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Chapter 7 

Objectives 

• Solve problems involving centripetal acceleration. 
 

• Solve problems involving centripetal force. 
 

• Explain how the apparent existence of an outward 
force in circular motion can be explained as inertia 
resisting the centripetal force. 

Section 1 Circular Motion 
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Chapter 7 

Tangential Speed 

• The tangential speed (vt) of an object in circular 
motion is the object’s speed along an imaginary line 
drawn tangent to the circular path.  

 

• Tangential speed depends on the distance from the 
object to the center of the circular path. 

 

• When the tangential speed is constant, the motion is 
described as uniform circular motion. 

Section 1 Circular Motion 
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Chapter 7 

Centripetal Acceleration 

• The acceleration of an object moving in a circular 
path and at constant speed is due to a change in 
direction. 

• An acceleration of this nature is called a centripetal 
acceleration. 

               CENTRIPETAL ACCELERATION

                                  ac =
vt

2

r

centripetal acceleration = 
(tangential speed)2

radius of circular path

Section 1 Circular Motion 
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Chapter 7 

Centripetal Acceleration, continued 

• (a) As the particle moves 
from A to B, the direction of 
the particle’s velocity vector 
changes.  

• (b) For short time intervals, 
∆v is directed toward the 
center of the circle. 

• Centripetal acceleration is 
always directed toward the 
center of a circle. 

Section 1 Circular Motion 
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Chapter 7 

Centripetal Acceleration, continued 

• You have seen that centripetal acceleration 
results from a change in direction. 

 

• In circular motion, an acceleration due to a 
change in speed is called tangential 
acceleration.  

 

• To understand the difference between centripetal 
and tangential acceleration, consider a car 
traveling in a circular track.  
– Because the car is moving in a circle, the car has a 

centripetal component of acceleration.  
– If the car’s speed changes, the car also has a tangential 

component of acceleration. 

Section 1 Circular Motion 
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Chapter 7 

Centripetal Force 

• Consider a ball of mass m that is being whirled in a 
horizontal circular path of radius r with constant speed. 

• The force exerted by the string has horizontal and vertical 
components. The vertical component is equal and 
opposite to the gravitational force. Thus, the horizontal 
component is the net force.  

• This net force, which is is directed toward the center of the 
circle, is a centripetal force. 

 

Section 1 Circular Motion 
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Chapter 7 

Centripetal Force, continued 

Newton’s second law can be combined with the 
equation for centripetal acceleration to derive an 
equation for centripetal force: 

 

 

ac =
vt

2

r

 Fc = mac =
mvt

2

r
   

                           
centripetal force = 

mass ×  (tangential speed)2

radius of circular path
                           

Section 1 Circular Motion 
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Chapter 7 

Centripetal Force, continued 

 

• Centripetal force is simply the name given to the 
net force on an object in uniform circular motion.  

 

• Any type of force or combination of forces can 
provide this net force. 

 

– For example, friction between a race car’s tires 
and a circular track is a centripetal force that 
keeps the car in a circular path. 

 

– As another example, gravitational force is a 
centripetal force that keeps the moon in its 
orbit. 

Section 1 Circular Motion 
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Chapter 7 

Centripetal Force, continued 

 

• If the centripetal force vanishes, the object stops 
moving in a circular path. 

• A ball that is on the end of a 
string is whirled in a vertical 
circular path. 
– If the string breaks at the position 

 shown in (a), the ball will move 
 vertically upward in free fall.  

– If the string breaks at the top of the 
ball’s path, as in (b), the ball will 
 move along a parabolic path. 

Section 1 Circular Motion 
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Chapter 7 

Describing a Rotating System 

 

• To better understand the motion of a rotating 
system, consider a car traveling at high speed and 
approaching an exit ramp that curves to the left. 

 

• As the driver makes the sharp left turn, the 
passenger slides to the right and hits the door. 

 

• What causes the passenger to move toward the 
door?  

Section 1 Circular Motion 
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Chapter 7 

Describing a Rotating System, continued 

Section 1 Circular Motion 

 

• As the car enters the ramp and travels along a 
curved path, the passenger, because of inertia, 
tends to move along the original straight path.  

• If a sufficiently large centripetal force acts on the 
passenger, the person will move along the same 
curved path that the car does. The origin of the 
centripetal force is the force of friction between the 
passenger and the car seat.  

• If this frictional force is not sufficient, the passenger 
slides across the seat as the car turns underneath.  
 

 

 



    © Houghton Mifflin Harcourt Publishing Company 

Preview 

• Objectives 

• Gravitational Force 

• Applying the Law of Gravitation 

Chapter 7 
Section 2 Newton’s Law of 
Universal Gravitation 

 



    © Houghton Mifflin Harcourt Publishing Company 

Section 2 Newton’s Law of 
Universal Gravitation Chapter 7 

Objectives 

• Explain how Newton’s law of universal gravitation 
accounts for various phenomena, including satellite 
and planetary orbits, falling objects, and the tides. 

 

• Apply Newton’s law of universal gravitation to solve 
problems. 
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Chapter 7 

Gravitational Force 

• Orbiting objects are in free fall. 
• To see how this idea is true, we can use a thought 

experiment that Newton developed. Consider a 
cannon sitting on a high mountaintop. 

 

Section 2 Newton’s Law of 
Universal Gravitation 

     Each successive cannonball 
has a greater initial speed, so 
the horizontal distance that 
the ball travels increases. If 
the initial speed is great 
enough, the curvature of 
Earth will cause the 
cannonball to continue falling 
without ever landing. 

 

 

 

 



    © Houghton Mifflin Harcourt Publishing Company 

Chapter 7 

Gravitational Force, continued 

• The centripetal force that holds the planets in orbit 
is the same force that pulls an apple toward the 
ground—gravitational force. 

 

• Gravitational force is the mutual force of attraction 
between particles of matter. 

 

• Gravitational force depends on the masses and on 
the distance between them. 

 

Section 2 Newton’s Law of 
Universal Gravitation 
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Chapter 7 

Gravitational Force, continued 

• Newton developed the following equation to describe 
quantitatively the magnitude of the gravitational force 
if distance r separates masses m1 and m2: 

Section 2 Newton’s Law of 
Universal Gravitation 

1 2
2

2

                

                                    

mass 1 mass 2 gravitational force constant
(distance between masses)

g
m mF G

r
=

×
= ×

 Newton's Law of Universal Gravitation

• The constant G, called the constant of universal 
gravitation, equals 6.673 × 10–11 N•m2/kg. 
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Chapter 7 

Gravitational Force, continued 

• The gravitational forces that two masses exert on 
each other are always equal in magnitude and 
opposite in direction.  

• This is an example of Newton’s third law of motion. 
• One example is the Earth-moon system, shown on 

the next slide.  
• As a result of these forces, the moon and Earth each 

orbit the center of mass of the Earth-moon system. 
Because Earth has a much greater mass than the 
moon, this center of mass lies within Earth. 

Section 2 Newton’s Law of 
Universal Gravitation 

 

 

 

 

 



    © Houghton Mifflin Harcourt Publishing Company 

Chapter 7 

Newton’s Law of Universal Gravitation 

Section 2 Newton’s Law of 
Universal Gravitation 
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Chapter 7 

Applying the Law of Gravitation 

• Newton’s law of gravitation accounts for ocean tides. 
 

• High and low tides are partly due to the gravitational 
force exerted on Earth by its moon.  

 

• The tides result from the difference between the 
gravitational force at Earth’s surface and at Earth’s 
center. 

Section 2 Newton’s Law of 
Universal Gravitation 
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Chapter 7 

Applying the Law of Gravitation, continued 

• Cavendish applied Newton’s law of universal 
gravitation to find the value of G and Earth’s mass. 

 

• When two masses, the distance between them, and 
the gravitational force are known, Newton’s law of 
universal gravitation can be used to find G.  

 

• Once the value of G is known, the law can be used 
again to find Earth’s mass. 

Section 2 Newton’s Law of 
Universal Gravitation 
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Chapter 7 

• Gravity is a field force. 
• Gravitational field strength, 

g, equals Fg/m. 
• The gravitational field, g,  

is a vector with magnitude 
g that points in the direction 
of Fg.  

• Gravitational field 
strength equals free-fall 
acceleration. 

Section 2 Newton’s Law of 
Universal Gravitation 

    The gravitational field vectors 
represent Earth’s gravitational 
field at each point. 

Applying the Law of Gravitation, continued 
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Chapter 7 

Applying the Law of Gravitation, continued 

• weight = mass × gravitational field strength 

• Because it depends on gravitational field 
strength, weight changes with location: 

 

 

 

 

Section 2 Newton’s Law of 
Universal Gravitation 

         weight = mg

g =
Fg

m
=

GmmE

mr2 =
GmE

r2

• On the surface of any planet, the value of g, as 
well as your weight, will depend on the planet’s 
mass and radius. 
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Section 3  Motion in Space Chapter 7 

Objectives 

• Describe Kepler’s laws of planetary motion. 
 

• Relate Newton’s mathematical analysis of 
gravitational force to the elliptical planetary orbits 
proposed by Kepler. 

 

• Solve problems involving orbital speed and period. 
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Chapter 7 

Kepler’s Laws 

Kepler’s laws describe the motion of the planets. 
• First Law: Each planet travels in an elliptical orbit 

around the sun, and the sun is at one of the focal 
points. 

• Second Law: An imaginary line drawn from the sun 
to any planet sweeps out equal areas in equal time 
intervals. 

• Third Law: The square of a planet’s orbital period 
(T2) is proportional to the cube of the average 
distance (r3) between the planet and the sun. 

Section 3  Motion in Space 
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Chapter 7 

Kepler’s Laws, continued 

• Kepler’s laws were developed a generation before 
Newton’s law of universal gravitation. 

 

• Newton demonstrated that Kepler’s laws are 
consistent with the law of universal gravitation. 

 

• The fact that Kepler’s laws closely matched 
observations gave additional support for Newton’s 
theory of gravitation. 

 

Section 3  Motion in Space 
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Chapter 7 

Kepler’s Laws, continued 

    According to Kepler’s second law, if the time a 
planet takes to travel the arc on the left (∆t1) is equal 
to the time the planet takes to cover the arc on the 
right (∆t2), then the area A1 is equal to the area A2.  

Thus, the planet 
travels faster when it 
is closer to the sun 

and slower when it is 
farther away. 

Section 3  Motion in Space 
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Chapter 7 

Kepler’s Laws, continued 

• Kepler’s third law states that T2 ∝ r3. 
 

• The constant of proportionality is 4π2/Gm, where m is 
the mass of the object being orbited. 

 

• So, Kepler’s third law can also be stated as follows: 
 

 

 

 

2
2 34T r

Gm
π 

=  
 

Section 3  Motion in Space 

 

 

 

 



    © Houghton Mifflin Harcourt Publishing Company 

Chapter 7 

Kepler’s Laws, continued 

• Kepler’s third law leads to an equation for the period 
of an object in a circular orbit. The speed of an object 
in a circular orbit depends on the same factors: 

 
T = 2π

r3

Gm
                   vt = G m

r
    

• Note that m is the mass of the central object that is 
being orbited. The mass of the planet or satellite that is 
in orbit does not affect its speed or period.  

• The mean radius (r) is the distance between the 
centers of the two bodies.  

Section 3  Motion in Space 
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Chapter 7 

Planetary Data 

Section 3  Motion in Space 

 



    © Houghton Mifflin Harcourt Publishing Company 

Chapter 7 

Sample Problem 

Period and Speed of an Orbiting Object 
     Magellan was the first planetary spacecraft to be 

launched from a space shuttle. During the spacecraft’s 
fifth orbit around Venus, Magellan traveled at a mean 
altitude of 361km. If the orbit had been circular, what 
would Magellan’s period and speed have been?  

Section 3  Motion in Space 
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Chapter 7 

Sample Problem, continued 

1. Define 

 Given: 
 r1 = 361 km = 3.61 × 105 m 

 Unknown: 
 T = ? vt = ? 
 
2. Plan 

Choose an equation or situation: Use the equations for 
the period and  speed of an object in a circular orbit. 

T = 2π
r3

Gm
                         vt =

Gm
r

Section 3  Motion in Space 
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Chapter 7 

Sample Problem, continued 

Use Table 1 in the textbook to find the values for the 
radius (r2) and mass (m) of Venus.  

 r2
 = 6.05 × 106 m  m = 4.87 × 1024 kg 

Find r by adding the distance between the spacecraft 
and Venus’s surface (r1) to Venus’s radius (r2). 

 r = r1 + r2  
 r = 3.61 × 105 m + 6.05 × 106 m = 6.41 × 106 m  

Section 3  Motion in Space 
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Chapter 7 

Sample Problem, continued 

3. Calculate 

4. Evaluate 
Magellan takes (5.66 × 103 s)(1 min/60 s) ≈ 94 min to complete 

one orbit. 

T = 2π
r3

Gm
 =2π

(6.41× 106 m)3

(6.673 × 10–11N•m2 /kg2 )(4.87 × 1024 kg) 

T = 5.66 × 103  s

vt =
Gm

r
=

(6.673 × 10–11N•m2 /kg2 )(4.87 × 1024 kg)
6.41× 106 m

vt = 7.12 × 103  m/s

 

 

Section 3  Motion in Space 
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Chapter 7 

Weight and Weightlessness 

To learn about apparent weightlessness, imagine that 
you are in an elevator: 
– When the elevator is at rest, the magnitude of the 

normal force acting on you equals your weight.  
– If the elevator were to accelerate downward at 9.81 

m/s2, you and the elevator would both be in free fall. 
You have the same weight, but there is no normal 
force acting on you. 

– This situation is called apparent weightlessness. 
– Astronauts in orbit experience apparent 

weightlessness. 

 

Section 3  Motion in Space 
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Chapter 7 

Weight and Weightlessness 

Section 3  Motion in Space 
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Section 4  Torque and Simple 
Machines Chapter 7 

Objectives 

• Distinguish between torque and force. 
 

• Calculate the magnitude of a torque on an object. 
 

• Identify the six types of simple machines. 
 

• Calculate the mechanical advantage of a simple 
machine. 
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Section 4  Torque and Simple 
Machines Chapter 7 

Rotational Motion 

• Rotational and translational motion can be 
analyzed separately. 
– For example, when a bowling ball strikes the pins, the pins 

may spin in the air as they fly backward. 
– These pins have both rotational and translational motion. 

 

• In this section, we will isolate rotational motion.  
 

• In particular, we will explore how to measure the 
ability of a force to rotate an object. 
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Section 4  Torque and Simple 
Machines Chapter 7 

The Magnitude of a Torque 

• Torque is a quantity that measures the ability of a 
force to rotate an object around some axis. 

• How easily an object rotates on both how much 
force is applied and on where the force is applied. 

• The perpendicular distance from the axis of rotation 
to a line drawn along the direction of the force is 
equal to d sin θ and is called the lever arm. 

 

τ = Fd sin θ 
torque = force × lever arm 
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Section 4  Torque and Simple 
Machines Chapter 7 

The Magnitude of a Torque, continued 

• The applied force may 
act at an angle. 

 

• However, the direction of 
the lever arm (d sin θ) is 
always perpendicular to 
the direction of the 
applied force, as shown 
here. 
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Section 4  Torque and Simple 
Machines 

Torque 
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Chapter 7 

Torque and the Lever Arm 

Section 4  Torque and Simple 
Machines 

In each example, the cat is pushing on the 
door at the same distance from the axis. To 
produce the same torque, the cat must 
apply greater force for smaller angles. 
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Section 4  Torque and Simple 
Machines Chapter 7 

The Sign of a Torque 

• Torque is a vector quantity. In this textbook, we will 
assign each torque a positive or negative sign, 
depending on the direction the force tends to rotate 
an object. 

• We will use the convention that the sign of the torque 
is positive if the rotation is counterclockwise and 
negative if the rotation is clockwise. 

    Tip: To determine the sign of a torque, imagine that the torque 
is the only one acting on the object and that the object is free to 
rotate. Visualize the direction that the object would rotate. If 
more than one force is acting, treat each force separately.  
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Chapter 7 

Sample Problem 

Torque 

 

    A basketball is being pushed by two players during tip-
off. One player exerts an upward force of 15 N at a 
perpendicular distance of 14 cm from the axis of 
rotation.The second player applies a downward force of 
11 N at a distance of 7.0 cm from the axis of rotation. 
Find the net torque acting on the ball about its center of 
mass.  

 

Section 4  Torque and Simple 
Machines 
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Chapter 7 

Sample Problem, continued 

 

Section 4  Torque and Simple 
Machines 

1. Define 

 Given: 
 F1 = 15 N   F2 = 11 N  

 d1 = 0.14 m  d2 = 0.070 m 

 Diagram: 

 Unknown: 
 τnet = ? 
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Chapter 7 

Sample Problem, continued 

 

Section 4  Torque and Simple 
Machines 

2.  Plan 

 Choose an equation or situation: Apply the 
definition of torque to each force,and add up the 
individual torques.  

  

Tip: The factor sin θ is not included in the torque 
equation because each given distance is the 
perpendicular distance from the axis of rotation to a 
line drawn along the direction of the force. In other 
words, each given distance is the lever arm.  

  τ = Fd 

  τnet = τ1 + τ2 = F1d1 + F2d2 
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Chapter 7 

Sample Problem, continued 

 

Section 4  Torque and Simple 
Machines 

4. Evaluate 

    The net torque is negative,so the ball rotates in a 
clockwise direction.   

 

3. Calculate 

    Substitute the values into the equation and 
solve: First,determine the torque produced by each 
force.Use the standard convention for signs.  

  τ1 = F1d1 = (15 N)(–0.14 m) = –2.1 N•m 

  τ2 = F2d2 = (–11 N)(0.070 m) = –0.77 N•m 

  τnet = τ1 + τ2 = –2.1 N•m – 0.77 N•m  
  τnet = –2.9 N•m  
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Section 4  Torque and Simple 
Machines Chapter 7 

Simple Machines 

• A machine is any device that transmits or modifies 
force, usually by changing the force applied to an 
object.  

 
• All machines are combinations or modifications of six 

fundamental types of machines, called simple 
machines. 

 
• These six simple machines are the lever, pulley, 

inclined plane, wheel and axle, wedge, and screw. 
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Simple Machines 
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Section 4  Torque and Simple 
Machines Chapter 7 

Simple Machines, continued 

• Because the purpose of a simple machine is to 
change the direction or magnitude of an input force, 
a useful way of characterizing a simple machine is to 
compare the output and input force.  

• This ratio is called mechanical advantage. 
• If friction is disregarded, mechanical advantage  

can also be expressed in terms of input and output 
distance. 

 

 
MA =

Fout

Fin

=
din

dout
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Section 4  Torque and Simple 
Machines Chapter 7 

Simple Machines, continued 

 

     The diagrams show two examples of a trunk 
being loaded onto a truck.  

• In the first example, a force (F1) of 
360 N moves the trunk through a 
distance (d1) of 1.0 m. This requires 
360 N•m of work.  

• In the second example, a lesser 
force (F2) of only 120 N would be 
needed (ignoring friction), but the 
trunk must be pushed a greater 
distance (d2) of 3.0 m. This also 
requires 360 N•m of work.  
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Section 4  Torque and Simple 
Machines Chapter 7 

Simple Machines, continued 

 

      • The simple machines we have considered so far are 
ideal, frictionless machines. 

• Real machines, however, are not frictionless. Some 
of the input energy is dissipated as sound or heat.  

• The efficiency of a machine is the ratio of useful 
work output to work input. 

eff =
Wout

Win

– The efficiency of an ideal 
(frictionless) machine is 1, or 100 
percent. 

– The efficiency of real machines is 
always less than 1. 
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Mechanical Efficiency 
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