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Dynamic Programming

Dynamic Programming  is  a general algorithm design technique 
for solving problems defined by recurrences with overlapping
subproblems

• Invented by American mathematician Richard Bellman in the  
1950s to solve optimization problems and later assimilated by CS

• “Programming” here means “planning”

• Main idea:
- set up a recurrence relating a solution to a larger instance  

to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table 
- extract solution to the initial instance from that table
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Example: Fibonacci numbers
• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)
F(0) = 0
F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1)             +             F(n-2)

F(n-2)     +     F(n-3)          F(n-3)     +     F(n-4)

...
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Example: Fibonacci numbers  (cont.)
Computing the nth Fibonacci number using bottom-up iteration and 
recording results:

F(0) = 0
F(1) = 1
F(2) = 1+0 = 1
…    
F(n-2) = 
F(n-1) = 
F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space
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Examples of DP algorithms
• Computing a binomial coefficient

• Warshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search tree

• Some instances of difficult discrete optimization problems:
- traveling salesman
- knapsack
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Computing a binomial coefficient by DP
Binomial coefficients are coefficients of the binomial formula:

(a + b)n = C(n,0)anb0 + . . . + C(n,k)an-kbk + . . . + C(n,n)a0bn

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1)  for n > k > 0
C(n,0) = 1,   C(n,n) = 1  for n ≥ 0

Value of C(n,k) can be computed by filling a table:
0   1   2  .  .  .   k-1          k

0   1
1   1   1
.
.
.

n-1                 C(n-1,k-1) C(n-1,k) 
n C(n,k) 
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Computing C(n,k): pseudocode and analysis

Time efficiency: Θ(nk)

Space efficiency: Θ(nk)
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Warshall’s  Algorithm: Transitive Closure
• Computes the transitive closure of a relation

• Alternatively: existence of all nontrivial paths in a digraph

• Example of transitive closure:

3

42

1

0  0  1  0
1  0  0  1
0  0  0  0
0  1  0  0

0  0  1  0
1  1  1 1
0  0  0  0
1 1  1  1

3

42

1
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Warshall’s  Algorithm
Constructs transitive closure T as the last matrix in the sequence 
of n-by-n matrices  R(0), … , R(k), … , R(n) where
R(k)[i,j] = 1 iff there is nontrivial path from i to j with only first k 
vertices allowed as intermediate 
Note that R(0) = A (adjacency matrix), R(n) = T  (transitive closure)

3

42

1
3

42

1
3

42

1
3

42

1

R(0)

0  0  1  0
1  0  0  1
0  0  0  0
0  1  0  0

R(1)

0  0  1  0
1  0 1 1
0  0  0  0
0  1  0  0

R(2)

0  0  1  0
1  0  1  1
0  0  0  0
1 1  1  1

R(3)

0  0  1  0
1  0  1  1
0  0  0  0
1  1  1  1

R(4)

0  0  1  0
1  1 1  1
0  0  0  0
1  1  1  1

3

42

1
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Warshall’s  Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of 
vertices i, j if a path exists from i and j with just vertices 1,…,k 
allowed as intermediate

R(k-1)[i,j]                            (path using just 1 ,…,k-1)
R(k)[i,j] =            or 

R(k-1)[i,k]  and R(k-1)[k,j]    (path from i to k
and from k to i
using just 1 ,…,k-1)i

j

k

{
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Warshall’s  Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is: 

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1), 
it remains 1 in R(k)

Rule 2  If an element in row i and column j is 0 in R(k-1),
it has to be changed to 1 in R(k) if and only if 
the element in its row i and column k and the element
in its column j and row k are both 1’s in R(k-1)
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Warshall’s Algorithm (example)

3

42

1 0  0  1  0
1  0  0  1
0  0  0  0
0  1  0  0

R(0)  =

0  0  1  0
1  0  1 1
0  0  0  0
0  1  0  0

R(1)  =

0  0  1  0
1  0  1  1
0  0  0  0
1 1  1 1

R(2)  =

0  0  1  0
1  0  1  1
0  0  0  0
1  1  1  1

R(3)  =

0  0  1  0
1  1 1  1
0  0  0  0
1  1  1  1

R(4)  =
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Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors
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Floyd’s Algorithm: All pairs shortest paths

Problem:    In a weighted (di)graph, find shortest paths between
every pair of vertices

Same idea: construct solution through series of matrices D(0), …,
D (n) using increasing subsets of the vertices allowed
as intermediate

Example: 3

42

1
4

1
6 1

5

3
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Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths 
between every pair of vertices i, j that use only vertices among 
1,…,k as intermediate

D(k)[i,j] =  min {D(k-1)[i,j],  D(k-1)[i,k]  + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]
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Floyd’s Algorithm (example)

0   ∞ 3   ∞
2   0  ∞  ∞
∞  7   0   1
6   ∞ ∞  0

D(0)  = 

0   ∞  3   ∞
2   0   5 ∞
∞  7   0   1
6   ∞  9 0

D(1)  =

0   ∞  3   ∞
2   0   5   ∞
9 7   0   1
6   ∞  9   0

D(2)  =

0  10 3  4
2   0   5  6
9   7   0  1
6  16 9  0

D(3)  =

0  10  3  4
2   0   5  6
7 7   0  1
6  16  9  0

D(4)  =

3 1

3

2

6 7

4

1 2
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Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, too
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Optimal Binary Search Trees

Problem: Given n keys a1 < …< an and probabilities p1 ≤ … ≤ pn
searching for them, find a BST with a minimum
average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by 
C(2n,n)/(n+1), which grows exponentially, brute force is hopeless. 

Example: What is an optimal BST for keys A, B, C, and D with
search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?
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DP for Optimal BST Problem

Let C[i,j] be minimum average number of comparisons made in 
T[i,j], optimal BST for keys ai < …< aj , where 1 ≤  i ≤  j ≤ n. 
Consider optimal BST among all BSTs with some ak  (i ≤  k ≤ j ) 
as their root; T[i,j] is the best among them. 

a

Optimal
BST for

a   , ...,  a

Optimal
BST for

a      , ...,  ai

k

k-1 k+1 j

C[i,j] =

min  {pk · 1 +

∑ ps (level as in T[i,k-1] +1) +

∑ ps (level as in T[k+1,j] +1)}

i ≤ k ≤ j

s = i

k-1

s =k+1

j
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goal0

0

C[i,j]

0

1

n+1

0 1 n

p 1

p
2

np

i

j

DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for C[i,j]:

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps for 1 ≤ i ≤ j ≤ n

C[i,i] = pi    for 1 ≤ i ≤ j ≤ n
s = i

j

i ≤ k ≤ j



Example:   key                  A     B     C     D
probability   0.1   0.2   0.4  0.3

The tables below are filled diagonal by diagonal: the left one is filled 
using the recurrence 

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps ,    C[i,i] = pi ;

the right one, for trees’ roots, records k’s values giving the minima
0 1 2 3 4

1 0 .1 .4 1.1 1.7

2 0 .2 .8 1.4

3 0 .4 1.0

4 0 .3

5 0

0 1 2 3 4

1 1 2 3 3

2 2 3 3

3 3 3

4 4

5

i ≤ k ≤ j s = i

j

optimal BST

B

A

C

D

i 
j

i 
j
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Optimal Binary Search Trees
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Analysis DP for Optimal BST Problem

Time efficiency:  Θ(n3) but can be reduced to Θ(n2) by taking
advantage of monotonicity of entries in the
root table, i.e., R[i,j] is always in the range 
between R[i,j-1] and R[i+1,j]

Space efficiency: Θ(n2)

Method can be expended to include unsuccessful searches
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Knapsack Problem by DP
Given n items  of 

integer weights:    w1   w2 …  wn

values:                    v1   v2 …  vn

a knapsack of integer capacity W
find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j (j ≤ W).
Let V[i,j] be optimal value of such instance.  Then

max {V[i-1,j], vi + V[i-1,j- wi]}   if j- wi≥ 0
V[i,j] =

V[i-1,j]                                          if j- wi < 0

Initial conditions: V[0,j] = 0  and V[i,0] = 0
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Visualizing this Relationship

max {V[i-1,j], vi + V[i-1,j- wi]}   if j- wi≥ 0
V[i,j] =

V[i-1,j]                                          if j- wi < 0
So we can build up the table, left to right by repeatedly 
applying the result of this expression
The initial conditions are shown by the first row and first 
column with 0 values
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Knapsack Problem by DP (example)
Example:  Knapsack of capacity W = 5
item      weight      value             

1             2             $12
2             1             $10
3             3             $20
4             2             $15                

w1 = 2, v1= 12   
w2 = 1, v2= 10   
w3 = 3, v3= 20   
w4  = 2, v4= 15  

We know the solution is 37; the 
next question is how we find 
the items actually involved.
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Top Down Approach with Memorization

We can use a top down approach by storing all results
When we need a value we first ask have we stored it
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Example of Memorization

Notice that not all values need to be calculated
Only eleven out of twenty of the nontrivial values (the 
zeros) need to be computed
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