Chapter 8

Dynamic Programming

Dynamic Programming

Dynamic Programming is a general algorithm design technique for solving problems defined by recurrences with overlapping subproblems

- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
- "Programming" here means "planning"
- Main idea:
- set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table

Example: Fibonacci numbers

- Recall definition of Fibonacci numbers:

$$
\begin{aligned}
& F(n)=F(n-1)+F(n-2) \\
& F(0)=0 \\
& F(1)=1
\end{aligned}
$$

- Computing the $n^{\text {th }}$ Fibonacci number recursively (top-down):

Example: Fibonacci numbers (cont.)

Computing the $n^{\text {th }}$ Fibonacci number using bottom-up iteration and recording resultis:

```
\(F(0)=0\)
\(\boldsymbol{F}(1)=1\)
\(F(2)=1+0=1\)
...
\(F(n-2)=\)
\(\boldsymbol{F}(\boldsymbol{n}-1)=\)
\(F(n)=F(n-1)+F(n-2)\)
```

0	1	1	\ldots	$F(n-2)$	$F(n-1)$	$F(n)$

Efficiency:

- time
- space

Examples of DP algorithms

- Computing a binomial coefficient
- Warshall's algorithm for transitive closure
- Flloyd's algorithm for all-pairs shortest paths
- Constructing an optimal binary search tree
- Some instances of difficult discrete optimization problems:
- traveling salesman
- knapsack

Computing a binomial coefficient by DP

Binomial coefficients are coefficients of the binomial formula:

$$
(a+b)^{n}=C(n, 0) a^{n} b^{0}+\ldots+C(n, k) a^{n-k} b^{k}+\ldots+C(n, n) a^{0} b^{n}
$$

Recurrence: $C(n, k)=C(n-1, k)+C(n-1, k-1)$ for $n>k>0$

$$
C(n, 0)=1, \quad C(n, n)=1 \text { for } n \geq 0
$$

Value of $C(n, k)$ can be computed by filling a table:

$$
\begin{array}{lllll}
0 & 1 & 2 & \ldots & k-1 \quad k
\end{array}
$$

01
111
.

$$
C(n-1, k-1) C(n-1, k)
$$

n
$C(n, k)$

Computing $C(n, k)$: pseudocode and analysis

ALGORITHM Binomial($n, k)$

//Computes $C(n, k)$ by the dynamic programming algorithm //Input: A pair of nonnegative integers $n \geq k \geq 0$
//Output: The value of $C(n, k)$
for $i \leftarrow 0$ to n do

$$
\begin{aligned}
& \qquad \text { for } j \leftarrow 0 \text { to } \min (i, k) \text { do } \\
& \text { if } j=0 \text { or } j=i \\
& \quad C[i, j] \leftarrow 1 \\
& \text { else } C[i, j] \leftarrow C[i-1, j-1]+C[i-1, j]
\end{aligned}
$$

Time efficiency: $O(n k)$
Space efficiency: $O(n k)$

Warshall's Algorithm: Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph
- Example of transitive closure:

0	0	1	0
1	0	0	1
0	0	0	0
0	1	0	0

0	0	1	0
1	1	1	1
0	0	0	0
1	1	1	1

Warshall's Algorithm

Constructs transitive closure T ' as the last matrix in the sequence of n-by- n matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where $R^{(k)}[i, j]=1$ ifi there is nontrivial path from i to j with only first k vertices allowed as intermediate
Note that $R^{(0)}=A\left(\right.$ adjacency matrix), $R^{(n)}=I^{\prime}$ (transitive closure)

$R^{(0)}$
$\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}$

$R^{(1)}$
0010
1011
0000
0100

$R^{(2)}$
$\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \mathbf{1} & 1 & \mathbf{1} & \mathbf{1}\end{array}$

$R^{(3)}$
$\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$

$R^{(4)}$
$\begin{array}{llll}0 & 01 & 0\end{array}$
1111
0000
1111

Warshall's Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of vertices i, j if a path exists from i and j with just vertices $1, \ldots, k$ allowed as intermediate

Warshall's Algorithm (matrix generation)

Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

$$
R^{(k)}[i, j]=R^{(k-1)}[i, j] \text { or }\left(R^{(k-1)}[i, k] \text { and } R^{(k-1)}[k ; j]\right)
$$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$;
Rule 1 If an element in row i and column j is 1 in $R^{(k-1),}$ it remains 1 in $R^{(t)}$

Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1 's in $R^{(k-1)}$

Warshall's Algorithm (example)

Warshall's Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure //Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
$R^{(0)} \leftarrow A$
for $k \leftarrow 1$ to n do

$$
\text { for } i \leftarrow 1 \text { to } n \text { do }
$$

$$
\text { for } j \leftarrow 1 \text { to } n \text { do }
$$

return $R^{(n)}$

$$
R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] \text { or }\left(R^{(k-1)}[i, k] \text { and } R^{(k-1)}[k, j]\right)
$$

Time efficiency: $\Theta\left(n^{3}\right)$

Space efficiency: Matrices can be written over their predecessors

Floyd's Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}, \ldots$, $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate

Example:

Floyd's Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among $1, \ldots, k$ as intermediate

$$
D^{(k)}[i, j]=\min \left\{D^{(k-1)}[i, j], D^{(k-1)}[i, k]+D^{(k-1)}[k, j]\right\}
$$

Floyd's Algorithm (example)

$\left.D^{(1)}=\begin{array}{c|c|c}0 & \infty & 3 \\ \hline & \infty \\ 2 & 0 & 5\end{array}\right)$

$$
D^{(2)}=\begin{array}{|cc|c|c}
0 & \infty & 3 & \infty \\
2 & 0 & 5 & \infty \\
\mathbf{9} & 7 & 0 & 1 \\
6 & \infty & 9 & 0
\end{array} \quad D^{(3)}=\begin{array}{|ccc|c|}
\hline 0 & \mathbf{1 0} & 3 & \mathbf{4} \\
2 & 0 & 5 & \mathbf{6} \\
9 & 7 & 0 & 1 \\
\hline 6 & \mathbf{1 6} & 9 & 0 \\
\hline
\end{array}
$$

$D^{(4)}=$| 0 | 10 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 2 | 0 | 5 | 6 |
| 7 | 7 | 0 | 1 |
| 6 | 16 | 9 | 0 |

Floyd's Algorithm (pseudocode and analysis)

ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem //Input: The weight matrix W of a graph with no negative-length cycle //Output: The distance matrix of the shortest paths' lengths
$D \leftarrow W / /$ is not necessary if W can be overwritten
for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do

$$
D[i, j] \leftarrow \min \{D[i, j], D[i, k]+D[k, j]\}
$$

return D

Time efficiency: $\Theta\left(n^{3}\right)$
Space efficiency: Matrices can be written over their predecessors
Note: Shortest paths themselves can be found, too

Optimal Binary Search Trees

Problem: Given n keys $a_{1}<\ldots<a_{n}$ and probabilities $p_{1} \leq \ldots \leq p_{n}$ searching for them, find a BST with a minimum average number of comparisons in successful search.

Since total number of BST's with n nodes is given by
$\mathrm{C}(2 n, n) /(n+1)$, which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys A, B, C, and D with search probabilities $0.1,0.2,0.4$, and 0.3 , respectively?

DP for Optimal BST Problem

Let $C[i, j]$ be minimum average number of comparisons made in $T[i j]$, optimal BST for keys $a_{i}<\ldots<a_{j}$, where $1 \leq i \leq j \leq n$. Consider optimal BST' among all BSTls with some $\boldsymbol{a}_{k}(i \leq k \leq j)$ as their root, $T[i, j]$ is the best among them.

DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for $C[i, j]$:
$C[i, j]=\min _{i \leq k \leq j}\{C[i, k-1]+C[k+1, j]\}+\sum_{s=i}^{j} p_{s}$ for $1 \leq i \leq j \leq n$
$C[i, i]=p_{i}$ for $1 \leq i \leq j \leq n$

1

 2The tables below are filled diagonal by diagonal: the left one is filled using the recurrence

$$
C[i, j]=\min _{i \leq k \leq j}\{C[i, k-1]+C[k+1, j]\}+\sum_{s=i}^{J} p_{s}, \quad C[i, i]=p_{i} ;
$$

the right one, for trees' roots, records k 's values giving the minima

j^{j}	0	1	2	3	4
1	0	.1	.4	1.1	1.7
2		0	.2	.8	1.4
3			0	.4	1.0
4				0	.3
5					0

j	0	1	2	3	4
1		1	2	3	3
2			2	3	3
3				3	3
4					4
5					

optimal BST

Optimal Binary Search Trees

ALGORITHM OptimalBST($P[1 . n]$)

//Tinds an optimal binary search tree by dynamic programming
$/ /$ Input: An array $P[1 . . n]$ of search probabilities for a sorted list of n keys
//Output: Average number of comparisons in successful searches in the
// optimal BST and table R of subtrees' roots in the optimal BST
for $i \leftarrow 1$ to n do
$C[i, i-1] \leftarrow 0$
$C[i, i] \leftarrow P[i]$
$R[i, i] \leftarrow i$
$C[n+1, n] \leftarrow 0$
for $d \leftarrow 1$ to $n-1$ do //diagonal count
for $i<1$ to $n-d$ do
$j \leftarrow i+d$
minval $\leftarrow \infty$
for $k \leftarrow i$ to j do
if $C[i, k-1]+C[k+1, j]<$ minval
minval $\leftarrow C[i, k-1]+C[k+1, j] ; k \min \leftarrow k$
$R[i, j] \leftarrow k \min$
sum $\leftarrow P[i]$; for $s \leftarrow i+1$ to j do sum \leftarrow sum $+P[s]$
$C[i, j] \leftarrow$ minval + sum
return $C[1, n], R$

Analysis DP for Optimal BST Problem

Time efficiency: $\Theta\left(n^{3}\right)$ but can be reduced to $\Theta\left(n^{2}\right)$ by taking advantage of monotonicity of entries in the root table, i.e,, $R[i, j]$ is always in the range between $R[i j j-1]$ and $\mathrm{R}[i+1, j]$

Space efficiency: $\Theta\left(n^{2}\right)$

Method can be expended to include unsuccessful searches

Knapsack Problem by DP

Given n items of
integer weights: $w_{1} \quad w_{2} \ldots w_{n}$
values:

$$
\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}
$$

a knapsack of integer capacity W
find most valuable subset of the items that fiit into the knapsack

Consider instance defined by first items and capacity $j(j \leq W)$. Let $V[i, j]$ be optimal value of such instance. Then $\max \left\{V[i-1, j], v_{i}+V\left[i-1, j-w_{i}\right]\right\}$ if $j-w_{i} \geq 0$
$V[i, j]=$
$V[i-1, j] \quad$ if $j-w_{i}<0$
Initial conditions: $V[0, j]=0$ and $V[i, 0]=0$

Visualivaing this Relationship

		0	$j-w_{i}$	j	w
	0	0	0	0	0
	i-1	0	$V\left[i-1, j-w_{i}\right]$	$V[i-1, j]$	
$w_{i j} v_{i}$	i	0		$V[i, j]$	
	n	0			goal

$\max \left\{V[i-1, j], v_{i}+V\left[i-1, j-w_{i}\right]\right\} \quad$ if $j-w_{i} \geq 0$

$$
V[i, j]=
$$

$$
V[i-1, j]
$$

$$
\text { if } j-w_{i}<0
$$

\& So we can build up the table, left to right by repeatedly applying the result of this expression
\& The initial conditions are shown by the first row and first column with 0 values

Knapsack Problem by DP (example)

Dxample: Knapsack of capacity $W=5$

item	weipht	value
1	2	$\$ 12$
2	1	$\$ 10$
3	3	$\$ 20$
4	2	$\$ 15$

$$
w_{4}=2, v_{4}=15
$$

We know the solution is 37 ; the next question is how we find the items actually involved.

$$
\begin{array}{lc|cccccc}
& i & 0 & 1 & 2 & 3 & 4 & 5 \\
\cline { 2 - 7 } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
w_{1}=2, v_{1}=12 & 1 & 0 & 0 & 12 & 12 & 12 & 12 \\
w_{2}=1, v_{2}=10 & 2 & 0 & 10 & 12 & 22 & 22 & 22 \\
w_{3}=3, v_{3}=20 & 3 & 0 & 10 & 12 & 22 & 30 & 32 \\
w=0 & 4 & 0 & 10 & 15 & 25 & 30 & 37
\end{array}
$$

Top Down Approach with Memorivation

\& We can use a top down approach by storing all results
\& When we need a value we first ask have we stored it
ALGORITHM MFKnapsack(i,j)
//Implements the memory function method for the knapsack problem
//Input: A nonnegative integer i indicating the number of the first
// items being considered and a nonnegative integer j indicating // the knapsack's capacity
//Output: The value of an optimal feasible subset of the first i items
//Note: Uses as global variables input arrays Weights[1..n], Values[1..n],
//and table $V[0 . . n, 0 . . W]$ whose entries are initialized with -1 's except for
//row 0 and column 0 initialized with 0 's
if $V[i, j]<0$
if $j<$ Weights $[i]$
value \leftarrow MFKnapsack $(i-1, j)$
else
value $\leftarrow \max ($ MFKnapsack $(i-1, j)$,
Values $[i]+$ MFKnapsack $(i-1, j-$ Weights $[i]))$
$V[i, j] \leftarrow$ value
return $V[i, j]$

Example of Memorivation

capacity j						
i	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	-	12	22	-	22
3	0	-	-	22	-	32
4	0	-	-	-	-	37

\& Notice that not all values need to be calculated
\& Only eleven out of twenty of the nontrivial values (the zeros) need to be computed

