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Chapter 7: Trigonometric Equations and Identities

In the last two chapters we have used basic digfivsitand relationships to simplify
trigonometric expressions and equations. In thapter we will look at more complex
relationships that allow us to consider combinind aomposing equations. By
conducting a deeper study of the trigopnometric iities we can learn to simplify
expressions allowing us to solve more interestpylieations by reducing them into
terms we have studied.
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Section 7.1 Solving Trigonometric Equations with Identities

In the last chapter, we solved basic trigonometggations. In this section, we explore
the techniques needed to solve more complex tugteans.

Building off of what we already know makes this aah easier task.
Consider the functiofi(x) = 2x* + x. If you were asked to solvgx) = 0, it would be an
algebraic task:

2x2+x=0 Factor
x(2x+1) =0 Giving solutions
x=0orx=-1/2

Similarly, for g(t) =sint, if we asked you to solvg(t) = ,§ou can solve this using

unit circle values.
sint) =0 for t =0, n, 2nand so on.

Using these same concepts, we consider the conguositthese two functions:

f (g(t)) = 2(sint)? + (sint) = 2sin®(t) +sin(t)

This creates an equation that is a polynomialftmgction. With these types of functions,
we use algebraic techniques like factoring, thedgatéc formula, and trigonometric
identities to break the equation down to equattbas are easier to work with.

As a reminder, here are the trigonometric iderstitteat we have learned so far:
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Identities

Pythagor ean I dentities
cos (t) +sin’(t) =1 1+ cot®(t) = csc (t) 1+tan®(t) = sec (t)

Negative Angle I dentities
sin(-t) = —sin() cos(t) = cost) tan(-t) = —tan()
cscit) = —csct) secft) = secf) cot(-t) = —cot(t)

Reciprocal Identities

secf) = Fls() cscf) = Wl(t) tant) = ;ns(?) cot) = ta—rlr([)

Solve 2sin®(t) +sint) = 0for all solutionsO<t <27

This equation is quadratic in sine, due to the sopeared term. As with all quadratics,
we can approach this by factoring or the quadfatimula. This equation factors
nicely, so we proceed by factoring out the comnaatdr of sin{).

sint)(2sint) +1) =0

Using the zero product theorem, we know that thislpct will be equal to zero if either
factor is equal to zero, allowing us to break #asiation into two cases:
sint)=0 or 2sint) +1=0

We can solve each of these equations independently

sint) =0 From our knowledge of special angles
t=0ort=n
2sint) +1=0
sin(t) = —% Again from our knowledge of special angles
B &

6
Altogether, this gives us four solutions to theatpn on0<t < 27:
t=0 7 Hn

6 6
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Solve 3sec (t) - 5sect) - 2 = Ofor all solutionsO<t < 27

Since the left side of this equation is quadratisecant, we can try to factor it, and
hope it factors nicely.

If it is easier to for you to consider factoringtmout the trig function present, consider
using a substitutiom = secf ,)leaving3u® -5u-2= Q and then try to factor:

3u% -5u-2= (u+1(u-2)

Undoing the substitution,
(3sect) +1(sect)—2) =0

Since we have a product equal to zero, we breakoithe two cases and solve each
separately.

3secf) +1=0 Isolate the secant
secf) = —% Rewrite as a cosine

t _ 1 Invert both sides
cos() 3

Since the cosine has a range of [-1, 1], the cosith@ever take on an output of -3.
There are no solutions to this part of the equation

Continuing with the second part,

secf{)—-2=0 Isolate the secant
secf) =2 Rewrite as a cosine
1 2 Invert both sides

secf)
cosf) :% This gives two solutions
t= n ort= 5—”

3 3 204
These are the only two solutions on the interval. T
By utilizing technology to graph 104
f(t)=3seé { ) 5sed( , alook at a graph sl

confirms there are only two zeros for this function /A S O I A
which assures us that we didn’t miss anything. _J 23 4 36
5+
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1. Solve2sin?(t) + 3sin) + 1= Ofor all solutions0<t < 27

When solving some trigonometric equations, it beesmecessary to rewrite the equation
first using trigonometric identities. One of theshcommon is the Pythagorean identity,

sin®(#) + cos’ (d) = 1which allows you to rewritesin®( In terms ofcos’ (8 )or vice
versa,

sin®(@)=1-co$ @
cos @)=1-sif @’

This identity becomes very useful whenever an egaatvolves a combination of sine
and cosine functions, and at least one of thenuasligatic

Solve 2sin®(t) — cosf) = 1for all solutionsO<t <27

Since this equation has a mix of sine and cosinetions, it becomes more complex to
solve. Itis usually easier to work with an egaiatinvolving only one trig function.
This is where we can use the Pythagorean identity.

2sin®(t) —cosf) =1 Usingsin®(d) =1-cos’(8)
2(1-cog (1)) - cost) =1 Distributing the 2
2—-2cos (t) —cost) =1

Since this is now quadratic in cosine, we rearnaggine equation to set it equal to zero
and factor.

—-2cos (t) - cosf) +1=0 Multiply by -1 to simplify the factoring
2cos (t) +cosf)-1=0 Factor
(2cost) -1)(cost) +1) =0

This product will be zero if either factor is zesm, we can break this into two separate
equations and solve each independently.
2cosf)-1=0 or cost)+1=0

cos():% or cosf) =-1
t=2 ort:5—72 or t=n
3 3



Section 7.1 Solving Trigonometric Equations athehtities 277

2. Solve2sin®(t) = 3cost )for all solutions0 <t < 27

In addition to the Pythagorean identity, it is afteecessary to rewrite the tangent, secant,
cosecant, and cotangent as part of solving an iequat

Solve tan(x) = 3sin(x ) for all solutionsO< x< 27

With a combination of tangent and sine, we mightéwriting tangent
tan(x) = 3sin(x)

sin(x)
cos(x)

= 3sin(x) Multiplying both sides by cosine

sin(x) = 3sin(x) cos(x)

At this point, you may be tempted to divide botthesi of the equation by sin(xlResist
theurge. When we divide both sides of an equation byantjty, we are assuming the
guantity is never zero. In this case, whenxgir(0 the equation is satisfied, so we’'d
lose those solutions if we divided by the sine.

To avoid this problem, we can rearrange the equatide equal to zeto
sin(x) —3sin(x)cos(k) =0 Factoring out sin{) from both parts

sin(x)(1-3cosk)) =0

From here, we can see we get solutions wéiafx) = or D-3cos(x) = 0.
Using our knowledge of the special angles of thie aircle

sin(x) =0 whenx =0 orx =m.

For the second equation, we will need the invecsine.

1-3cosx) =0
cos(x) :% Using our calculator or technology
X = cos‘l(%j =1.231 Using symmetry to find a second solution

Xx=2n1-1231=5.052

We have four solutions o8 < x< 27
x=0, 1.231x, 5.052

! You technicallycan divide by sink) as long as you separately consider the case veiregg= 0. Since it
is easy to forget this step, the factoring appragsed in the example is recommended.
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3. Solvesecf) = 2cos@ )for the first four positive solutions.

Solve +3cog ) = 2cofd) taf(d) for all solutionsO< &< 27
seé @)
4 +3cogd) = 2cofd) tafb) Using the reciprocal identities
seé¢ @)
4cos () +3cosf) =2 tan©) Simplifying
tan@)
4cog (6)+ 3co$l) = Subtracting 2 from each side

4cog (6)+ 3cogd)- 2

This does not appear to factor nicely so we usetiaglratic formula, remembering that
we are solving for cosj.

cosp) = ~32 322(;;(4)(_2) - _31'8\/4_1

Using the negative square root first,

-3-41
8

cos@) = =-1.175

This has no solutions, since the cosine can’t b tlean -1.

Using the positive square root,

-3+4/41
8

cos@) = =0.425

6 = cos*(0.425)=1.131 By symmetry, a second solution can be found
6=2n-1131=5.152

Important Topics of This Section
Review of Trig ldentities
Solving Trig Equations
By Factoring
Using the Quadratic Formula
Utilizing Trig Identities to simplify
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Try it Now Answers

1. t:7—ﬂ,3—”,ﬂron the interval0 <t < 27
6 2 6

2. t:g,S—;T on the intervaD<t < 2n

5 g7 37 5T I
4 4 4 4
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Section 7.2 Addition and Subtraction Identities
In this section, we begin expanding our repertofresigonometric identities.

The sum and difference identities

cos@ — B) = cos@) cos(B) +sin(a)sin(B)
cos@ + B) = cos@)cos(B) —sin(a)sin(B)
sin(a + ) =sin(a) cos(B) + cos@)sin(f)
sin(a — ) =sin(a) cos(B) — cos@) sin(B)

We will prove the difference of angles identity farsine. The rest of the identities can
be derived from this one.

Proof of the difference of angles identity for guesi
Consider two points on a unit circle:
P at an angle o with coordinates

(cos@),sin(@)) o

Q at an angle of with coordinates P
(cos(B),sin(B))
Notice the angle between these two points is o

a —B. Label third and fourth points:
C at an angle of — 3, with coordinates

(cos@ - B).sin(@ - B))
D at the point (1, 0)

Notice that the distance fro@to D is the
same as the distance frd?rto Q.

Using the distance formula to find the distancerfi®to Q is

J(cos@) -cos(B))? +(sin(a) - sin(B)

Expanding this

\/cos2 (a) - 2cos@) cos(B) + cos (B) +sin’(a) — 2sin(@) sin(B) + sin® ()

Applying the Pythagorean Theorem and simplifying
\2-2cos@) cos(B) - 2sin(a) sin(B)

Similarily, using the distance formula to find ttiistance fronC to D

\/(cos@ - B)-1)° +(sin(@ - B) - 0)*
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Expanding this
Jcos (@ - B) - 2cos@ - ) +1+sin’ (a - )

Applying the Pythagorean Theorem and simplifying
\J-2cos@ - ) +2

Since the two distances are the same we set tvedertmulas equal to each other and
simplify

\J2-2cos@) cos(B) - 2sin(a)sin(B) =+/-2cos@ - ) +2

2-2cosg@)cos(f) - 2sin(@)sin(B) = -2cos - [) +2

cos@) cos(B) +sin(a)sin(B) =cos@ - )

Establishing the identity

1. By writing cos@ + ) ascoda — (- ), show the sum of angles identity for cosine
follows from the difference of angles identity pesvabove.

The sum and difference of angles identities arenofised to rewrite expressions in other
forms, or to rewrite an angle in terms of simpleglas.

Find the exact value afos(’5° )

Since75° =30° + 45° , we can evaluateos(/5° )
COs(/5°) = cos@0° + 45°) Apply the cosine sum of angles identity

= cos@B0°) cos@5°) —sin(30°) sin(45°) Evaluate

O— Simpl
e imply
J6-+2

4

2. Find the exact value csfin(l—lg
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Rewrite sin(x—’zrj in terms of sinf) and cos).

sin(x —IZT) Use the difference of angles identity for sine

:sin(x)co{gj —cos(x)sin(gj Evaluate the cosine and sine and rearrange

- %sin(x) V2 ody)

Additional, these identities can be used to singxgressions or prove new identities

sin(@+b) _ tan@) + tan()
sin@—-b) tan@)-tan)

Prove

As with any identity, we need to first decide whiitle to begin with. Since the left
side involves sum and difference of angles, we gt there

sin(@+b)
sin@-b)
_ sin(a) cosp) + cosf)sin(b)

sin(a) cosp) — cos@) sin(b)

Apply the sum and difference of angle identitie

Since it is not immediately obvious how to procesd,might start on the other side,
and see if the path is more apparent.
tan@) + tan()

tan@) — tan()

Rewriting the tangents using the tangent idgntit

sin(a) N sin()
_cos@) cosp)
~ sin(@) _ sin()

cos@) cosp)

Multiplying the top and bottom by c@§¢osp)

(sin(a) , Sin@) ]COS@ cosb)

_ c?s@) C?SD) Distributing and simplifying
sin@) _ sin() cos@) cosp)
cos@) cosp)
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_ sin(a) cos@) + sin(b) cosp)

sin(a) cos@) —sin(b) cosp)

From above, we recognize this

_ sin@@+b)

_ Establishing the identity
sin@-b)

These identities can also be used for solving éoumt

£

Solve sin(x) sin(2x) + cos) cos@x) = -

By recognizing the left side of the equation asr#wult of the difference of angles
identity for cosine, we can simplify the equation

sin(x) sin(2x) + cos) cos@x) = g Apply the difference of angles identity
cosx—2x) = ?
_+3 . S
COSEX) = 3 Use the negative angle identity
cos) = g

Since this is a cosine value we recognize fronuthiecircle we can quickly write the
answers:

x="1+ 27K
5 , Wherek is an integer
X= ?ﬂ+ 27K

Combining Waves of Equal Period
Notice that a sinusoidal function of the forfi{x) = Asin(Bx+ C can be rewritten using
the sum of angles identity.

Rewrite f(x) = 4sin(3x+7§7j as a sum of sine and cosine
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Using the sum of angles identity
4sin(3x+£j
3
: T (T . :
= A(S|n(3x)co{§j + cos(3x)sm(§j] Evaluate the sine and cosine
= A(Sin(3x) D;— +cog3x) E—I\/Z—gj Distribute and simplify
= 25in(3x) + 2¢/3 cog3x)

Notice that the result is a stretch of the sineeddy a different stretch of the cosine, but
both have the same horizontal compression whialitees the same period.

We might ask now whether this process can be redersan a combination of a sine
and cosine of the same period be written as aesgiglisoidal function? To explore this,
we will look in general at the procedure used méxample above.

f(x) = Asin(Bx+C) Use the sum of angles identity
= A(sin(Bx) cos(C) + cos@Bx)sin(C)) Distribute theA
= Asin(Bx) cosC) + AcosBx)sin(C) Rearrange the terms a bit

= AcosC)sin(Bx) + Asin(C) cosBx)

Based on this result, if we have an expressioh@fdrm msin(Bx) + ncosBx ), we
could rewrite it as a single sinusoidal functiom# can find valueé andC so that
msin(Bx) + ncosBx) = AcosC)sin(Bx) + Asin(C) cos®x) , which will require that:

m_ cosC)
m= Acos A
- Asi f) which can be rewritten as”
n=Asin(C) D sinE)
A
To find A,
m? +n? = (AcosC))’ +(Asin(C))’
= A% cos’(C) + A%sin*(C)
= A’ (cos2 (©) +sin2(C)) Apply the Pythagorean Identity and simplify
= A2

Definition
To rewrite msin(Bx) + ncosBx ) as Asin(Bx+C)

A’ =m® +n?, cosC) =% , andsin(C) =%
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We can use either of the last two equations toesfulv possible values @&. Since there
will usually be two possible solutions, we will et look at both to determine what
quadrantC is in and determine which solution fGrsatisfies both equations.

Rewrite 4+/3sin(2x) - 4cos@x) as a single sinusoidal function

Using the formulas above? = (4@)2 +(-4)? =16[B3+16 =64, SOA = 8.
Solving forC,

cos(:)—i—£ oC—— orC= 1177
6 6
However, sincesin(C) = ?4 = —% the angle that works for both &G = %

Combining these results gives us the expression

85in(2x +£Tj
6
3. Rewrite - 3\/§sin(5x) + 3\/§cosﬁx) as a single sinusoidal function

Rewriting a combination of sine and cosine of eguealods as a single sinusoidal
function provides an approach for solving some &qnos.

Solve 3sin(2x) + 4cos@x) = 1for two positive solutions.

To approach this, since the sine and cosine havedime period, we can rewrite them
as a single sinusoidal function.

A? =(3)* +(4)* =25, s0A=5
cosC) =§ ,S0C = cos‘l(gj =0.927 or C =21 -0.927=5.356

Sincesin(C) = g a positive value, we need the angle in the §justdrantC = 0.927.
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Using this, our equation becomes

5sin(2x +0.927) =1 Divide by 5

sin(2x +0.927) = é Make the substitution = 2x + 0.927
sin(u) =é The inverse gives a first solution
u= sin‘l(a =0.201 By symmetry, the second solution is

u=71-0.201=2940

Undoing the substitution, we can find two positeautions forx.
2x+0.927=0.201 or 2x+0.927=2.940

2x=-0.726 or 2x=2.013

x=-0.363 or x=1.007

The Product to Sum and Sum to Product | dentities

Identities
The Product to Sum I dentities

sin(@) cos(B) = %(sin(a + ) +sin(a - f))
sin(@)sin(B) = %(cos@ - B) —cos@ + f3))
cos@)cos(B) = %(cos@' + f3) + cos@ - B3))

We will prove the first of these, using the sum difterence of angles identities from the
beginning of the section. The proofs of the othar identities are similar and are left as
an exercise.

Proof of the product to sum identiiyr sin(a) cos(B)

Recall the sum and difference of angles identfties earlier
sin(a + ) =sin(a) cos(B) + cos@)sin(f)

sin(a — f) =sin(a) cos(B) — cos@) sin(B)

Adding these two equations, we obtain
sin(a + B) +sin(a — ) = 2sin(a) cos(B)

Dividing by 2, we establish the identity
sin(@) cos(B) = %(sin(a + ) +sin(a - f))
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Write sin(2t) sin(4t) as a sum or difference.

Using the product to sum identity for a productiofes
sin(2t) sin(4t) = %(coth — 4t) - cos@t +4t))

= %(cos(—Zt) — cos@t)) If desired, apply the negative angle identity

= %(coth) - cos@t)) Distribute

-1 1
=5 cos@t) > cost)

4. Evaluateco £ﬂ co 7
12 12

The Sum to Product | dentities

sin(u) +sin(v) = Zsin( ! ; Vj co{ u- VJ

2

sin(u) - sin(v) = Zs,in(u ;Vj cos(u ¥ Vj

2

coqu) + coqv) = ZCO{U ;Vj cos(u _ Vj

2

coqu) - coqv) = —Zsin(u ;Vjsin(u - Vj

2

We will again prove one of these and leave theassin exercise.

Proof of the sum to product identity for sine fuoos
We begin with the product to sum identity

sin(a) cos(B) = %(sin(a + B) +sin(@ - B))

We define two new variables:
u=a+p
v=a-p
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Adding these equations yieldst v = 2a , giving a = ury

Subtracting the equations yields-v =24, or = u-v > v

Substituting these expressions into the produstito identity above,

sm(u ; jco{u > Vj %(sin(u)+sin(v)) Multiply by 2 on both sides

Zsin(u ;Vj cos(u ;Vj = sin(u) + sin(v) Establishing the identity

Evaluatecos(5°) —cos(/5° )

Using the sum to produce identity for the differet cosines,
cos(5°) —cos(/5°)

= —Zsin(szin(@j Simplify
2 2
= -2sin(45°)sin(- 30°) Evaluate
g2 gloV?
2 2 2

xample 10

Prove the identity cos@it) - coth) —tant)
S|n(4t) +sin(2t)

Since the left side seems more complicated, westaahthere and simplify.
COs{@t) — cos2t)
sin(4t) +sin(2t)

(At +2t) L (4t-2t
_23”‘{ 2 )Sln( 2 )
_ . (4t+2tj {4t‘2tj Simplify
2sin co
2 2
- 2sin(3t)sin(t) Simplify further
" 2sin(3)codt)

_-sin(t) Rewrite as a tangent
codt)

Using the sum to product identities

= —tan(t) Establishing the identity



Section 7.2 Addition and Subtraction Identiti289

Try it Now
5. Notice that using the negative angle identﬂ'm(u)—sin(v) =sin() +sin(-v) . Use
this along with the sum of sines identity to prolre sum to product identity for
sin(u) - sin(v).

xample 11

Solve sin(7it) + sin( 31t) = cosft for all solutionsO<t < 2

In an equation like this, it is not immediately adavs how to proceed. One option
would be to combine the two sine functions on #fedide of the equation. Another
would be to move the cosine to the left side ofdfaation, and combine it with one of
the sines. For no particularly good reason, waljin by combining the sines on the
left side of the equation and see how things waitk 0

sin(7it) + sin( 31t) = cosfit Apply the sum to product identity on the left
Zsin(m +23ntj coz{m _Zsmj = cosft Simplify

2sin( 27t) cog-7t) = costt Apply the negative angle identity

2sin( 2t) cogt) = costt Rearrange the equation to be = 0

2sin( 27t) cogmt) - cosft ¥ Factor out the cosine

cos(7t)( 2sir( 2t)- Y= |

Using the zero product theorem we know we will hagkitions if either factor is zero.
. , . , 2n ,
With the first part,cos(7it) = C, the cosine has period = =— =2, so the solution
T

interval of 0<t < 2contains one full cycle of this function.

cog(t) = G Substituteu = 71t
codu)=0 On one cycle, this has solutions
u :g oru= 3777 Undo the substitution
=" sot=2
2 2
=7 sot=3
2 2

For the second part of the equati@sin( 27t) - 1= (, the sine has a period of

2n o : , .
= P =1, so the solution intervdd <t < 2ontains two cycles of this function.
m
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Zsin(mt)— 1=C
. 1
2it)==
sin(27t) >
in =1
sin(u) = >
7l on
=—oru=—
6 6

271:£,sot:i
6

u=2ﬂ+£:@ oru=2mr+
6 6

12
27125—77,sot:E
6 12
2nt:@,sot:1—3
6 12
2nt:ﬂ,sot:E
6 12

Altogether, we found six solutions on
0<t <2, which we can confirm as all
solutions looking at the graph.

1 5113317

12'12'2'12'2'12

Isolate the sine

u=27
On one cycle, this has solutions

On the second cycle, the solutions are

Undo the substitution

-
BN

/]
Y

Important Topics of This Section
The sum and difference identities
Combining waves of equal periods
Product to sum identities
Sum to product identities

Completing proofs

Try it Now Answers

cos@ + B) =cos@ — (=)
cos@)cosEp) +sin(@)sin(=L£)
cos@)cos(B) +sin(@)(-sin(B))
cos@)cos(B) —sin(a) sin(B)
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J2-46

4
63in(5x+3—ﬂj

4

— 2 + \/é

4
sin(u) —sin(v) Use negative angle identity for sine
sinu) +sin(-v) Use sum to product identity for sine
Zsin(u ¥ (_ V)jcos{u — (_ V)j

2 2 Eliminate the parenthesis

. (u —VJ {u +vj
2sinf—— |co
2 2 Establishing the identity
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Section 7.3 Double Angle Identities

While the sum of angles identities can handle sewiariety of cases, the double angle
cases come up often enough that we choose totséstie identities separately. The
double angle identities are just another form efsbm of angle identities, since
sin(2a) =sin(@ +a) .

The double angleidentities

sin(2a) = 2sin(@) cos@)
cosRa) cos (a) —-sin*(a)
1-2sin*(a)
2cos (a) -1

These identities follow from the sum of angles iitées.

Proof of the sine double angle identity

sin(2a)

=sin(a +a) Apply the sum of angles identity
=sin(a)cosi) + cos@)sin(@) Simplify

= 2sin(a) cos@) Establishing the identity

‘ 1. Show cos@a) = cos’(a) —sin®(a ) by using the sum of angles identity for cosine

For the cosine double angle identity, there aregliorms of the identity that are given
because the basic forraps@a) = cos’(a) —sin’*(a , dan be rewritten using the
Pythagorean Identity. Rearranging the Pythagol@amtity results in the

equalitycos’ (o) =1-sin®(a ), and by substituting this into the basic doublglan
identity, we obtain the second form of the doubigla identity.

cos@a) = cos’ (a) —sin®(a) Substituting using the Pythagorean identity
cos@a) =1-sin’(a) -sin’(a) Simplifying

cos@a) =1-2sin*(a)
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If sin@@) =§ and@ is in the second quadrant, find exact valuessfn2¢ andl

cos@6)

To evaluateos@é ) since we know the value for the sine, we canthiserersion of the

double angle that only involves sine.
. 3y _, 18_ 8
cos@l) =1-2sin*(@)=1-2/ = | =1-—=—-—
en=1-2srt@=1-4] =1 =

Since the double angle for sine involves both aime cosine, we’ll need to first find
cos@) , which we can do using the Pythagorean identity.

sin?(8) +cos’(0) =1
@JZ +cos (6) =1

-2
cos’(8) =1 o

16 4
cosf) = 11/— =+—
6) 25 5

Sinced is in the second quadrant, we want to keep thatnegvalue for cosine,

cosp) = —g

Now we can evaluate the sine double angle

on e ean _3)_4)__24
sm(26’)-23m(6’)c08(9)—Z(SJ( 5) 25

We can use the double angle identities for simplgyexpressions and proving identities.

_ Cos@t)
SIMPIY s =sin®

With three choices for how to rewrite the doublglanwe need to consider which will
be the most useful. To simplify this expressiomvould be great if the fraction would
cancel, which would require a factor obds¢) —sin( , which is most likely to occur if
we rewrite the numerator with a mix of sine andimes
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cos(t)
cost) —sin()
_ co< (t) —sin?(t)
- cost) —sin()
(cost) - sin(t))(cost) +sin())
cost) —sin()
= cost) +sin() Resulting in the most simplified form

Apply the double angle identity

Factor the numerator

Cancelling the common factor

Provesecga) = M
2-sec(a)
Since the right side seems a bit more complex tiarmeft side, we begin there.
M Rewrite the secants in terms of cosine
2-sec(a)
1

_ cos(a) : :
S — Find a common denominator on the bottom

2 —

cos (a)
1

= cos’(a) Subtract the terms in the denominator

2cos’(a) 1

cos’(a) cos(a)

1

= M Invert and multiply

2cos (a) -1

cos (a)

-1 E cos’(a) Cancel the common factors

cos’ (a) 2cos(a)-1
-t Rewrite the denominator as a double angle

2cos’ (a) -1
-1 Rewrite as a secant

cosRa)
=sec@a) Establishing the identity

2. Use an identity to find the exact valueafs’ (75°) - sin(75°)
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Like with other identities, we can also use theldewangle identities for solving
eguations.

Solve cos@t) = cost ) for all solutionsO<t < 27

In general when solving trig equations, it makesgh more complicated when we have
a mix of sines and cosines and when we have a hiunotions with different periods.

In this case, we can use a double angle identitgwaite the double angle term. When
choosing which form of the double angle identityis®, we notice that we have a
cosine on the right side of the equation. Wedrlrhit our equation to one trig

function, which we can do by choosing the versibthe double angle that only
involves cosine.

cos@t) = cos() Apply the double angle identity

2cos (t) —1=cost) This is quadratic in cosine, so rearrange it =0
2cos (t) —cosf) -1=0 Factor

(2cos¢) +1)(cos€) -1) =0 Break this apart to solve each part separately

2cosf) +1=0 or cosf)-1=0

cost) :—% or cosf) =1
t:E ort:4—n or t=0
3 3

A cannonball is fired with velocity of 100 metersrsecond. If it is launched at an
angle of6, the vertical component of the velocity will @80sin(@ ahd the horizontal

component will beL0Ocos@ ) Ignoring wind resistance, the height of the carirall
will follow the equationh(t) = -4.9t* +100sin(@)t and horizontal position will follow
the equationx(t) =100cos@)t. If you want to hit a target 900 meters awayyhat
angle should you aim the cannon?

To hit the target 20 miles away, we watft) =  @0€the time when the cannonball hits
the ground, whern(t) = 0 To solve this problem, we will first solve fdre time t,

when the cannonball hits the ground. Our answimepend upon the anghe

h(t) =0

- 49t +100sin(@)t =0 Factor

t(- 49t +100sin(@)) =0 Break this apart to find two solutions
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t=0 or
- 4.9t +100sin(@) =0 Solve fort
- 4.9t = -100sin(6)
(= 100sin(6)
4.9

This shows that the height is O twice, once=a0 when the ball is first thrown, and
again when the ball hits the ground. The secohgbvaft gives the time when the ball
hits the ground as a function of the angle We want the horizontal distanxg) to be

12 when the ball hits the ground , so when%lg(m.
Since the target is 900 m away we start with
x(t) =900 Use the formula fox(t)
100cos@)t =900 Substitute the desired tintefrom above
100c0s@) 22%5N0) _ g9 Simplify
4.9
1007 . _ . .
4—9005(9)S|n(6?) =900 Isolate the cosine and sine product
. 900(4.9)
cos@)sin@) =
0)sin(6) 100

The left side of this equation almost looks like thsult of the double angle identity for
sine: sin(2) = 2sin(6)cod8).

By dividing both sides of the double angle idenkty2, we get

%sin(Za) =sin(@)cos). Applying this to the equation above,

1 900(4.9)

=sin(26) = Multiply by 2
> (26) 100 ply by
sin(26) = %(249) Use the inverse
10C
20 = sin‘l(wj =1.080 Divide by 2
1007
~1.080

0= — = 0.540, or about 30.94 degrees



Section 7.3 Double Angle Identities 297

Power Reduction and Half Angle Identities

Another use of the cosine double-angle identige® iuse them in reverse to rewrite a
squared sine or cosine in terms of the double angtarting with one form of the cosine
double angle identity:

cos@a) = 2cos (a) -1 Isolate the cosine squared
cos@a) +1=2cos (a) Adding 1
cos (a) = cos@a) +1 Dividing by 2
2
cos (a) = cosea) +1 This is called @ower reduction identity

2

3. Use another form of the cosine double angle idemdiprove the identity
1-cos@a)

sin®(a) = 5

Rewrite cos' (x ) without any powers
Sincecos'(x) = (cosz(x))z, we can use the formula we found above
cos'(x) = (cos2 (x))2
2
= (%X)ﬂj Square the numerator and denominator
cos(X }+ 3°
:% FOIL the top & square the bottom
= cos’ (2X) +jCOSQX) 1 Split apart the fraction
= C0324(2X) + ZCOzQX) +% Apply the formula above toos (2x )
(cos@x) +1j
2 2cos@x) 1 _
= + += Simpli
4 4 4 pity
_coséo 1, 1cost) +1 Combine the constants
8 8 2 2
_ Coséx) 1 cos@x) + B
2 8
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The cosine double angle identities can also be isexlerse for evaluating angles that

are half of a common angle. Building off our folaeos (a) :W from
earlier, if we letd = 2a, then this identity becom&sﬁ(gj = W. Taking the

square root, we obtain

co{gj = i‘/%;)_l , Where the sign is determined by the quadrant.

This is called dalf-angleidentity.

4. Use your results from the last Try it Now to prove ittentity

sin(gj =+, /—1_ cos®)
2 2

xample 7
Find an exact value forog15°).

Since 15 degrees is half of 30 degrees, we canwrsesult from above:

cos(5’) = co{ﬁj =+ \/@
2 2

We can evaluate the cosine. Since 15 degreeghe ifirst quadrant, we will keep the
positive result.

Identities
Half-Angle | dentities

co{gj s [cos@) -1 sin(gj s [1-cos@)
2 2 2 2

Power Reduction | dentities
cos(a) = —COSQZa) 1 sin®(a) = 1-cos@a) COZSQO)
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Since these identities are easy to derive fromdthale-angle identities, the power
reduction and half-angle identities are not onassfwould need to memorize separately.

Important Topics of This Section

Double angle identity
Power reduction identity
Half angle identity
Using identities
Simplify equations
Prove identities
Solve equations

Try it Now Answers

cod2a) = cos@ +a)
1. cosf@)cos@) —sin(@)sin(a)
cos (a) —sin®(a)

-3
2

2. cos50)=——

1-cos(2r)
2
1-(co$ @ ) sift & )
2
3 1-cog @ 1+ sif &)
' 2
sin® (@)+ sirt @)
2
2sirt @)

=sin* (@)
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1-cosa)
2

sin(@) = i‘/l—cosQa)
2

4. a':g

sin®(a) =
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Section 7.4 Modeling Changing Amplitude and Midline

While sinusoidal functions can model a variety ehaviors, often it is necessary to
combine sinusoidal functions with linear and expuia curves to model real
applications and behaviors. We begin this sediplooking at changes to the midline of
a sinusoidal function. Recall that the midlineatdses the middle, or average value, of
the sinusoidal function.

Changing Midlines

A population of elk currently averages 2000 elld &mat average has been growing by
4% each year. Due to seasonal fluctuation, thellptipn oscillates 50 below average
in the winter up to 50 above average in the sumriérte an equation for the number
of elk aftert years.

There are two components to the behavior of thepefiulation: the changing average,
and the oscillation. The average is an exponegt@kth, starting at 2000 and growing
by 4% each year. Writing a formula for this:

average =initial (1+r)' = 2000( 0.04)

For the oscillation, since the population oscikab® above and below average, the
amplitude will be 50. Since it takes one yearthw population to cycle, the period is 1.
We find the value of the horizontal stretch coeéfitB = original p.erlod :2—”: Vid

new period 1
Additionally, since we weren’t told whearwas first measured we will have to decide if
t = 0 corresponds to winter, or summer. If we cleomster then the shape of the

function would be a negative cosine, since it stattthe lowest value.

Putting it all together, the equation would be:
P(t) =-50cos(2it }* midline

Since the midline represents the average populatiersubstitute in the exponential
function into the population equation to find ounal equation:

P(t) = -50cos(21t } 2000@ 0.04

This is an example of changing midline — in thiseean exponentially changing midline.

Changing Midline
A function of the formf (t) = Asin(Bt) + g(t )will oscillate above and below the

average given by the functigft).
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Changing midlines can be exponential, linear, gr@her type of function. Here are
some examples of what the resulting functions wéadbd like.

Linear midline Exponentlal midline Quadraticdime
) 74
; ] ]
5 61 51
, ; !
\/ \/2 S IR 31 5]
2? /\/\/}/?\2/:\/:2?4s 7 KTI'U!EI?JS
4 j 24
f(t) = Asin(Bt)+ (mt+b) f(t)= Asm(Bt)+(abt) f (t) = Asin(Bt) + (at?)
xample 2

Find a function with linear midline of the form(t) = Asin(gtj +mt +b that will pass

through points below.

0 1 3
(o) 5 10 |9 8

N

Since we are given the value of the horizontal a@sgion coefficient we can calculate

the period of this functionnew period = ariginal period :2—” =

8 g

Since the sine function is at the midline at thgileing of a cycle and halfway through
a cycle, we would expect this function to be atrthidline att = 0 andt = 2, since 2 is
half the full period of 4. Based on this, we expee points (0, 5) and (2, 9) to be
points on the midline. We can clearly see thatithisot a constant function and so we
use the two points to calculate a linear functiondline=mt +b. From these two
points we can calculate a slope:

_9-5_4_

Combining this with the initial value of 5, we hathee midline:midline =2t + 5 giving
a full function of the formf (t) = Asin(gtj +2t+5. To find the amplitude, we can
plug in a point we haven't already used, such ad@}

10= Asin(g (1)) +20)+5 Evaluate the sine and combine like terms

10=A+7
A=3
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An equation of the form given fitting the data wadble
F(t) = 3sin(gtj +2+5

Alternative Approach
Notice we could have taken an alternate approaghiugging points (0, 5) and (2, 9)
into the original equation. Substituting (0, 5),

5= Asin(l—ZT (O)J +m(@0) +b Evaluate the sine and simplify

5=b
Substituting (2, 9)
9= Asin(g (2)) +m(2) +5 Evaluate the sine and simplify

9=2m+5
4=2m
m= 2, as we found above.

The number of tourists visiting a ski and hikingod averages 4000 people annually
and oscillates seasonally, 1000 above and belowvwbege. Due to a marketing
campaign, the average number of tourists has lmeeeasing by 200 each year. Write
an equation for the number of touristgears, beginning at the peak season.

Again there are two components to this probleng dscillation and the average. For
the oscillation, the number oscillates 1000 abowklzelow average, giving an
amplitude of 1000. Since the oscillation is seatdhhas a period of 1 year. Since we
are given a starting point of “peak season”, wé mibdel this scenario with a cosine
function.

So far, this gives an equation in the foift) =1000cos@7t) + midline

For the average, the average is currently 4000jsamdreasing by 200 each year. This
is a constant rate of change, so this is lineawtirpaverage = 4000+ 20( .

Combining these two pieces gives an equation ®mntimber of tourists:
N(t) =1000cos(2t ¥ 4006 20

1. Given the functiong(x) = (x* -1)+ 8cos ' describe the midline and amplitude in
words.
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Changing Amplitude

As with midline, there are times when the amplitofla sinusoidal function does not

stay constant. Back in chapter 6, we modeled thigom of a spring using a sinusoidal
function, but had to ignore friction in doing slf.there were friction in the system, we
would expect the amplitude of the oscillation temase over time. Since in the equation
f(t) = Asin(Bt) + k, A gives the amplitude of the oscillation, we canwltbhe amplitude

to change by changing this constartb a functionA(t).

Definition
Changing Amplitude
A function of the formf (t) = A(t)sin(Bt) + k will oscillate above and below the
midline with an amplitude given bA(t).

When thinking about a spring with amplitude decirgg@®ver time, it is tempting to use
the simplest equation for the job — a linear fumrcti But if we attempt to model the
amplitude with a decreasing linear function, susAé) =10-t, we quickly see the

problem when we graph the equatiéit) = Q0-t)sin(4t . )

(14

10+

While the amplitude decreases at first as intenttedamplitude hits zero at 10, then
continues past the intercept, increasing in absalatue, which is not the expected
behavior. This behavior and function may modelditeation well on a restricted

domain and we might try to chalk the rest of itapnodel breakdown, but in fact springs
just don’t behave like this.

A better model would show the amplitude decreabingpercent each second, leading
to an exponential decay model for the amplitude.

Damped harmonic motion, exhibited by springs subject to friction, follows
equation of the form

f(t)=ab'sin(Bt)+k or f(t)=ae"sin(Bt)+k for continuous decay.
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A spring with natural length of 20 inches is pullgatk 6 inches and released. It
oscillates once every 2 seconds. Its amplitudeedses by 20% each second. Write an
equation for the position of the sprihgeconds after being released.

Since the spring will oscillate on either sideloé hatural length, the midline will be at
20 inches. The oscillation has a period of 2 sdspand so the horizontal compression
coefficient isB = 77. Additionally, it begins at the furthest distaricem the wall,
indicating a cosine model. 0t

Meanwhile, the amplitude begins at 6 inche: |
and decreases by 20% each second, giving
amplitude equation o&(t) = 6(1— 020)".
20+
Combining this with the sinusoidal
information gives an equation for the positio;s|
of the spring:
f (t) = 6(080)' cos(t) + 20 I 2 3 4 5 6 7 8 9 101

10+

A spring with natural length of 30 cm is pulled d@ cm and released. It oscillates 4
times per second. After 2 seconds, the amplit@dedecreased to 5 cm. Find an
equation for the position of the spring.

The oscillation has a period of ¥4 second. Sineestiring will oscillate on either side
of the natural length, the midline will be at 30.cthbegins at the furthest distance
from the wall, suggesting a cosine model. Togettnées gives

f(t) = A(t)cos@rt) +30

For the amplitude function, we notice that the atage starts at 10 cm, and decreased
to 5 cm after 2 seconds. This gives two pointd(),and (2, 5) that must be satisfied
by the exponential equationA(0) = Hhd A(2) = 5 Since the equation is
exponential, we can use the foraft) = ab'. Substituting the first poini,0=ab°®, soa
=10. Substituting in the second point,

5=100° Divide by 10
% =b? Take the square root

2

This gives an amplitude equation Aft) =10(0.707)'. Combining this with the
oscillation,
f (t) =10(0.707) cos(8t ¥ 3
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Try it Now
2. A certain stock started at a high value of $79wre and has been oscillating above
and below the average value, decreasing by 2%eaaer flowever, the average value
started at $4 per share and has grown linearlyObgebts per year.

a. Write an equation for the midline

b. Write an equation for the amplitude.

c. Find the equation S(t) for the value of thecktafter t years.

In Amplitude Modulated (AM) radio, a carrier wavéthva high frequency is used to
transmit music or other signals by applying thasrait signal as the amplitude of the
carrier signal. A musical note with frequency H(Hertz - cycles per second) is to
be carried on a wave with frequency of 2 KHz (Kéotz — thousands of cycles per
second). If a musical wave has an amplitude @frBe an equation describing the
broadcast wave.

The carrier wave, with a frequency of 2000 cyclesgecond, would have periezdola

of a second, giving an equation of the fasm(4000iz . Qur choice of a sine function
here was arbitrary — it would have worked just wadl to use a cosine.

For the music note, with a frequency of 110 cygesssecond, it would have a period of
1—1(_ of a second. With an amplitude of 3, this wouddidran equation of the form
3sin(220rt) . Again our choice of using a sine function isitaby.

The musical wave is acting as the amplitude otctreier wave, so we will multiply the
music wave function with the carrier wave functigiving a resulting equation
f (t) = 3sin(220rt) sin(40001)
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Changing midline

Changing amplitude
Linear Changes
Exponential Changes
Damped Harmonic Motion

Try it Now Answers

1. The midline follows the path of the quadratic-1and the amplitude is a constant
value of 8.

m(t) =4+ 0.5
A(t) =7(0.8)

St)=7(0.8) Co{l—gtj+ &4 OF




