}{40+60}=60+6+30+24=120 \mathrm{H}$

Section 7-8: Initial Conditions of Switched Circuits

P 7.8-1 The switch in Figure P 7.8-1 has been open for a long time before closing at time $t=0$. Find $v_{\mathrm{c}}\left(0^{+}\right)$and $i_{\mathrm{L}}\left(0^{+}\right)$, the values of the capacitor voltage and inductor current immediately after the switch closes. Let $v_{\mathrm{c}}(\infty)$ and $i_{\mathrm{L}}(\infty)$ denote the values of the capacitor voltage and inductor current after the switch has been closed for a long time. Find $v_{\mathrm{C}}(\infty)$ and $i_{\mathrm{L}}(\infty)$.
Answer: $v_{\mathrm{c}}\left(0^{+}\right)=12 \mathrm{~V}, i_{\mathrm{L}}\left(0^{+}\right)=0, v_{\mathrm{c}}(\infty)=4 \mathrm{~V}$, and $i_{\mathrm{L}}(\infty)=1 \mathrm{~mA}$

Figure P 7.8-1

Solution:

Then

$$
i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=0 \quad \text { and } \quad v_{C}\left(0^{+}\right)=v_{C}\left(0^{-}\right)=12 \mathrm{~V}
$$

Next

P 7.8-3 The switch in Figure P 7.8-3 has been open for a long time before closing at time $t=0$. Find $v_{\mathrm{c}}\left(0^{+}\right)$and $i_{\mathrm{L}}\left(0^{+}\right)$, the values of the capacitor voltage and inductor current immediately after the switch closes. Let $v_{\mathrm{c}}(\infty)$ and $i_{\mathrm{L}}(\infty)$ denote the values of the capacitor voltage and inductor current after the switch has been closed for a long time. Find $v_{\mathrm{C}}(\infty)$ and $i_{\mathrm{L}}(\infty)$.
Answer: $v_{\mathrm{c}}\left(0^{+}\right)=0 \mathrm{~V}, i_{\mathrm{L}}\left(0^{+}\right)=0, v_{\mathrm{c}}(\infty)=8 \mathrm{~V}$, and $i_{\mathrm{L}}(\infty)=0.5 \mathrm{~mA}$

Figure P 7.8-3
Solution:

Then

$$
i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=0 \quad \text { and } \quad v_{C}\left(0^{+}\right)=v_{C}\left(0^{-}\right)=0 \mathrm{~V}
$$

Next

P7.8-5 . The switch in the circuit shown in Figure P7.8-5 has been open for a long time before it closes at time $t=0$. Determine the values of $i_{\mathrm{R}}(0-)$ and $i_{C}(0-)$, the current in one of the 20Ω resistors and in the capacitor immediately before the switch closes and the values of $i_{R}(0+)$ and $i_{C}(0+)$, the current in that 20Ω resistor and in the capacitor immediately after the switch closes.

Figure P7.8-5

Solution:

The circuit is at steady state immediately before the switch closes. We have

The capacitor acts like an open circuit so $i_{\mathrm{C}}(0-)=0$.
Noticing that two 20Ω are connected in series and using current division:

$$
i_{\mathrm{R}}(0-)=\frac{(20+20)}{20+(20+20)}(120)=\frac{2}{3}(120)=80 \mathrm{~mA}
$$

Using current division and Ohm's law:

$$
v_{\mathrm{C}}(0)=\left[\frac{20}{20+(20+20)}(120)\right](20)=0.8 \mathrm{~V}
$$

The capacitor does not change instantaneously so $v_{\mathrm{C}}(0+)=v_{\mathrm{C}}(0-) \square v_{\mathrm{C}}(0)$. Immediately after the switch closes we have:

Applying KVL to the loop consisting of the closed switch, the capacitor and a 20Ω resistor gives

$$
\begin{gathered}
0+v_{\mathrm{C}}(0)-20 i_{\mathrm{R}}(0+)=0 \\
0+0.8=20 i_{\mathrm{R}}(0+) \\
i_{\mathrm{R}}(0+)=40 \mathrm{~mA}
\end{gathered}
$$

Applying KCL at the node at the right side of the circuit gives:

$$
\begin{aligned}
& \frac{v_{\mathrm{C}}(0+)}{20}+i_{\mathrm{C}}(0+)+i_{\mathrm{R}}(0+)=0.120 \\
& \frac{0.8}{20}+i_{\mathrm{C}}(0+)+0.04=0.120 \\
& i_{\mathrm{C}}(0+)=0.04=40 \mathrm{~mA}
\end{aligned}
$$

Figure P7.8-6

P7.8-6. The switch in the circuit shown in Figure P7.8-6 has been open for a long time before it closes at time $t=0$. Determine the values of $v_{\mathrm{L}}(0-)$, the voltage across the inductor immediately before the switch closes and $v_{\mathrm{L}}(0+)$, the voltage across the inductor immediately after the switch closes.

Solution:
The circuit is at steady state immediately before the switch closes. We have

The inductor acts like a short circuit so $v_{\mathrm{L}}(0-)=0$

The inductor current is the negative of the current source current:

$$
i_{\mathrm{L}}(0)=-120 \mathrm{~mA}
$$

The inductor current does not change instantaneously so $i_{\mathrm{L}}(0+)=i_{\mathrm{L}}(0-) \square i_{\mathrm{L}}(0)$. Immediately after the switch closes we have:

Applying KVL to the left mesh gives:

$$
\begin{aligned}
v_{\mathrm{L}}(0+)+20 i_{\mathrm{L}}(0) & =0 \\
v_{\mathrm{L}}(0+)+20(-0.12) & =0 \\
v_{\mathrm{L}}(0+) & =2.4
\end{aligned}
$$

P7.8-13

The circuit shown in Figure 7.8-12 has reached steady state before the switch opens at time $t=0$. Determine the values of $i_{\mathrm{L}}(t), v_{\mathrm{C}}(t)$ and $v_{\mathrm{R}}(t)$ immediately before the switch opens and the value of $v_{\mathrm{R}}(t)$ immediately after the switch opens.

Answer: $i_{\mathrm{L}}(0-)=0.4 _$A,$v_{\mathrm{C}}(0-)=16 \mathrm{~V}$, $v_{\mathrm{R}}(0-)=0 \mathrm{~V}$ and $v_{\mathrm{R}}(0+)=-12 \mathrm{~V}$

Figure 7.8-13

Solution: Because

- This circuit has reached steady state before the switch opens at time $t=0$.
- The only source is a constant voltage source.

At $t=0$-, the capacitor acts like an open circuit and the inductor acts like a short circuit.

The current in the 30Ω resistor is zero so
 $v_{\mathrm{R}}(0-)=0 \mathrm{~V}$. Next

$$
\begin{aligned}
& i_{1}(0-)=\frac{24}{20+40}=0.4 \mathrm{~A} \text { and } \\
& v_{\mathrm{C}}(0-)=40 i_{\mathrm{L}}(0-)=16 \mathrm{~V}
\end{aligned}
$$

The capacitor voltage and inductor current don't change instantaneously so

$$
\begin{gathered}
v_{\mathrm{C}}(0+)=v_{\mathrm{C}}(0-)=16 \mathrm{~V} \text { and } \\
i_{\mathrm{L}}(0+)=i_{\mathrm{L}}(0-)=0.4 \mathrm{~A}
\end{gathered}
$$

Apply KCL at the bottom node and then Ohm's law to get

$$
v_{\mathrm{R}}(0+)=-30 i_{\mathrm{L}}(0+)=-12 \mathrm{~V}
$$

(Notice that the resistor voltage did change instantaneously.)

