CHAPTER 8: ACID/BASE EQUILIBRIUM

- Already mentioned acid-base reactions in Chapter 6 when discussing reaction types.
- One way to define acids and bases is using the Brønsted-Lowry definitions.
- A Brønsted-Lowry acid donates hydrogen ions; a Brønsted-Lowry base accepts hydrogen ions.

Examples of B.L. acids and bases

$$H_3O^+_{(aq)} + OH^-_{(aq)} \leftrightarrow 2H_2O_{(I)}$$

B.L. acid B.L base both acid & base

$$CH_{3}COOH_{(aq)} + H_{2}O_{(I)} \leftrightarrow H_{3}O^{+}_{(aq)} + CH_{3}COO^{-}_{(aq)}$$

B.L. acid

B.L. base

B.L. acid

B.L. base

Conjugate Acids and Bases

- The reaction determines what's an acid and what's a base.
- $H_2SO_4(I) + CH_3COOH \leftrightarrow$

 $CH_3COOH_2^+ + HSO_4^-$

- $CH_3COOH_2^+$ is the conjugate acid of the base CH_3COOH .
- HSO_4^- is the conjugate base of H_2SO_4 .
- Add H⁺ to get a conjugate acid; subtract H⁺ to get a conjugate base.

Strong acids and bases

 A strong acid is one which reacts almost completely with water to produce H⁺. This product is the hydronium ion, H₃O⁺.

– Examples: H_2SO_4 , HCI, etc.

 A strong base is one which reacts almost completely with water to produce OH⁻ ions.
 – Examples: KOH, NaNH₂

Determining pH

- The pH measures the amount of H⁺ (or H_3O^+) ions.
- $pH = -log_{10}[H_3O^+]$
- What is the pH of pure water? 2H₂O ↔ H₃O⁺(aq) + OH⁻(aq) "Self ionization" of water k_w = 1.0 x 10⁻¹⁴ at 25°C = [H₃O⁺][OH⁻]

Determining the pH of water

• Pure water must be neutral, therefore $[H_3O^+] = [OH^-].$

So,

 $k_w = 10^{-14} = [H_3O^+]^2$ $[H_3O^+] = \sqrt{(10^{-14})} = 10^{-7} M$

Therefore,

 $pH = -log_{10}(10^{-7}) = 7$

The pH scale

- pH < 7 is acidic
 [H₃O⁺] > [OH⁻]
- pH = 7 is neutral
 [H₃O⁺] = [OH⁻]
- pH > 7 is basic
 [H₃O⁺] < [OH⁻]

It is also possible to compute a pOH scale. $pOH = -log_{10}[OH^{-}]$

Strength of acids

- Stronger acids dissociate more than weaker acids (usually measured in water at 25°C).
- A general acid, HA, would dissociate according to the equation:
 HA (aq) + H₂O (ℓ) ↔ H₃O⁺ + A⁻(aq)

$$k_a = ([H_3O^+][A^-])/[HA]^*1$$

k_a and pk_a

- The bigger the constant k_a, the more the acid dissociates.
- $pk_a = -log_{10}k_a$

Acid	k _a	pk _a
HCI	~ 10 ⁷	~ -7
H ₂ SO ₄	~ 10 ²	~ -2
CH ₃ COOH	~ 1.8 x 10 ⁻⁵	~ 4.74

CHEM 1310 A/B Fall 2006

Strength of bases

- Measures how strongly a substance wants to accept H⁺.
 - $H_2O(\ell)$ + $NH_3(aq)$ ↔ $NH_4^+(aq)$ + $OH^-(aq)$ $k_b = ([NH_4^+][OH^-])/[NH_3]$
- k_b is the "basicity constant" analogous to k_a

Relationship of k_a to k_b

Since, the autoionization reaction of water tells us that,

```
[OH^{-}] = (k_w/[H_3O^{+}])
```

then

- $k_b = ([NH_4^+][NH_3]) \times (k_w/[H_3O^+]) = k_w/k_a$ where k_a is acidity constant of NH_4^+ , the conjugate acid of NH_3 .
- In general, $k_a k_b = k_w$ and $pk_a + pk_b = pk_w = 14$

Competition between acids and bases

- In equilibrium reactions, you can determine if reactants or products are more favored.
- For an arbitrary reactions, equilibrium constants are not usually tabulated, but can be determined from corresponding k_a and k_b values.

 $H_3O^+(aq) + CN^-(aq) \leftrightarrow HCN(aq) + H_2O(\ell)$ 3 (1/k_a') = (1/6.2 x 10⁻¹⁰) = [HCN]/([H₃O⁺][CN⁻])

- HF(aq) + H₂O(ℓ) ↔ H₃O⁺(aq) + F⁻(aq) K_a = 6.6 x 10⁻⁴ = ([H₃O⁺][F⁻])/[HF]
- The corresponding reactions are HE(2q) + H(Ql) + E(2q) + E(2q)
- $HF(aq) + CN^{-}(aq) \leftrightarrow HCN(aq) + F^{-}(aq)$ **1**

2

Competition between acids and

bases (cont.)

Consider the reaction

Competition between acids and bases (cont.)

- Reaction 1 is the sum of reactions 2 and 3.
- When you add reactions, you multiply equilibrium constants.

•
$$k_{rx} = k_a * (1/k_a') = (k_a/k_a') = 1.1 \times 10^6$$

 This means products are favored because HF is a stronger acid (or because CN⁻ is a stronger base).

Indicators

- Indicators are molecules which change colors when pH changes over a certain range.
- Phenolphthalein turns from colorless to pink as pH gets up to ~7 and higher
- Other indicators change color at different pH's.
- Indicators are not ultra-precise because the color change occurs in a pH window.

k_a 's of Indicators

 An indicator in water could be represented by the reaction

HIn(aq) + H₂O ↔ H₃O⁺(aq) + In⁻(aq) which has a k_a of

 $k_a = [H_3O^+][In^-]/[HIn]$

- The color starts to change as ([In⁻]/[HIn]) = (k_a/[H₃O⁺]) approaches 1, that is when there are almost equal amounts of In⁻ and HIn (each of which has a different color).
- Color change happens when k_a ≈ [H₃O⁺], or when pH ≈ pk_a of the indicator.

Equilibrium of acids and bases example

Propionic acid CH₃CH₂COOH has a k_a = 1.3 x 10⁻⁵ at 25°C. What is the pH of a 0.65 M solution? What fraction of the acid ionizes?

Example continued

	[CH ₃ CH ₂ COOH]	[CH₃CH₂COO ⁻]	[H ₃ O+]
Start	0.65 M	~0	~0
Final			
k _a			

Example Continued

CHEM 1310 A/B Fall 2006

Example 2

 0.100 mol NaCH₃COO is dissolved in water to make 1.00 L of solution. What is the solution's pH?

Example 2 (cont.)

	[CH ₃ COO ⁻]	[CH ₃ COOH]	[OH-]
Initial	0.100	0	0
Final			

CHEM 1310 A/B Fall 2006

Hydrolysis

- The previous example demonstrated hydrolysis – when aqueous ions change the pH of a solution (the NaCH₃COO increased the pH).
- Not all ions do this; notice that the CH₃COO⁻ ions grabbed protons (releasing OH⁻ which raised the pH) while Na⁺ did not grab OH⁻ anions (which would have lowered the pH).

lons and Hydrolysis

- Anions usually raise the pH by hydrolysis (exceptions: Cl⁻, Br⁻, l⁻, HSO₄⁻, NO₃⁻, ClO₃⁻, ClO₄⁻)
- Cations usually lower the pH by hydrolysis (exceptions: Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Ag⁺)

Buffer Solutions

- Solutions designed to keep pH constant (even if some acid or base is added) are called buffer solutions.
- These are often found in biological systems which need to keep a constant pH.
- How can you keep pH constant? Must be able to absorb/neutralize acid <u>or</u> base!
- To accomplish this, you typically use an acid and its conjugate base.

Example of a buffer solution

- A mixture of hypochlorous acid (HClO) and sodium hypochlorite (NaClO) (found in household bleach) is a buffer solution.
- If k_a(HCIO) = 3.0 x 10⁻⁸ and 0.88 mol of HCIO and 1.2 mol of NaCIO are dissolved in 1.5 L of H₂O, what is the pH? What is the pH after 0.2 mol of HCI is added?

Example of buffer solution

- HCIO(aq) + $H_2O(\ell) \leftrightarrow H_3O^+(aq) + CIO^-(aq)$
- What happens after you add the 0.2 mol HCI? It's a strong acid, so it completely dissociates.
- Since the HCIO doesn't release very many protons, the CIO⁻ likes protons very much.
- Almost all the H⁺ from HCI will combine with CIO⁻ to form weak HCIO.

Example of a buffer solution

- Find the intial molarity of the HCI.
- Determine the initial and final concentrations.

	[HCIO]	[H ₃ O ⁺]	[CIO-]
Initial			
Final			

Example of a buffer solution – determining the new pH

Why did the pH change so little?

- 0.133 M HCl(aq) should have a pH of 0.88.
- The buffer solution works because CIOabsorbed all of the H⁺ and there was a lot of HCIO already in solution, so relative amounts of both CIO⁻ and HCIO remained about the same.
- $k_a = ([H_3O^+][A^-])/[HA] \rightarrow [H_3O^+] = k_a([HA]/[A^-])$
- So if [HA]/[A⁻] doesn't change much, then [H₃O⁺] won't either!

Henderson-Hassellbalch Equation

• When $[A^-] \approx [A^-]_0$ and $[HA] \approx [HA]_0$ (as in the example), $k_a = ([H_3O^+][A^-]_0)/[HA]_0$. which means $[H_3O^+] \approx ([HA]_0/[A^-]_0)k_a$ Taking the log of everything gives: $pH \approx pk_{a} - \log_{10} ([HA]_{0} / [A^{-}]_{0})$ which is known as the Henderson-Hassellbalch Equation

Designing a buffer

- If you need to make a buffer for an acidic solution, use acid that's somewhat stronger (although it still must be a weak acid). You would want k_a > 10⁻⁷.
- If you need a buffer for a basic solution, you would want $k_a < 10^{-7}$.
- If you want a buffer for a specific pH, choose a pk_a and initial concentrations to satisfy the Henderson-Hassellbalch equation. (See example 8-12).

CHEM 1310 A/B Fall 2006

Buffered vs. Unbuffered Solutions

CHEM 1310 A/B Fall 2006

Titrations and pH

- Titrations were also discussed earlier in Chapter 6, but a more detailed analysis can be done using pH.
- Generally, titrations add a basic solution to an acidic one, or vice versa. The moles of one are known accurately, the moles of the other are measured in the titration.
- At the equivalence point, $n_{acid} = n_{base}$.
- The pH change during a titration depends on whether strong acids/bases are used.

Case 1: Titration of a strong acid by a strong base

- Example: Titrating 0.1 M HCl by 0.1 M NaOH
- At the beginning, 0.1 M HCl has a pH of what?

 What's the pH when 90% of the HCI has been neutralized?

Case 1: Titration of a strong acid by a strong base

 At equivilence, 1 L of NaOH added to 1 L of HCI, neutralization, the only H₃O⁺ comes from the autoionization of water.

 $2H_2O \leftrightarrow H_3O^+(aq) + OH^-(aq)$ $[H_3O^+] = 10^{-7}$ pH = 7

Case 1: Titration of a strong acid by a strong base

• When an extra 0.1 L of NaOH is added, what's the pH?

Case 1 Summary

 pH changes slowly until equivalence, then shoots upwards rapidly, then levels off (to what value in our example?)

CHEM 1310 A/B Fall 2006

Case 2: Weak acid with strong base

- In the beginning, you have a weak acid, so pH < 7, but not very low.
- When you add a little strong base, the base reacts completely with equivalent amount of weak acid to nuetralize it, leaving a mix of weak acid and its conjugate base (note this makes a buffer solution!). The pH changes slowly.

Case 2: Weak acid with strong base

- Once more than enough strong base is added, the pH changes rapidly and then levels off.
- Notice that the equivalence point is not at pH of 7. Why? We are defining the equivalence point as where n_{acid} = n_{base}, but we have generated some of the acid's conjugate base during neutralization, and this raises the pH.

CHEM 1310 A/B Fall 2006

Polyprotic Acids

- Acids which can give more than one proton are called polyprotic acids.
 H₂SO₄(aq) + H₂O(l) ↔ H₃O⁺(aq) + HSO₄⁻(aq)
 k_a ≈ 100 (huge)
 HSO₄⁻(aq) + H₂O(l) ↔ H₃O⁺(aq) + SO₄⁻(aq)
 k_{a2} = 1.2 x 10⁻² (big, but not huge)
 HSO₄⁻ is a weak acid
- A strong base can still take both protons from H₂SO₄ but sometimes by itself it will only give up one.

Polyprotic acid example

Suppose we have an initial concentration of 0.034 M aqueous H₂CO₃. What are the concentrations of each species?

$$\begin{array}{l} \mathsf{H}_2\mathsf{CO}_3(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\ell) \leftrightarrow \mathsf{H}_3\mathsf{O}^+(\mathsf{aq}) + \mathsf{HCO}_3^-(\mathsf{aq}) \\ \mathsf{k}_a = 4.3 \times 10^{-7} \\ \mathsf{HCO}_3^-(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\ell) \leftrightarrow \mathsf{H}_3\mathsf{O}^+(\mathsf{aq}) + \mathsf{CO}_3^{-2}(\mathsf{aq}) \\ \mathsf{k}_a = 4.8 \times 10^{-11} \end{array}$$

 Notice that k_{a1} >> k_{a2}, so most of the H₃O⁺ comes from 1st equation, not 2nd. Likewise, most HCO₃⁻ comes from equation 1, relatively little used by equation 2. This suggests simplifications for setting up the problem.

Polyprotic acid example

 Since k_{a1+} >> k_{a2}, you can solve the first equilibrium while ignoring the second (at first, anyway).

	[H ₂ CO ₃]	[H ₃ O ⁺]	[HCO ₃ -]
Initial			
Final			

Polyprotic example continued

CHEM 1310 A/B Fall 2006

Lewis acids and bases

- An alternative definition of acids and bases are the Lewis definitions
- A Lewis acid is an electron acceptor and a Lewis base is an electron donor.

Hoo grabs
$$H^{\dagger} up$$
 it's lone pair
: $\dot{c}i + \dot{H} + \dot{O}\dot{o}; = \dot{c}i^{-}; + \begin{bmatrix} \mu - \dot{\rho} - H \end{bmatrix}^{\dagger}$

Examples of Lewis acids and bases

• This allows us to say NH_3 is a Lewis base and BH_3 is a Lewis acid in a reaction.

