Chapter 8

Dynamic Programming

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

Dynamic Programming

Dynamic Programming is a general algorithm design technique for solving problems defined by recurrences with overlapping subproblems

- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
- "Programming" here means "planning"
- Main idea:
 - set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
 - solve smaller instances once
 - record solutions in a table
 - extract solution to the initial instance from that table

Example: Fibonacci numbers

• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2) F(0) = 0F(1) = 1

• Computing the *n*th Fibonacci number recursively (top-down):

Example: Fibonacci numbers (cont.)

Computing the *n*th Fibonacci number using bottom-up iteration and recording results:

F(0) = 0 F(1) = 1F(2) = 1+0 = 1

... F(n-2) = F(n-1) =F(n) = F(n-1) + F(n-2)

- space

Examples of DP algorithms

- Computing a binomial coefficient
- Warshall's algorithm for transitive closure
- Floyd's algorithm for all-pairs shortest paths
- Constructing an optimal binary search tree
- Some instances of difficult discrete optimization problems:
 traveling salesman
 - knapsack

Computing a binomial coefficient by DP

Binomial coefficients are coefficients of the binomial formula: $(a + b)^n = C(n,0)a^nb^0 + \ldots + C(n,k)a^{n-k}b^k + \ldots + C(n,n)a^0b^n$

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) for n > k > 0C(n,0) = 1, C(n,n) = 1 for $n \ge 0$

 Value of C(n,k) can be computed by filling a table:

 0
 1
 2
 ...
 k-1 k

 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Computing C(n,k): pseudocode and analysis

ALGORITHM *Binomial*(*n*, *k*)

//Computes C(n, k) by the dynamic programming algorithm //Input: A pair of nonnegative integers $n \ge k \ge 0$ //Output: The value of C(n, k)for $i \leftarrow 0$ to n do

for
$$j \leftarrow 0$$
 to $\min(i, k)$ do
if $j = 0$ or $j = i$
 $C[i, j] \leftarrow 1$
else $C[i, j] \leftarrow C[i - 1, j - 1] + C[i - 1, j]$
return $C[n, k]$

Time efficiency: $\Theta(nk)$

Space efficiency: Θ(*nk*)

Warshall's Algorithm: Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph
- Example of transitive closure:

Warshall's Algorithm

Constructs transitive closure *T* as the last matrix in the sequence of *n*-by-*n* matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where $R^{(k)}[i,j] = 1$ iff there is nontrivial path from *i* to *j* with only first *k* vertices allowed as intermediate Note that $R^{(0)} = A$ (adjacency matrix), $R^{(n)} = T$ (transitive closure)

Warshall's Algorithm (recurrence)

 $R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j]$

On the *k*-th iteration, the algorithm determines for every pair of vertices *i*, *j* if a path exists from *i* and *j* with just vertices 1,...,*k* allowed as intermediate

(path using just 1 ,...,*k*-1)

(path from *i* to *k* and from *k* to *i* using just 1 ,...,*k*-1)

 $\mathbf{R}^{(k)}[\mathbf{i},\mathbf{j}] =$

 $R^{(k-1)}[i,j]$ or

Warshall's Algorithm (matrix generation)

Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

 $R^{(k)}[i,j] = R^{(k-1)}[i,j]$ or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

Rule 1 If an element in row *i* and column *j* is 1 in *R*^(k-1), it remains 1 in *R*^(k)

Rule 2 If an element in row *i* and column *j* is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row *i* and column *k* and the element in its column *j* and row *k* are both 1's in $R^{(k-1)}$

Warshall's Algorithm (example)

Warshall's Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure //Input: The adjacency matrix A of a digraph with n vertices //Output: The transitive closure of the digraph $R^{(0)} \leftarrow A$ for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j]$ or $(R^{(k-1)}[i, k]$ and $R^{(k-1)}[k, j])$ return $R^{(n)}$

Time efficiency: $\Theta(n^3)$

Space efficiency: Matrices can be written over their predecessors

Floyd's Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}$, ..., $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate

Example:

Floyd's Algorithm (matrix generation)

On the *k*-th iteration, the algorithm determines shortest paths between every pair of vertices *i*, *j* that use only vertices among 1,...,*k* as intermediate

 $D^{(k)}[i,j] = \min \{D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}$

Floyd's Algorithm (example)

$$(0) = \begin{bmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & \infty & \infty \\ \infty & 7 & 0 & 1 \\ 6 & \infty & \infty & 0 \end{bmatrix}$$

$$D^{(1)} = \begin{array}{c|cccc} 0 & \infty & 3 & \infty \\ \hline 2 & 0 & 5 & \infty \\ \hline \infty & 7 & 0 & 1 \\ 6 & \infty & 9 & 0 \end{array}$$

Floyd's Algorithm (pseudocode and analysis)

ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem //Input: The weight matrix W of a graph with no negative-length cycle //Output: The distance matrix of the shortest paths' lengths $D \leftarrow W$ //is not necessary if W can be overwritten for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do $D[i, j] \leftarrow \min\{D[i, j], D[i, k] + D[k, j]\}$

return D

Time efficiency: $\Theta(n^3)$

Space efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, too

Optimal Binary Search Trees

Problem: Given *n* keys $a_1 < ... < a_n$ and probabilities $p_1 \le ... \le p_n$ searching for them, find a BST with a minimum average number of comparisons in successful search.

Since total number of BSTs with *n* nodes is given by C(2n,n)/(n+1), which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys *A*, *B*, *C*, and *D* with search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

DP for Optimal BST Problem

Let C[i,j] be minimum average number of comparisons made in T[*i*,*j*], optimal BST for keys $a_i < ... < a_j$, where $1 \le i \le j \le n$. Consider optimal BST among all BSTs with some a_k ($i \le k \le j$) as their root; T[*i*,*j*] is the best among them.

C[i,j] =

$$\min_{\leq k \leq j} \{p_k \cdot 1 +$$

k-1 $\sum p_s$ (level a_s in T[*i*,*k*-1] +1) + s = i

 $\sum p_s$ (level a_s in T[k+1,j] +1)} s = k+1

DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for C[i,j]: $C[i,j] = \min_{\substack{i \le k \le j}} \{C[i,k-1] + C[k+1,j]\} + \sum_{\substack{s=i \ s=i}}^{j} p_s \text{ for } 1 \le i \le j \le n$ $C[i,i] = p_i \text{ for } 1 \le i \le j \le n$

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

Example:keyABCDprobability0.10.20.40.3

The tables below are filled diagonal by diagonal: the left one is filled using the recurrence j $C[i,j] = \min \{C[i,k-1] + C[k+1,j]\} + \sum_{s=i}^{j} p_{s,s} C[i,i] = p_i;$ $i \le k \le j$

the right one, for trees' roots, records k's values giving the minima

j į	0	1	2	3	4
1	0	.1	.4	1.1	1.7
2		0	.2	.8	1.4
3			0	.4	1.0
4				0	.3
5					0

j į	0	1	2	3	4
1		1	2	3	3
2			2	3	3
3				3	3
4					4
5					

Optimal Binary Search Trees

ALGORITHM *OptimalBST*(*P*[1..*n*])

```
//Finds an optimal binary search tree by dynamic programming
//Input: An array P[1..n] of search probabilities for a sorted list of n keys
//Output: Average number of comparisons in successful searches in the
            optimal BST and table R of subtrees' roots in the optimal BST
//
for i \leftarrow 1 to n do
     C[i, i-1] \leftarrow 0
     C[i, i] \leftarrow P[i]
     R[i, i] \leftarrow i
C[n+1, n] \leftarrow 0
for d \leftarrow 1 to n - 1 do //diagonal count
    for i \leftarrow 1 to n - d do
         i \leftarrow i + d
         minval \leftarrow \infty
          for k \leftarrow i to j do
              if C[i, k-1] + C[k+1, j] < minval
                    minval \leftarrow C[i, k-1] + C[k+1, j]; kmin \leftarrow k
          R[i, j] \leftarrow kmin
         sum \leftarrow P[i]; for s \leftarrow i+1 to j do sum \leftarrow sum + P[s]
         C[i, j] \leftarrow minval + sum
return C[1, n], R
```

Analysis DP for Optimal BST Problem

Time efficiency: $\Theta(n^3)$ but can be reduced to $\Theta(n^2)$ by taking advantage of monotonicity of entries in the root table, i.e., R[i,j] is always in the range between R[i,j-1] and R[i+1,j]

Space efficiency: $\Theta(n^2)$

Method can be expended to include unsuccessful searches

Knapsack Problem by DP

Given *n* items of integer weights: $w_1 \ w_2 \ \dots \ w_n$ values: $v_1 \ v_2 \ \dots \ v_n$ a knapsack of integer capacity *W* find most valuable subset of the items that fit into the knapsack

Consider instance defined by first *i* items and capacity j ($j \le W$). Let V[i,j] be optimal value of such instance. Then max $\{V[i-1,j], v_i + V[i-1,j-w_i]\}$ if $j - w_i \ge 0$ V[i,j] =V[i-1,j] if $j - w_i < 0$

Initial conditions: V[0,j] = 0 and V[i,0] = 0

Visualizing this Relationship

 $\max \{V[i-1,j], v_i + V[i-1,j-w_i]\} \quad \text{if } j - w_i \ge 0$ $V[i,j] = V[i-1,j] \quad \text{if } j - w_i \le 0$

- **Q** So we can build up the table, left to right by repeatedly applying the result of this expression
- **Q** The initial conditions are shown by the first row and first column with 0 values

Knapsack Problem by DP (example)

Example: Knapsack of capacity W = 5

<u>item</u>	weight	value
1	2	\$12
2	1	\$10
3	3	\$20
4	2	\$15

We know the solution is 37; the next question is how we find the items actually involved.

capacity j						
_i	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	10	12	22	22	22
3	0	10	12	22	30	32
4	0	10	15	25	30	37

$$w_1 = 2, v_1 = 12$$

 $w_2 = 1, v_2 = 10$
 $w_3 = 3, v_3 = 20$
 $w_4 = 2, v_4 = 15$

Top Down Approach with Memorization

We can use a top down approach by storing all resultsWhen we need a value we first ask have we stored it

ALGORITHM MFKnapsack(i, j)

//Implements the memory function method for the knapsack problem
//Input: A nonnegative integer i indicating the number of the first

- // items being considered and a nonnegative integer j indicating
- // the knapsack's capacity

//Output: The value of an optimal feasible subset of the first *i* items //Note: Uses as global variables input arrays Weights[1..n], Values[1..n], //and table V[0..n, 0..W] whose entries are initialized with -1's except for //row 0 and column 0 initialized with 0's

if V[i, j] < 0

if j < Weights[i]value $\leftarrow MFKnapsack(i - 1, j)$

else

$$value \leftarrow \max(MFKnapsack(i - 1, j), Values[i] + MFKnapsack(i - 1, j - Weights[i]))$$

 $V[i, j] \leftarrow value$ return V[i, j]

Example of Memorization

	capacity <i>j</i>					
i	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	_	12	22	—	22
3	0	— ,	_	22		32
4	0				-	37

Notice that not all values need to be calculated
Only eleven out of twenty of the nontrivial values (the zeros) need to be computed