
Chapter 8

Dynamic Programming

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

8-1Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Dynamic Programming

Dynamic Programming is a general algorithm design technique
for solving problems defined by recurrences with overlapping
subproblems

• Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by CS

• “Programming” here means “planning”

• Main idea:
- set up a recurrence relating a solution to a larger instance

to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table

8-2Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Example: Fibonacci numbers
• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)
F(0) = 0
F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1) + F(n-2)

F(n-2) + F(n-3) F(n-3) + F(n-4)

...

8-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Example: Fibonacci numbers (cont.)
Computing the nth Fibonacci number using bottom-up iteration and
recording results:

F(0) = 0
F(1) = 1
F(2) = 1+0 = 1
…
F(n-2) =
F(n-1) =
F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space

 0

 1

 1

 . . .

 F(n-2)

F(n-1)

 F(n)

8-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Examples of DP algorithms
• Computing a binomial coefficient

• Warshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search tree

• Some instances of difficult discrete optimization problems:
- traveling salesman
- knapsack

8-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Computing a binomial coefficient by DP
Binomial coefficients are coefficients of the binomial formula:

(a + b)n = C(n,0)anb0 + . . . + C(n,k)an-kbk + . . . + C(n,n)a0bn

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) for n > k > 0
C(n,0) = 1, C(n,n) = 1 for n ≥ 0

Value of C(n,k) can be computed by filling a table:
0 1 2 . . . k-1 k

0 1
1 1 1
.
.
.

n-1 C(n-1,k-1) C(n-1,k)
n C(n,k)

8-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Computing C(n,k): pseudocode and analysis

Time efficiency: Θ(nk)

Space efficiency: Θ(nk)

8-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm: Transitive Closure
• Computes the transitive closure of a relation

• Alternatively: existence of all nontrivial paths in a digraph

• Example of transitive closure:

3

42

1

0 0 1 0
1 0 0 1
0 0 0 0
0 1 0 0

0 0 1 0
1 1 1 1
0 0 0 0
1 1 1 1

3

42

1

8-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm
Constructs transitive closure T as the last matrix in the sequence
of n-by-n matrices R(0), … , R(k), … , R(n) where
R(k)[i,j] = 1 iff there is nontrivial path from i to j with only first k
vertices allowed as intermediate
Note that R(0) = A (adjacency matrix), R(n) = T (transitive closure)

3

42

1
3

42

1
3

42

1
3

42

1

R(0)

0 0 1 0
1 0 0 1
0 0 0 0
0 1 0 0

R(1)

0 0 1 0
1 0 1 1
0 0 0 0
0 1 0 0

R(2)

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1

R(3)

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1

R(4)

0 0 1 0
1 1 1 1
0 0 0 0
1 1 1 1

3

42

1

8-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of
vertices i, j if a path exists from i and j with just vertices 1,…,k
allowed as intermediate

R(k-1)[i,j] (path using just 1 ,…,k-1)
R(k)[i,j] = or

R(k-1)[i,k] and R(k-1)[k,j] (path from i to k
and from k to i
using just 1 ,…,k-1)i

j

k

{

8-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is:

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1),
it remains 1 in R(k)

Rule 2 If an element in row i and column j is 0 in R(k-1),
it has to be changed to 1 in R(k) if and only if
the element in its row i and column k and the element
in its column j and row k are both 1’s in R(k-1)

8-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (example)

3

42

1 0 0 1 0
1 0 0 1
0 0 0 0
0 1 0 0

R(0) =

0 0 1 0
1 0 1 1
0 0 0 0
0 1 0 0

R(1) =

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1

R(2) =

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1

R(3) =

0 0 1 0
1 1 1 1
0 0 0 0
1 1 1 1

R(4) =

8-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

8-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between
every pair of vertices

Same idea: construct solution through series of matrices D(0), …,
D (n) using increasing subsets of the vertices allowed
as intermediate

Example: 3

42

1
4

1
6 1

5

3

8-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths
between every pair of vertices i, j that use only vertices among
1,…,k as intermediate

D(k)[i,j] = min {D(k-1)[i,j], D(k-1)[i,k] + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

8-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (example)

0 ∞ 3 ∞
2 0 ∞ ∞
∞ 7 0 1
6 ∞ ∞ 0

D(0) =

0 ∞ 3 ∞
2 0 5 ∞
∞ 7 0 1
6 ∞ 9 0

D(1) =

0 ∞ 3 ∞
2 0 5 ∞
9 7 0 1
6 ∞ 9 0

D(2) =

0 10 3 4
2 0 5 6
9 7 0 1
6 16 9 0

D(3) =

0 10 3 4
2 0 5 6
7 7 0 1
6 16 9 0

D(4) =

3 1

3

2

6 7

4

1 2

8-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, too

8-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Optimal Binary Search Trees

Problem: Given n keys a1 < …< an and probabilities p1 ≤ … ≤ pn
searching for them, find a BST with a minimum
average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by
C(2n,n)/(n+1), which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys A, B, C, and D with
search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

8-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

DP for Optimal BST Problem

Let C[i,j] be minimum average number of comparisons made in
T[i,j], optimal BST for keys ai < …< aj , where 1 ≤ i ≤ j ≤ n.
Consider optimal BST among all BSTs with some ak (i ≤ k ≤ j)
as their root; T[i,j] is the best among them.

a

Optimal
BST for

a , ..., a

Optimal
BST for

a , ..., ai

k

k-1 k+1 j

C[i,j] =

min {pk · 1 +

∑ ps (level as in T[i,k-1] +1) +

∑ ps (level as in T[k+1,j] +1)}

i ≤ k ≤ j

s = i

k-1

s =k+1

j

8-19Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

goal0

0

C[i,j]

0

1

n+1

0 1 n

p 1

p
2

np

i

j

DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for C[i,j]:

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps for 1 ≤ i ≤ j ≤ n

C[i,i] = pi for 1 ≤ i ≤ j ≤ n
s = i

j

i ≤ k ≤ j

Example: key A B C D
probability 0.1 0.2 0.4 0.3

The tables below are filled diagonal by diagonal: the left one is filled
using the recurrence

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps , C[i,i] = pi ;

the right one, for trees’ roots, records k’s values giving the minima
0 1 2 3 4

1 0 .1 .4 1.1 1.7

2 0 .2 .8 1.4

3 0 .4 1.0

4 0 .3

5 0

0 1 2 3 4

1 1 2 3 3

2 2 3 3

3 3 3

4 4

5

i ≤ k ≤ j s = i

j

optimal BST

B

A

C

D

i
j

i
j

8-21Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Optimal Binary Search Trees

8-22Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Analysis DP for Optimal BST Problem

Time efficiency: Θ(n3) but can be reduced to Θ(n2) by taking
advantage of monotonicity of entries in the
root table, i.e., R[i,j] is always in the range
between R[i,j-1] and R[i+1,j]

Space efficiency: Θ(n2)

Method can be expended to include unsuccessful searches

8-23Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Knapsack Problem by DP
Given n items of

integer weights: w1 w2 … wn

values: v1 v2 … vn

a knapsack of integer capacity W
find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j (j ≤ W).
Let V[i,j] be optimal value of such instance. Then

max {V[i-1,j], vi + V[i-1,j- wi]} if j- wi≥ 0
V[i,j] =

V[i-1,j] if j- wi < 0

Initial conditions: V[0,j] = 0 and V[i,0] = 0

8-24Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Visualizing this Relationship

max {V[i-1,j], vi + V[i-1,j- wi]} if j- wi≥ 0
V[i,j] =

V[i-1,j] if j- wi < 0
So we can build up the table, left to right by repeatedly
applying the result of this expression
The initial conditions are shown by the first row and first
column with 0 values

8-25Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Knapsack Problem by DP (example)
Example: Knapsack of capacity W = 5
item weight value

1 2 $12
2 1 $10
3 3 $20
4 2 $15

w1 = 2, v1= 12
w2 = 1, v2= 10
w3 = 3, v3= 20
w4 = 2, v4= 15

We know the solution is 37; the
next question is how we find
the items actually involved.

8-26Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Top Down Approach with Memorization

We can use a top down approach by storing all results
When we need a value we first ask have we stored it

8-27Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Example of Memorization

Notice that not all values need to be calculated
Only eleven out of twenty of the nontrivial values (the
zeros) need to be computed

	Slide Number 1
	Dynamic Programming
	Example: Fibonacci numbers
	Example: Fibonacci numbers (cont.)
	Examples of DP algorithms
	Computing a binomial coefficient by DP
	Computing C(n,k): pseudocode and analysis
	Warshall’s Algorithm: Transitive Closure
	Warshall’s Algorithm
	Warshall’s Algorithm (recurrence)
	Warshall’s Algorithm (matrix generation)
	Warshall’s Algorithm (example)
	Warshall’s Algorithm (pseudocode and analysis)
	Floyd’s Algorithm: All pairs shortest paths
	Floyd’s Algorithm (matrix generation)
	Floyd’s Algorithm (example)
	Floyd’s Algorithm (pseudocode and analysis)
	Optimal Binary Search Trees
	DP for Optimal BST Problem
	DP for Optimal BST Problem (cont.)
	� � �� �
	Optimal Binary Search Trees
	Analysis DP for Optimal BST Problem
	Knapsack Problem by DP
	Visualizing this Relationship
	Knapsack Problem by DP (example)
	Top Down Approach with Memorization
	Example of Memorization

