Chapter 8 Concepts of Chemical Bonding

Chemical Bonds Three types:

Magnesium oxide

Potassium dichromate Nickel(II) oxide

Sulfur

Bromine

Sucrose

Ionic Electrostatic attraction between ions

Covalent Sharing of electrons Magnesium

Gold

Copper

Metallic Metal atoms bonded to several other atoms

Ionic Bonding

When a metal and a nonmetal get together

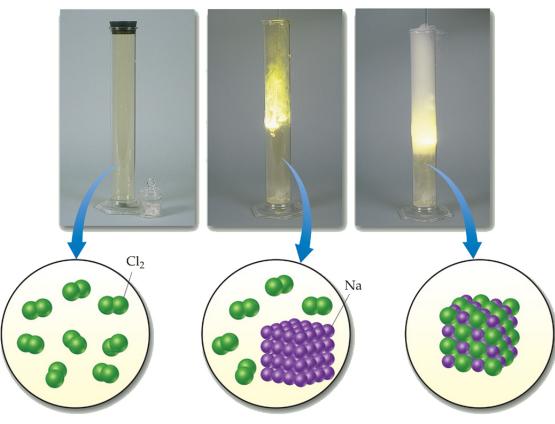
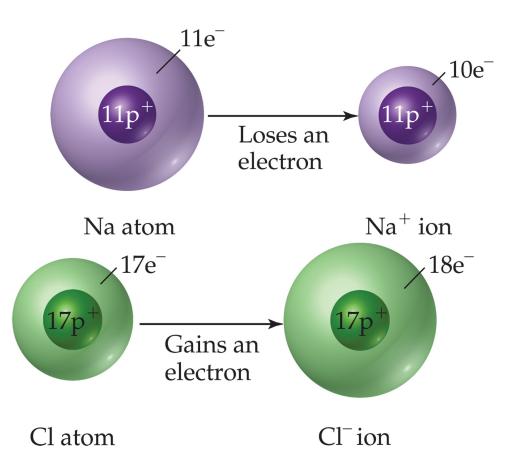

Energetics of Ionic Bonding 2Na(s) + Cl₂(g) -----> 2NaCl(s)

TABLE 7.2Successive

Element	I_1	it takes 495 kJ/mol to	
Na	495	remove 1 electron from sodium.	
Mg	738	495x2 = 990 kJ/2 Na	

It takes another 240 kJ/mole to: F Ne -328 $Cl_2 \rightarrow 2Cl$ 141 > ()We get **349 kJ/mol** back by giving 1 S $\mathbf{C}\mathbf{I}$ Ar electron each to 2 moles of Cl. -349200> 0(Electron affinity of CI) Se Br Kr -325195 > () $-349x2 = -700 \text{ kJ/mol Cl} \rightarrow \text{Cl}^{-1}$ 990 kJ/2Na – 700 kJ/Mol $Cl_2 = 290$ kJ

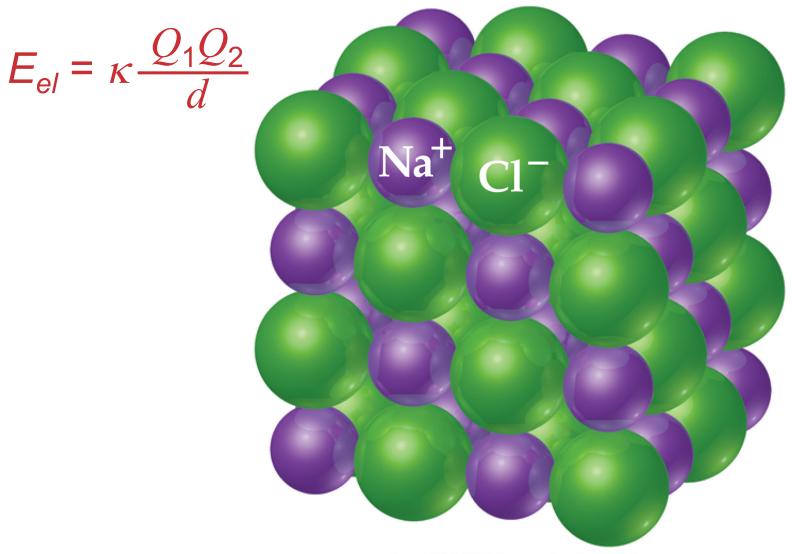

990 kJ/2Na⁺ + 240 kJ/mol – 700 kJ/Mol (2Cl⁻) = 530kJ

But these numbers don't explain why the reaction of sodium metal and chlorine gas to form sodium chloride is so exothermic!

- There must be a third piece to the puzzle....
- The electrostatic attraction
- Between Na⁺ and Cl⁻

• The ionic Bond!

Lattice Energy

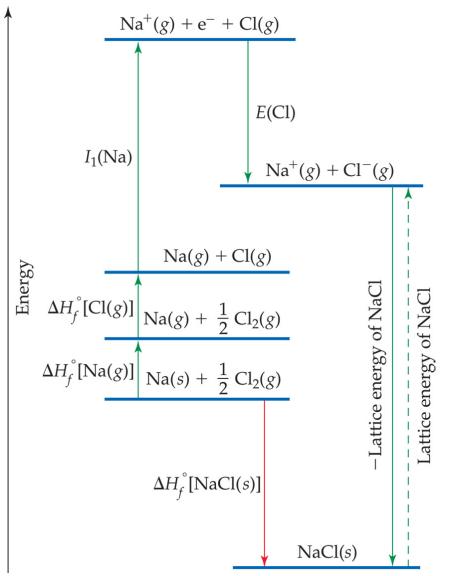

This third piece of the puzzle is the lattice energy:

The energy required to completely separate a mole of a solid ionic compound into its gaseous ions.

• The energy associated with electrostatic interactions is governed by Coulomb' s law:

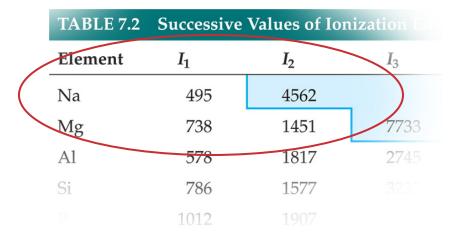
$$E_{el} = \kappa \frac{Q_1 Q_2}{d}$$

Lattice Energy


Copyright © 2006 Pearson Prentice Hall, Inc.

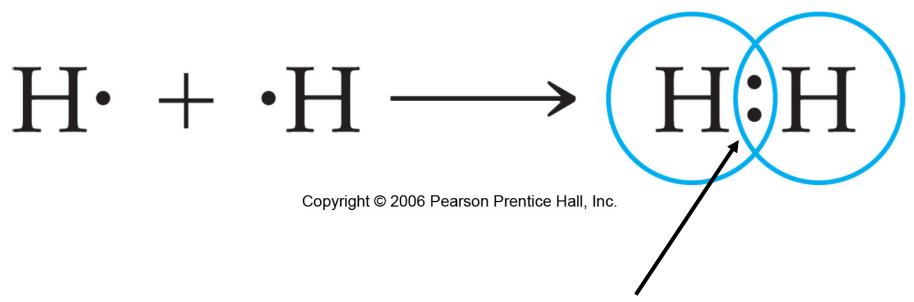
Lattice Energy

- Lattice energy, then, increases with the charge on the ions.
- It also increases with decreasing size of ions.

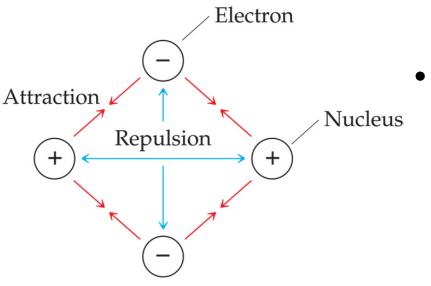

Compound	Lattice Energy (kJ/mol)	Compound	Lattice Energy (kJ/mol)
LiF	1030	MgCl ₂	2326
LiCl	834	$SrCl_2$	2127
LiI	730	_	
NaF	910	MgO	3795
NaCl	788	CaO	3414
NaBr	732	SrO	3217
NaI	682		
KF	808	ScN	7547
KCl	701	ſ	$\Xi_{el} = \kappa \frac{Q_1 Q_2}{d}$
KBr	671	Ľ	$\mathbf{z}_{el} - K - \frac{1}{d}$
CsCl	657		Ũ
CsI	600		

 $Na(s) + 1/2Cl_2(g) ----> NaCl(s)$

By accounting for all three energies (ionization energy, electron affinity, and lattice energy), we can get a good idea of the energetics involved in such a process.

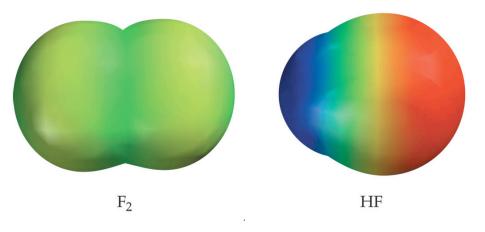

 These phenomena also help explain the "octet rule."

 Elements tend to lose or gain electrons once they attain a noble gas configuration because energy would be expended that cannot be overcome by lattice energies.


Covalent Bonding

What happens when nonmetals get together

- In these bonds atoms share electrons.
- The electrons that can be shared are the *Valence electrons.*


Covalent Bonding

+

- There are several electrostatic interactions in these bonds:
 - Attractions between electrons and nuclei
 - Repulsions between electrons
 - Repulsions between nuclei

Polar Covalent Bonds

- Covalent bond, sharing electrons,
- But electron sharing not always equal.

- Fluorine pulls harder on the shared electrons than hydrogen does.
- Therefore, the fluorine end has more electron density than the hydrogen end.
- But how do you know who pulls hardest?

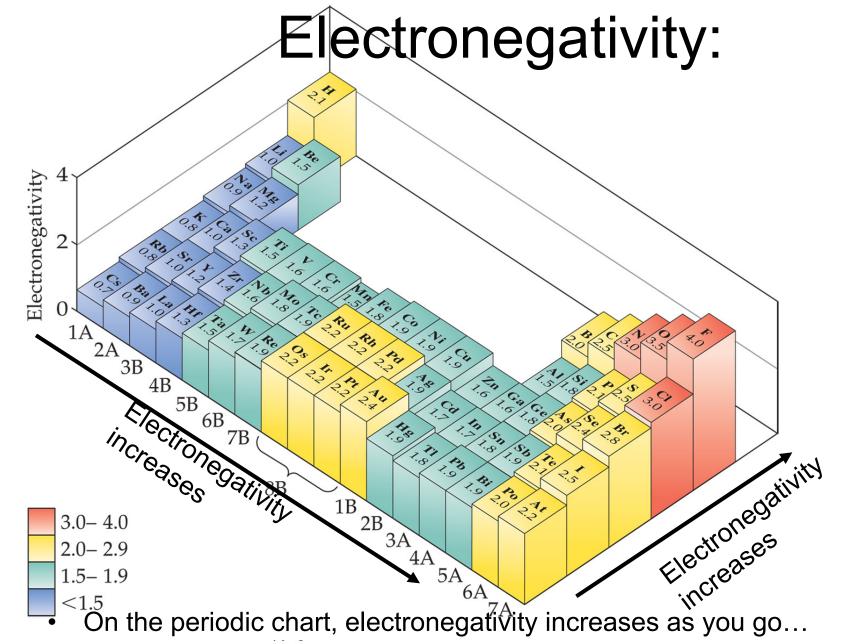
Electronegativity:

Developed 1st by Linus Pauling like this: H-F -> H + F >> H-H -> H + H or F-F \rightarrow F + F

In other words, H-F bond much stronger than H-H or F-F bond.

Why?

Because there is *an ionic component* to attraction in H-F F more – and H more + so the ionic component makes bond stronger.

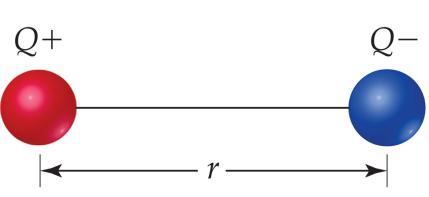

Electronegativity:

Developed 1st by Linus Pauling like this: $E N_A - E N_B = eV^{-1/2}\sqrt{D_{AB} - (D_{AA} + D_{BB})/2}$

The dissociation energy of the A-B bond versus the A-A And B-B bond gives Pauling electronegativity A measure of how much an atom attracts electrons *when It is in a molecule.*

Refinements have occurred since, but this is pretty close.

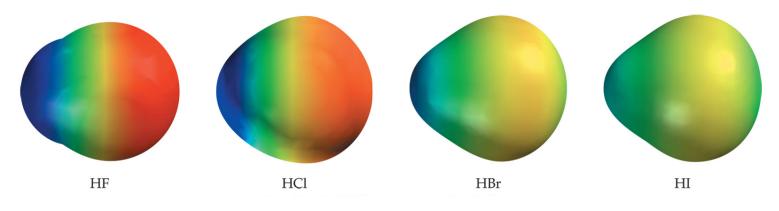
- The ability of atoms in a molecule to attract electrons to itself.
- On the periodic table, electronegativity increases as you go...


- ... from left to right across a row.
- ...from the bottom to the top of a column.

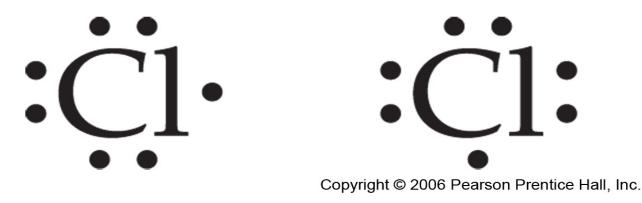
Polar Covalent Bonds

- When two atoms share electrons unequally, a bond dipole results.
- The dipole moment, μ, produced by two equal but opposite charges separated by a distance, *r*, is calculated:

 $\mu = Qr$


• It is measured in debyes (D).

Polar Covalent Bonds


Compound	Bond Length (Å)	Electronegativity Difference	Dipole Moment (D)	The
HF	0.92	1.9	1.82	diffe
HC1	1.27	0.9	1.08	elec
HBr	1.41	0.7	0.82	EIEC
HI	1.61	0.4	0.44	the

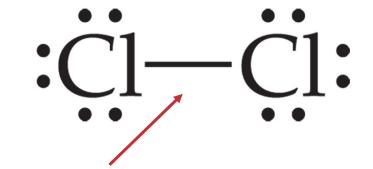
The greater the difference in electronegativity, the more polar is the bond.

Lewis symbols

- A convenient way to keep track of the valence electrons in an atom or molecule
- Lewis dot symbol

Each dot is one valence electron

TABLE 8.1 Lewis Symbols


Element	Electron Configuration	Lewis Symbol
Li	$[He]2s^1$	Li•
Be	[He]2 <i>s</i> ²	·Be·
В	$[He]2s^22p^1$	٠ġ٠
С	$[He]2s^22p^2$	٠Ċ٠
Ν	$[He]2s^22p^3$	٠Ņ٠
0	$[He]2s^22p^4$	٠Ģ٠
F	$[He]2s^22p^5$	٠Ë:
Ne	$[He]2s^22p^6$	۶Ne؛
Na	[Ne]3 <i>s</i> ¹	Na•
Mg	[Ne]3 <i>s</i> ²	·Mg·
Al	$[Ne]3s^23p^1$	·Ål·
Si	$[Ne]3s^23p^2$	·Śi·
Р	$[Ne]3s^23p^3$	٠Þ
S	$[Ne]3s^23p^4$:ș:
Cl	$[Ne]3s^23p^5$	٠Ċl
Ar	$[Ne]3s^23p^6$:Är:

- Lewis structures for 16
 elements
- It is rare to use Lewis pictures for other elements (transition metals, etc.)

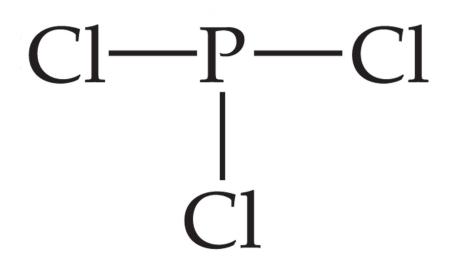
One dot = 1 electron

Lewís Structures Diagrams for bonding in molecules

Lines correspond to 2 electrons in bond

Lewis structures are representations of molecules showing all valence electrons, bonding and nonbonding.

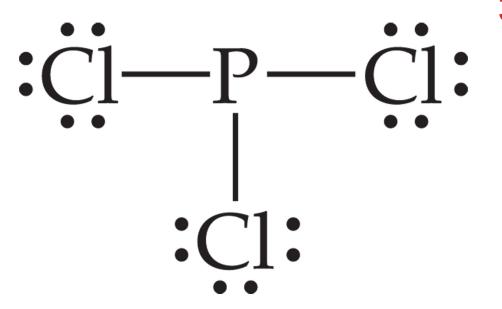
Covalent Bonding


- A bond where electrons from each atom are shared
- Each covalent bond has 2 electrons that are shared.
- Only the Valence electrons are involved in these covalent bonds.
- Why? Why don't electrons in n-1 levels get shared?

Lewis Structures A way to keep track of those valence electrons

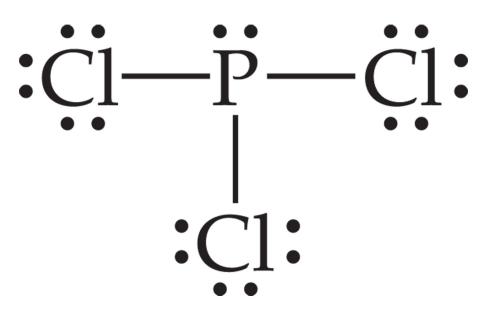
= 26 + 3(7)5

- Find the sum of valence electrons of all atoms in the polyatomic ion or molecule.
 - If it is an anion, add one electron for each negative charge.
 - If it is a cation, subtract one electron for each positive charge.


Lewis Structures A way to keep track of those valence electrons

Keep track of the electrons:

 The central atom is the *least* electronegative element that isn't hydrogen (why?).
 Connect the outer atoms to it by single bonds.


26 - 6 = 20

3. Put eight electrons around the outer atoms ("fill their octet"), bonds count 2.

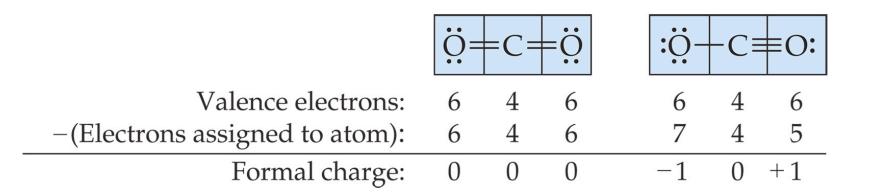
Keep track of the electrons:

26 - 6 = 20 - 18 = 2

4. Fill the octet of the central atom.

Keep track of the electrons:

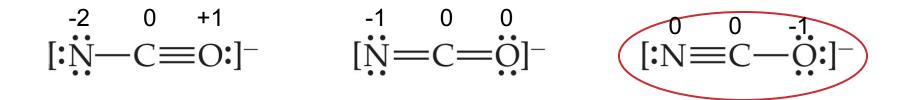
26 - 6 = 20 - 18 = 2 - 2 = 0


H—C—N: central atom has an

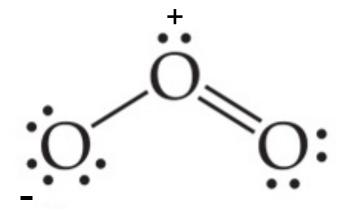
5. If you run out of electrons before the octet...

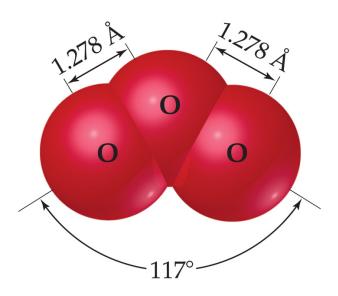
> ...form multiple bonds until it does.

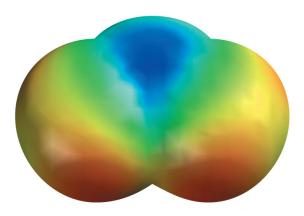
 \rightarrow H-C \equiv N:


- Then assign formal charges.
 - For each atom, count the electrons in lone pairs and half the electrons in it's bonds (dots plus lines).
 - Subtract that from the number of valence electrons for that atom: The difference is its formal charge.

• The best Lewis structure...

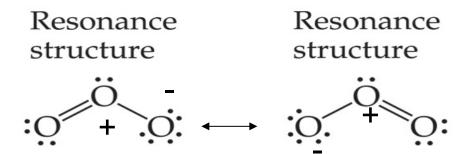

 $-\ldots$ is the one with the fewest charges.

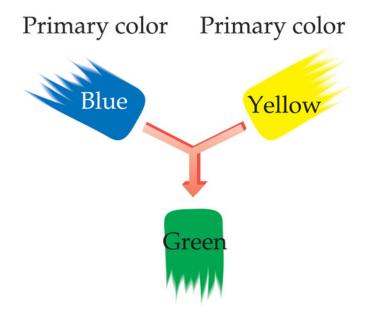

 ...puts a negative charge on the most electronegative atom.

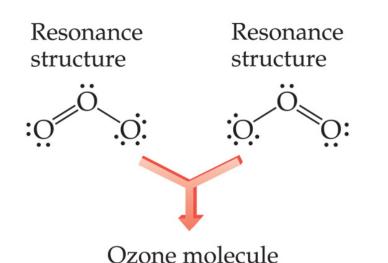


Draw the Lewis structure for ozone, O_3 .

Draw the Lewis structure for ozone, O₃. But why should one O be different from the other?

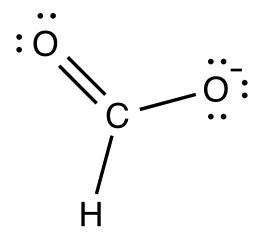





- It is at odds with the true, observed structure of ozone,
 - ...both O—O bonds are the same length.
 - ...both outer
 oxygens have a
 charge of –1/2.

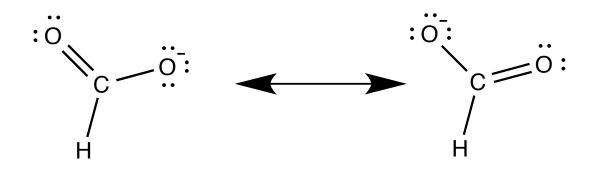
- One Lewis structure cannot accurately depict a molecule such as ozone.
- We use multiple structures, resonance structures, to describe the molecule.

Just as green is a synthesis of blue and yellow...

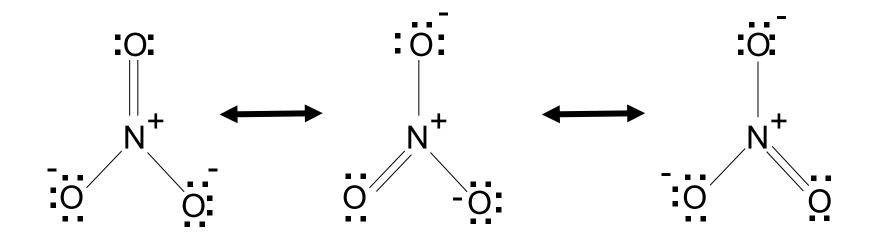


...ozone is a synthesis of these two resonance structures.

It is not jumping between the two.


Draw resonance structure for: HCO_2^{-}

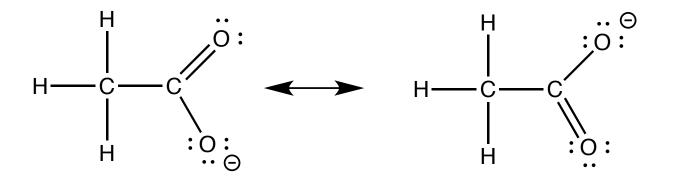
Draw Lewis structure for: HCO₂-


But why would the two oxygens be different?

• In truth the electrons that make up the double bond are not localized, but rather are delocalized.

• Draw the Lewis structure of NO₃-

• Draw the Lewis structure of NO₃-

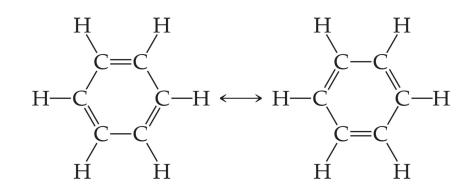

More than one central atom

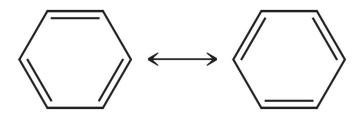
- Many molecules have more than 1 central atom
- You just deal with each separately
- Example:
- Lewis structure for acetate:
- CH₃CO₂⁻

More than one central atom

• Lewis structure for acetate:

CH₃CO₂⁻




More than 1 central atom

 benzene, C₆H₆ is a hexagon of carbon atoms with 6 H/s Draw the Lewis structure for benzene.

More than 1 central atom

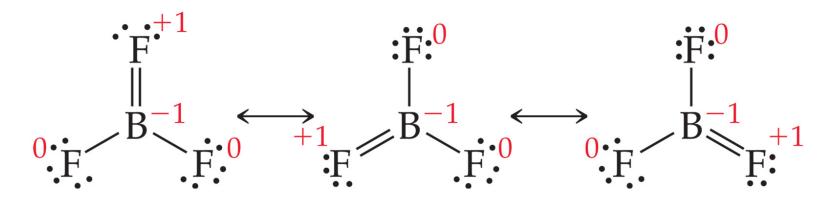
benzene, C₆H₆, has two resonance structures.

Exceptions to the Octet Rule

- There are three types of ions or molecules that do not follow the octet rule:
 - Ions or molecules with *an odd number* of electrons.
 - lons or molecules with less than an octet.
 - Ions or molecules with *more than* an octet (an expanded octet).

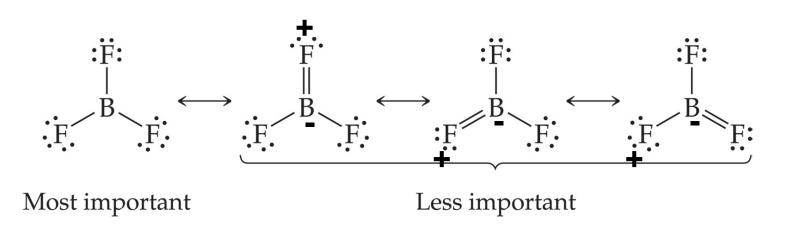
Odd Number of Electrons

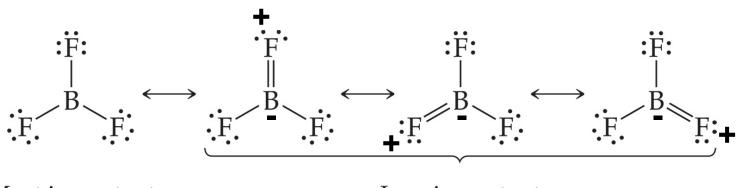
Relatively rare Often quite unstable


Odd Number of Electrons

• Example: NO

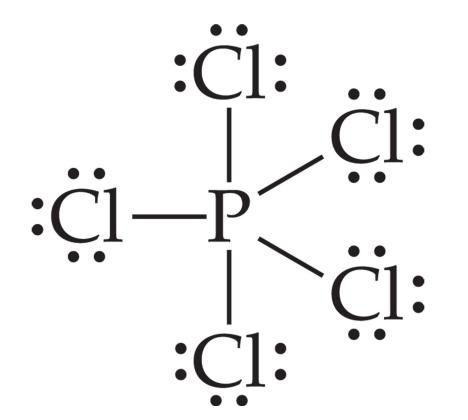
What's nitric oxide good for?


Draw the Lewis structure for BF₃:


- Consider BF₃:
 - Giving boron a filled octet places a *negative* charge on the boron and a *positive* charge on fluorine.
 - Not right for BF_3 .
 - Halides don't make double bonds (gives + formal charge)

Therefore, structures that put a double bond between boron and fluorine are much less important than the one that leaves boron with only 6 valence electrons.

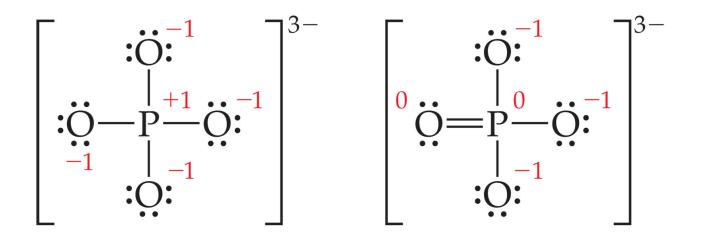
Double bonds to halogens don't happen.


The lesson is: If filling the octet of the central atom results in a negative charge on the central atom and a positive charge on the more electronegative outer atom, don't fill the octet of the central atom.

Most important

Less important

Draw the Lewis structure for PCI₅

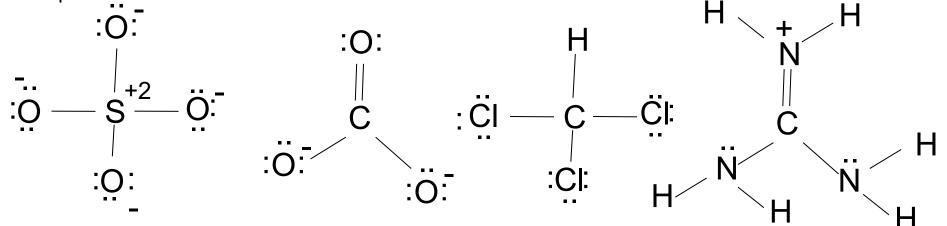


- PCl₅ has to have 10 electrons around it.
- atoms on the 3rd row or below can go over an octet of electrons
 - Presumably *d* orbitals in these atoms participate in bonding.
 - But, only break octet *if you have to!!!!*

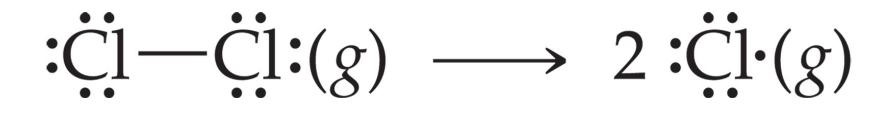
- Draw the Lewis structure for phosphate
- PO₄-3

Best Lewis structure Octet rule.

Minimizes formal charge Often seen.


- This eliminates the charge on the phosphorus and the charge on one of the oxygens.
- The lesson is: When the central atom is on the 3rd row or below and expanding its octet eliminates some formal charges, you can do so.
- But, you don't have to.

More Practice


- Draw lewis structures for:
- SO₄⁻², CO₃⁻², CHCl₃, CN₃H₆⁺ (H' s are attached to the N' s). SO₂, PO₃³⁻, NO₂⁻¹, BrO₃⁻, ClO₄⁻,

SO₄-², CO₃-², CHCl₃, CN₃H₆⁺ (H' s on N' s). SO₂, PO₃¹⁻, NO, BrO₃⁻, ClO₄⁻,

Covalent Bond Strength

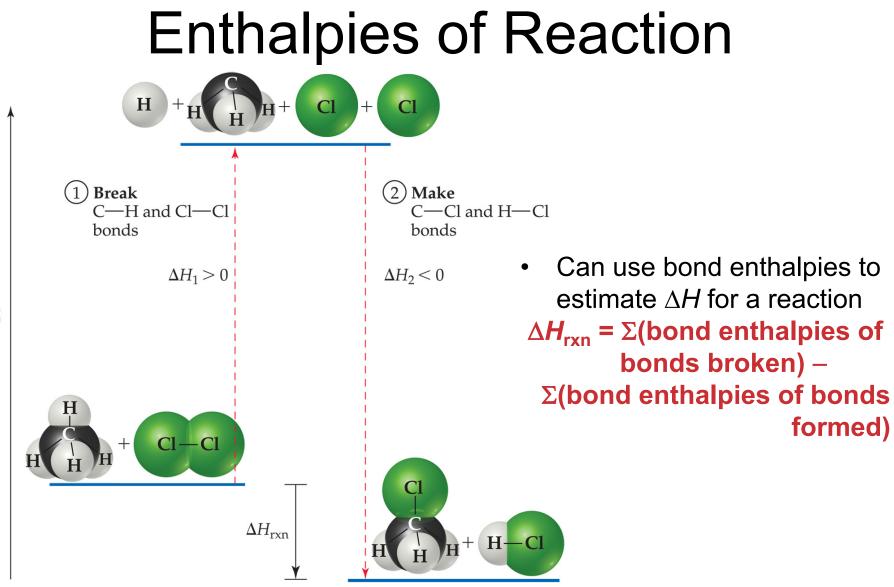
 $\Delta H = 242 \text{ kJ/mol}$

- The strength of a bond is measured by determining how much energy is required to break the bond.
- This is the **bond enthalpy**.
- The bond enthalpy for a CI—CI bond, D(CI—CI), is 242 kJ/mol.

Average Bond Enthalpies

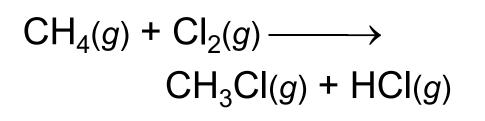
Single Bonds

$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							F—F	155
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							Cl—F	253
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-F	485	N—Cl	200	O—I	234		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-Cl	328	N—Br	243			Br—F	237
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							Br—Br	193
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-S	259					I CI	200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C' II	222						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					5-5	266		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			H-I	299			1-1	151
Si-Cl 464 Multiple Bonds $C=C$ 614 N=N 418 O_2 495 C=C 614 N=N 941 0 0 1000000000000000000000000000000000000								
Multiple Bonds $C=C$ 614 $N=N$ 418 O_2 495 $C=C$ 839 $N=N$ 941 941 $C=N$ 615 $N=O$ 607 $S=O$ 523 $C=N$ 891 $S=S$ 418 $C=O$ 799 799 799 700								
C=C 614 N=N 418 O_2 495 C=C 839 N=N 941 $C=N$ 615 N=O 607 S=O 523 C=N 891 S=S 418 $S=S$ 418 C=O 799 799 799 700 700 700								
$C \equiv C$ 839 $N \equiv N$ 941 $C \equiv N$ 615 $N \equiv O$ 607 $S \equiv O$ 523 $C \equiv N$ 891 $S \equiv S$ 418 $C \equiv O$ 799 $S \equiv S$ 418	Multiple Bonds							
$C \equiv C$ 839 $N \equiv N$ 941 $C \equiv N$ 615 $N \equiv O$ 607 $S \equiv O$ 523 $C \equiv N$ 891 $S \equiv S$ 418 $C \equiv O$ 799 $S \equiv S$ 418	C = C	614	N = N	418	O_2	495		
$C \equiv N$ 891 $S = S$ 418 $C \equiv O$ 799	$C \equiv C$	839	$N \equiv N$	941	-			
C = O 799	C = N	615	N=O	607	S=O	523		
					S=S	418		
$C \equiv 0 1072$	C≡O	1072						

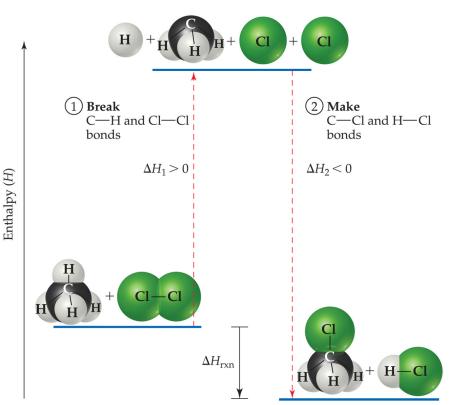

 Average bond enthalpies are positive, because bond breaking is an endothermic process.

Average Bond Enthalpies

Single Bonde


NOTE: These are average bond enthalpies, not absolute bond enthalpies; the C—H bonds in methane, CH_4 , will be a bit different than the C—H bond in chloroform, CHCl₃.

	Single E	sonds							
	С—Н С—С	413 348	N - H N - N	391 163	О—Н О—О	463 146	F—F	155	
	C - C C - N	293	N—N N—O	201	O-O O-F	140	Cl—F	253	
	C - O	358	N-F	272	O - Cl	203	Cl - Cl	242	
	C - F	485	N-Cl	200	O - I	234		212	
	C - Cl	328	N—Br	243	0	-01	Br—F	237	
	C—Br	276			S-H	339	Br—Cl	218	
	C-I	240	H-H	436	S—F	327	Br—Br	193	
	C-S	259	H—F	567	S-Cl	253			
			H—Cl	431	S—Br	218	I—Cl	208	
	Si—H	323	H—Br	366	S—S	266	I—Br	175	
	Si—Si	226	H—I	299			I—I	151	
	Si-C	301							
	Si-O	368							
•	Si—Cl	464							
	Multipl	e Bonds							
	C = C	614	N=N	418	O ₂	495			
	$C \equiv C$	839	$N \equiv N$	941					
	C = N	615	N=O	607	S=O	523			
	$C \equiv N$	891			S=S	418			
	C=O	799							
	C≡O	1072			 		 		



This is a fundamental idea in chemical reactions. The heat of a reaction comes from breaking bonds and remaking bonds.

Enthalpies of Reaction

In this example, one C—H bond and one CI—CI bond are broken; one C—CI and one H—CI bond are formed.

Enthalpies of Reaction

 $CH_4(g) + CI_2(g) \longrightarrow CH_3CI(g) + HCI(g)$

So,

 $\Delta H_{rxn} = [D(C-H) + D(CI-CI) - [D(C-CI) + D(H-CI)]$ = [(413 kJ) + (242 kJ)] - [(328 kJ) + (431 kJ)] = (655 kJ) - (759 kJ) = -104 kJ

Bond Enthalpy and Bond Length

Bond	Bond Length (Å)	Bond	Bond Length (Å)
С-С	1.54	N—N	1.47
C = C	1.34	N = N	1.24
$C \equiv C$	1.20	$N \equiv N$	1.10
C—N	1.43	N-O	1.36
C = N	1.38	N=O	1.22
$C \equiv N$	1.16		
		0-0	1.48
С—О	1.43	0=0	1.21
C=O	1.23		
C≡O	1.13		

- We can also measure an average bond length for different bond types.
- As the number of bonds between two atoms increases, the bond length decreases.

Enthalpy problem:

- Calculate the enthalpy of reaction for:
- CH₄ + O₂ ---> CO₂ + H₂O
- HC=CH + O₂ ----> CO₂ + H₂O

Enthalpy problem:

- Calculate the enthalpy of reaction for:
- CH₄ + 3/2O₂ ---> CO₂ + 2H₂O
- 4(C--H) + 3/2(O==O) 2(C==O) 4(OH)
- 4(413) + 3/2(495) 2(800) 4(463) = -563 kJ

- $HC \equiv CH + 5/2O_2 ----> 2CO_2 + H_2O$
- 1(CC) + 2CH + 5/2(O=O) 4(C==O) 2(OH)
- 1(834) + 2(413) +5/2(495) 4(800) 2(463) = -1229 kJ

Quiz

Draw the Lewis structure (include resonance and formal charges) for:

Sulfurous acid

The perchlorate ion

Quiz

Draw the Lewis structure (include resonance and formal charges) for:

HOFO

NCO⁻