CHAPTER 8: ACID/BASE EQUILIBRIUM

- Already mentioned acid-base reactions in Chapter 6 when discussing reaction types.
- One way to define acids and bases is using the Brønsted-Lowry definitions.
- A Brønsted-Lowry acid donates hydrogen ions; a Brønsted-Lowry base accepts hydrogen ions.

Examples of B.L. acids and bases

$\underset{\text { B.L. acid }}{\mathrm{H}_{3} \mathrm{O}^{+}}{ }_{\text {(aq) }}+\underset{\text { B.L base }}{\mathrm{OH}_{(\text {(aq) }}} \leftrightarrow \underset{\text { both acid } \text { b base }}{2 \mathrm{H}_{2} \mathrm{O}_{()}}$

$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
 B.L. acid
 B.L. base
 B.L. acid
 B.L. base

Conjugate Acids and Bases

- The reaction determines what's an acid and what's a base.
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})+\mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow$

$$
\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}+\mathrm{HSO}_{4}^{-}
$$

- $\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$is the conjugate acid of the base $\mathrm{CH}_{3} \mathrm{COOH}$.
- $\mathrm{HSO}_{4}{ }^{-}$is the conjugate base of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
- Add H^{+}to get a conjugate acid; subtract H^{+}to get a conjugate base.

Strong acids and bases

- A strong acid is one which reacts almost completely with water to produce H^{+}. This product is the hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$.
- Examples: $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HCl}$, etc.
- A strong base is one which reacts almost completely with water to produce OH^{-}ions.
- Examples: $\mathrm{KOH}, \mathrm{NaNH}_{2}$

Determining pH

- The pH measures the amount of H^{+}(or $\mathrm{H}_{3} \mathrm{O}^{+}$) ions.
- $\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- What is the pH of pure water?
$2 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
"Self ionization" of water
$\mathrm{k}_{\mathrm{w}}=1.0 \times 10^{-14}$ at $25^{\circ} \mathrm{C}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$

Determining the pH of water

- Pure water must be neutral, therefore $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{OH}]$.
So,

$$
\mathrm{k}_{\mathrm{w}}=10^{-14}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{ }\left(10^{-14}\right)=10^{-7} \mathrm{M}
$$

Therefore,

$$
\mathrm{pH}=-\log _{10}\left(10^{-7}\right)=7
$$

The pH scale

- $\mathrm{pH}<7$ is acidic

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]
$$

- $\mathrm{pH}=7$ is neutral

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]
$$

- $\mathrm{pH}>7$ is basic

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]
$$

It is also possible to compute a pOH scale. $\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$

Strength of acids

- Stronger acids dissociate more than weaker acids (usually measured in water at $25^{\circ} \mathrm{C}$).
- A general acid, HA, would dissociate according to the equation:

$$
\begin{aligned}
& \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}(\mathrm{aq}) \\
& \mathrm{k}_{\mathrm{a}}=\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{A}-]\right) /\left[\mathrm{HA}^{*} 1\right.
\end{aligned}
$$

k_{a} and pk_{a}

- The bigger the constant k_{a}, the more the acid dissociates.
- $\mathrm{pk}_{\mathrm{a}}=-\log _{10} \mathrm{k}_{\mathrm{a}}$

Acid	k_{a}	pk_{a}
HCl	$\sim 10^{7}$	~-7
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\sim 10^{2}$	~-2
$\mathrm{CH}_{3} \mathrm{COOH}$	$\sim 1.8 \times 10^{-5}$	~ 4.74

CHEM 1310 A/B Fall 2006

Strength of bases

- Measures how strongly a substance wants to accept H^{+}.
$\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{NH}_{3}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ $\mathrm{k}_{\mathrm{b}}=\left(\left[\mathrm{NH}_{4}^{+}\right][\mathrm{OH}-\mathrm{]}) /\left[\mathrm{NH}_{3}\right]\right.$
- k_{b} is the "basicity constant" analogous to k_{a}

Relationship of k_{a} to k_{b}

- Since, the autoionization reaction of water tells us that,

$$
\left[\mathrm{OH}^{-}\right]=\left(\mathrm{k}_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)
$$

then
$\mathrm{k}_{\mathrm{b}}=\left(\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NH}_{3}\right]\right) \times\left(\mathrm{k}_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=\mathrm{k}_{\mathrm{w}} / \mathrm{k}_{\mathrm{a}}$ where k_{a} is acidity constant of $\mathrm{NH}_{4}{ }^{+}$, the conjugate acid of NH_{3}.

- In general, $\mathrm{k}_{\mathrm{a}} \mathrm{k}_{\mathrm{b}}=\mathrm{k}_{\mathrm{w}}$ and
$\mathrm{pk}_{\mathrm{a}}+\mathrm{pk}_{\mathrm{b}}=\mathrm{pk}_{\mathrm{w}}=14$

Competition between acids and bases

- In equilibrium reactions, you can determine if reactants or products are more favored.
- For an arbitrary reactions, equilibrium constants are not usually tabulated, but can be determined from corresponding k_{a} and k_{b} values.

Competition between acids and bases (cont.)

- Consider the reaction
$\mathrm{HF}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{HCN}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$
- The corresponding reactions are $\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \quad 2$ $\mathrm{K}_{\mathrm{a}}=6.6 \times 10^{-4}=\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{F}]\right) /[\mathrm{HF}]$
$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CN}-(\mathrm{aq}) \leftrightarrow \mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \quad 3$
$\left(1 / \mathrm{k}_{\mathrm{a}}{ }^{\prime}\right)=\left(1 / 6.2 \times 10^{-10}\right)=[\mathrm{HCN}] /\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{CN}-]\right)$

Competition between acids and bases (cont.)

- Reaction 1 is the sum of reactions 2 and 3.
- When you add reactions, you multiply equilibrium constants.
- $\mathrm{k}_{\mathrm{rx}}=\mathrm{k}_{\mathrm{a}}{ }^{*}\left(1 / \mathrm{k}_{\mathrm{a}}{ }^{\prime}\right)=\left(\mathrm{k}_{\mathrm{a}} / \mathrm{k}_{\mathrm{a}}{ }^{\prime}\right)=1.1 \times 10^{6}$
- This means products are favored because HF is a stronger acid (or because CN^{-}is a stronger base).

Indicators

- Indicators are molecules which change colors when pH changes over a certain range.
- Phenolphthalein turns from colorless to pink as pH gets up to ~ 7 and higher
- Other indicators change color at different pH's.
- Indicators are not ultra-precise because the color change occurs in a pH window.

k_{a} 's of Indicators

- An indicator in water could be represented by the reaction
$\mathrm{H} \ln (\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{In}^{-}(\mathrm{aq})$
which has a k_{a} of
$\mathrm{k}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{In}^{-}\right] /[\mathrm{HIn}]$
- The color starts to change as $([\mathrm{In}-\mathrm{-} /[\mathrm{HIn}])=$ $\left(\mathrm{k}_{\mathrm{a}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$approaches 1 , that is when there are almost equal amounts of In^{-}and HIn (each of which has a different color).
- Color change happens when $\mathrm{k}_{\mathrm{a}} \approx\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, or when $\mathrm{pH} \approx \mathrm{pk}_{\mathrm{a}}$ of the indicator.

Equilibrium of acids and bases example

- Propionic acid $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ has a $\mathrm{k}_{\mathrm{a}}=$ 1.3×10^{-5} at $25^{\circ} \mathrm{C}$. What is the pH of a 0.65 M solution? What fraction of the acid ionizes?

Example continued

	$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]$	$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right]$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Start	0.65 M	~ 0	~ 0
Final			
k_{a}			

CHEM 1310 A/B Fall 2006

Example Continued

Example 2

- $0.100 \mathrm{~mol} \mathrm{NaCH}_{3} \mathrm{COO}$ is dissolved in water to make 1.00 L of solution. What is the solution's pH ?

Example 2 (cont.)

	$\left[\mathrm{CH}_{3} \mathrm{COO}-\right]$	$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$	$\left[\mathrm{OH}^{-}\right]$
Initial	0.100	0	0
Final			

CHEM 1310 A/B Fall 2006

Example 2

Hydrolysis

- The previous example demonstrated hydrolysis - when aqueous ions change the pH of a solution (the $\mathrm{NaCH}_{3} \mathrm{COO}$ increased the pH).
- Not all ions do this; notice that the $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions grabbed protons (releasing OH^{-}which raised the pH) while Na^{+}did not grab OH^{-}anions (which would have lowered the pH).

Ions and Hydrolysis

- Anions usually raise the pH by hydrolysis (exceptions: $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{ClO}_{3}^{-}$, $\mathrm{ClO}_{4}{ }^{-}$)
- Cations usually lower the pH by hydrolysis (exceptions: $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{Mg}^{2+}$, $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Ag}^{+}$)

Buffer Solutions

- Solutions designed to keep pH constant (even if some acid or base is added) are called buffer solutions.
- These are often found in biological systems which need to keep a constant pH .
- How can you keep pH constant? Must be able to absorb/neutralize acid or base!
- To accomplish this, you typically use an acid and its conjugate base.

Example of a buffer solution

- A mixture of hypochlorous acid (HCIO) and sodium hypochlorite (NaClO) (found in household bleach) is a buffer solution.
- If $\mathrm{k}_{\mathrm{a}}(\mathrm{HClO})=3.0 \times 10^{-8}$ and 0.88 mol of HClO and 1.2 mol of NaClO are dissolved in 1.5 L of $\mathrm{H}_{2} \mathrm{O}$, what is the pH ? What is the pH after 0.2 mol of HCl is added?

Example of buffer solution

- $\mathrm{HClO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq})$
- What happens after you add the 0.2 mol HCl ? It's a strong acid, so it completely dissociates.
- Since the HClO doesn't release very many protons, the ClO^{-}likes protons very much.
- Almost all the H^{+}from HCl will combine with ClO^{-}to form weak HClO .

Example of a buffer solution

- Find the intial molarity of the HCl .
- Determine the initial and final concentrations.

	$[\mathrm{HClO}]$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{ClO}^{-}\right]$
Initial			
Final			

Example of a buffer solution determining the new pH

Why did the pH change so little?

- $0.133 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ should have a pH of 0.88 .
- The buffer solution works because CIOabsorbed all of the H^{+}and there was a lot of HClO already in solution, so relative amounts of both CIO^{-}and HClO remained about the same.
- $\mathrm{k}_{\mathrm{a}}=\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]\right) /[\mathrm{HA}] \rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{k}_{\mathrm{a}}\left([\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\right)$
- So if $[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$doesn't change much, then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ won't either!

Henderson-Hassellbalch Equation

- When $\left[\mathrm{A}^{-}\right] \approx\left[\mathrm{A}^{-}\right]_{0}$ and $[\mathrm{HA}] \approx[\mathrm{HA}]_{0}$ (as in the example), $\mathrm{k}_{\mathrm{a}}=\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]_{0}\right) /[\mathrm{HA}]_{0}$. which means
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx\left([\mathrm{HA}]_{0} /\left[\mathrm{A}^{-}\right]_{0}\right) \mathrm{k}_{\mathrm{a}}$
Taking the log of everything gives:
$\mathrm{pH} \approx \mathrm{pk}_{\mathrm{a}}-\log _{10}\left([\mathrm{HA}]_{0} /\left[\mathrm{A}^{-}\right]_{0}\right)$
which is known as the
Henderson-Hassellbalch Equation

Designing a buffer

- If you need to make a buffer for an acidic solution, use acid that's somewhat stronger (although it still must be a weak acid). You would want $k_{a}>10^{-7}$.
- If you need a buffer for a basic solution, you would want $k_{a}<10^{-7}$.
- If you want a buffer for a specific pH , choose a pk_{a} and initial concentrations to satisfy the Henderson-Hassellbalch equation. (See example 8-12).

Buffered vs. Unbuffered Solutions

CHEM 1310 A/B Fall 2006

Titrations and pH

- Titrations were also discussed earlier in Chapter 6 , but a more detailed analysis can be done using pH .
- Generally, titrations add a basic solution to an acidic one, or vice versa. The moles of one are known accurately, the moles of the other are measured in the titration.
- At the equivalence point, $\mathrm{n}_{\text {acid }}=\mathrm{n}_{\text {base }}$.
- The pH change during a titration depends on whether strong acids/bases are used.

Case 1: Titration of a strong acid by a strong base

- Example: Titrating 0.1 M HCl by 0.1 M NaOH
- At the beginning, 0.1 M HCl has a pH of what?
- What's the pH when 90% of the HCl has been neutralized?

Case 1: Titration of a strong acid by a strong base

- At equivilence, 1 L of NaOH added to 1 L of HCl , neutralization, the only $\mathrm{H}_{3} \mathrm{O}^{+}$ comes from the autoionization of water.
$2 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-7}$
$\mathrm{pH}=7$

Case 1: Titration of a strong acid by a strong base

- When an extra 0.1 L of NaOH is added, what's the pH ?

Case 1 Summary

- pH changes slowly until equivalence, then shoots upwards rapidly, then levels off (to what value in our example?)

Case 2: Weak acid with strong base

- In the beginning, you have a weak acid, so $\mathrm{pH}<7$, but not very low.
- When you add a little strong base, the base reacts completely with equivalent amount of weak acid to nuetralize it, leaving a mix of weak acid and its conjugate base (note this makes a buffer solution!). The pH changes slowly.

Case 2: Weak acid with strong base

- Once more than enough strong base is added, the pH changes rapidly and then levels off.
- Notice that the equivalence point is not at pH of 7 . Why? We are defining the equivalence point as where $\mathrm{n}_{\text {acid }}=$ $\mathrm{n}_{\text {base }}$, but we have generated some of the acid's conjugate base during neutralization, and this raises the pH .

Polyprotic Acids

- Acids which can give more than one proton are called polyprotic acids.

```
H2SO
```

 \(\mathrm{k}_{\mathrm{a}} \approx 100\) (huge)
 $\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{-}(\mathrm{aq})$
$\mathrm{k}_{\mathrm{a} 2}=1.2 \times 10^{-2}$ (big, but not huge)
HSO_{4} is a weak acid

- A strong base can still take both protons from $\mathrm{H}_{2} \mathrm{SO}_{4}$ but sometimes by itself it will only give up one.

Polyprotic acid example

- Suppose we have an initial concentration of 0.034 M aqueous $\mathrm{H}_{2} \mathrm{CO}_{3}$. What are the concentrations of each species?

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \\
\mathrm{k}_{\mathrm{a}}=4.3 \times 10^{-7} \\
\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{-2}(\mathrm{aq}) \\
\mathrm{k}_{\mathrm{a}}=4.8 \times 10^{-11}
\end{gathered}
$$

- Notice that $\mathrm{k}_{\mathrm{a} 1} \gg \mathrm{k}_{\mathrm{a} 2}$, so most of the $\mathrm{H}_{3} \mathrm{O}^{+}$comes from $1^{\text {st }}$ equation, not $2^{\text {nd }}$. Likewise, most $\mathrm{HCO}_{3}{ }^{-}$ comes from equation 1, relatively little used by equation 2. This suggests simplifications for setting up the problem.

Polyprotic acid example

- Since $k_{a 1+} \gg k_{a 2}$, you can solve the first equilibrium while ignoring the second (at first, anyway).

	$\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{HCO}_{3}{ }^{-}\right]$
Initial			
Final			

Polyprotic example continued

Lewis acids and bases

- An alternative definition of acids and bases are the Lewis definitions
- A Lewis acid is an electron acceptor and a Lewis base is an electron donor.

Examples of Lewis acids and bases

- This allows us to say NH_{3} is a Lewis base and BH_{3} is a Lewis acid in a reaction.

