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Chapter 8: Inviscid Incompressible Flow:  a Useful Fantasy 
 
8.1 Introduction 

 
For high Re external flow about streamlined bodies viscous effects are confined to 
boundary layer and wake region. For regions where the BL is thin i.e. favorable pressure 
gradient regions, Viscous/Inviscid interaction is weak and traditional BL theory can be 
used. For regions where BL is thick and/or the flow is separated i.e. adverse pressure 
gradient regions more advanced boundary layer theory must be used including 
Viscous/Inviscid interactions.  
 
For internal flows at high Re viscous effects are always important except near the entrance. 
Recall that vorticity is generated in regions with large shear. Therefore, outside the B.L 
and wake and if there is no upstream vorticity then ω=0 is a good approximation. 
Note that for compressible flow this is not the case in regions of large entropy gradient. 
  
Also, we are neglecting noninertial effects and other mechanisms of vorticity generation. 
 
Potential flow theory 
 
1) Determine φ  from solution to Laplace equation 

02 =∇ φ  
B.C: 

at  BS : . 0 0V n
n
φ∂

= → =
∂

               

at  ∞S : V φ= ∇  
 
Note:  
F: Surface Function 

10 . 0 .DF F FV F V n
Dt t F t

∂ ∂
= → + ∇ = → = −

∂ ∇ ∂
   for 

steady flow . 0V n =  
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2) Determine V  from V φ= ∇  and p(x) from Bernoulli equation 
Therefore, primarily for external flow application we now consider inviscid flow theory (

0=µ ) and incompressible flow ( const=ρ ) 
 
Euler equation: 
 

. 0

. ( )

V
DV p g
Dt
V V V p z
t

ρ ρ

ρ ρ γ

∇ =

= −∇ +

∂
+ ∇ = −∇ +

∂

 

2

.
2

: 2

VV V V

Where V vorticity fluid angular velocity

ω

ω

∇ = ∇ − ×

= ∇× = = ×
 

21( )
2

0 0 :

V p V z V
t

If ie V then V

ρ ρ γ ρ ω

ω φ

∂
⇒ + ∇ + + = ×

∂
= ∇× = =∇

 

 
1 ( )
2

p z B t
t
φρ ρ φ φ γ∂

+ + ∇ ⋅∇ + =
∂

  

 
Continuity equation shows that GDE for φ  is the Laplace equation which is a 2nd order 
linear PDE ie superposition principle is valid. (Linear combination of solution is also a 
solution) 

2

1 2

2
2 2 2 2 1

1 2 1 2 2
2

0

0
0 ( ) 0 0

0

V φ φ
φ φ φ

φ
φ φ φ φ φ

φ

∇ ⋅ = ∇ ⋅∇ = ∇ =
= +

∇ =
∇ = ⇒ ∇ + = ⇒ ∇ + ∇ = ⇒ 

∇ =

 

Techniques for solving Laplace equation: 
1) superposition of elementary solution (simple geometries) 
2) surface singularity method (integral equation) 
3)  FD or FE 
4) electrical or mechanical analogs  
5) Conformal mapping ( for 2D flow) 
6) Analytical for simple geometries (separation of variable etc) 
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8.2 Elementary plane-flow solutions: 
 
Recall that for 2D we can define a stream function such that: 

x

y

v
u

ψ

ψ

−=

=
 

0)()( 2 =−∇=
∂
∂

−−
∂
∂

=−= ψψψω yxyxz yx
uv  

i.e. 02 =∇ ψ  
Also recall that φ  and ψ  are orthogonal. 

yx

xy

v
u

φψ

φψ

=−=

==
 

udyvdxdydxd
vdyudxdydxd

yx

yx

+−=+=

+=+=

ψψψ

φφφ
 

i.e. 

const

const

dx
dyv

u
dx
dy

=

=

−
=−=

ψ

φ

1  

 
 
Uniform stream 
 

yx

xy

v
constUu

φψ

φψ

=−==

==== ∞

0
 

i.e.      
yU
xU

∞

∞

=
=

ψ
φ

 

Note: 022 =∇=∇ ψφ  is satisfied. 
ˆV U iφ ∞= ∇ =  

Say a uniform stream is at an angle α  to 
the  x-axis: 

 cosu U
y x
ψ φα∞

∂ ∂
= = =

∂ ∂

 sinv U
x y
ψ φα∞

∂ ∂
= = − =

∂ ∂
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After integration, we obtain the following expressions for the stream function and velocity 
potential: 
                        ( )cos sinU y xψ α α∞= −  
  ( )cos sinU x yφ α α∞= +  
 
2D Source or Sink: 

 
𝑥𝑥 = 𝑟𝑟 cos 𝜃𝜃 
𝑦𝑦 = 𝑟𝑟 sin𝜃𝜃 

Imagine that fluid comes out radially at origin with uniform rate in all directions. 
(singularity at origin where velocity is infinite)   
Consider a circle of radius r enclosing this source. Let vr be the radial component of 
velocity associated with this source (or sink). Then, from conservation of mass, for a 
cylinder of radius r, and width b, perpendicular to the paper, 

3

A

LQ V d A
S

 
= ⋅  

 
∫  where  𝑉𝑉 = 𝑣𝑣𝑟𝑟𝑒𝑒𝑟𝑟� ;  𝑛𝑛 = 𝑒𝑒𝑟𝑟� ;  𝑑𝑑𝑑𝑑 = 𝑟𝑟𝑑𝑑𝜃𝜃𝑟𝑟 

( ) ( )2
,

2

r

r

Q r b v
Or

Qv
br

π

π

= ⋅ ⋅

=

 

0, ==⇒ θv
r
mvr  

Where: 
2
Qm

bπ
=  is the source strength with unit m2/s velocity × length  

(m>0 for source and m<0 for sink). Note that V is singular at (0,0) since rv → ∞  
 
In a polar coordinate system, for 2-D flows we will use: 

𝑉𝑉 = 𝛻𝛻𝛻𝛻 =
𝜕𝜕𝛻𝛻
𝜕𝜕𝑟𝑟

𝑒𝑒𝑟𝑟� +
1
𝑟𝑟
𝜕𝜕𝛻𝛻
𝜕𝜕𝜃𝜃

𝑒𝑒𝜃𝜃�  

𝛻𝛻 =
𝜕𝜕
𝜕𝜕𝑟𝑟
𝑒𝑒𝑟𝑟� +

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜃𝜃

𝑒𝑒𝜃𝜃� 
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And: 
. 0

1 1( ) ( ) 0r

V

rv v
r r r θθ

∇ =
∂ ∂

+ =
∂ ∂

 

i.e.:  

r
v

rr
vr

∂
∂

−=
∂
∂

==

∂
∂

=
∂
∂

==

ψ
θ
φ

θ
ψφ

θ r
1 velocityTangential

1 velocityRadial
 

Such that  0V∇ ⋅ =  by definition. 
 
Therefore, 
 

 

r
v

rr
vr

∂
∂

−=
∂
∂

==

∂
∂

=
∂
∂

==

ψ
θ
φ

θ
ψφ

θ r
10

1
r
m

 

i.e.     

x
ymm

yxmrm

1

22

tan

lnln

−==

+==

θψ

φ
 

Doublets: 

 
The doublet is defined as: 

𝛹𝛹 = −
𝑚𝑚
2𝜋𝜋

 � 𝜃𝜃1⏟
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

− 𝜃𝜃2⏟
𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠

� → 𝜃𝜃1 − 𝜃𝜃2 = −
2𝜋𝜋𝛹𝛹
𝑚𝑚

 

 

𝑡𝑡𝑡𝑡𝑛𝑛 �−
2𝜋𝜋𝛹𝛹
𝑚𝑚

� = 𝑡𝑡𝑡𝑡𝑛𝑛(𝜃𝜃1 − 𝜃𝜃2) =
𝑡𝑡𝑡𝑡𝑛𝑛 𝜃𝜃1 − 𝑡𝑡𝑡𝑡𝑛𝑛 𝜃𝜃2

1 + 𝑡𝑡𝑡𝑡𝑛𝑛 𝜃𝜃1 𝑡𝑡𝑡𝑡𝑛𝑛 𝜃𝜃2
 

 

𝑡𝑡𝑡𝑡𝑛𝑛 𝜃𝜃1 =
𝑟𝑟 𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃

𝑟𝑟 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 − 𝑡𝑡
;   𝑡𝑡𝑡𝑡𝑛𝑛 𝜃𝜃2 =

𝑟𝑟 𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃
𝑟𝑟 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 + 𝑡𝑡

 
 

𝑡𝑡𝑡𝑡𝑛𝑛 �−
2𝜋𝜋𝛹𝛹
𝑚𝑚

� =
2𝑡𝑡𝑟𝑟 sin𝜃𝜃
𝑟𝑟2 − 𝑡𝑡2
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Therefore 

Ψ = −
𝑚𝑚
2𝜋𝜋

tan−1 �
2𝑡𝑡𝑟𝑟 sin𝜃𝜃
𝑟𝑟2 − 𝑡𝑡2

� 
For small distance 

Ψ = −
𝑚𝑚
2𝜋𝜋

2𝑡𝑡𝑟𝑟 sin𝜃𝜃
𝑟𝑟2 − 𝑡𝑡2

=
𝑚𝑚𝑡𝑡𝑟𝑟 sin𝜃𝜃
𝜋𝜋(𝑟𝑟2 − 𝑡𝑡2)

 

 
The doublet is formed by letting 𝑡𝑡 → 0 while increasing the strength m (𝑚𝑚 →  ∞) so that 
doublet strength 𝐾𝐾 = 𝑚𝑚𝑎𝑎

𝜋𝜋
 remains constant 

Ψ = −
𝐾𝐾 sin𝜃𝜃
𝑟𝑟

 
Corresponding potential 

𝛻𝛻 =
𝐾𝐾 cos 𝜃𝜃

𝑟𝑟
 

 
By rearranging 

Ψ = −
𝐾𝐾 rsin 𝜃𝜃
𝑟𝑟2

=  −
𝐾𝐾𝑦𝑦

𝑥𝑥2 + 𝑦𝑦2
→ 𝑥𝑥2 + �𝑦𝑦 +

𝐾𝐾
2Ψ

�
2

= �
𝐾𝐾

2Ψ
�
2

= 𝑅𝑅2 

Plots of lines constant Ψ reveal that streamlines for the doublet are circles trough the origin 
tangent to the x axis as shown in Figure below. 
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2D vortex:  
 

 
Suppose that value of the ψ  and φ  for the source are reversal. 

0
1

rv
Kv

r r rθ
φ ψ
θ

=
∂ ∂

= = − =
∂ ∂

 

Purely circulatory flow with  0vθ → like 1/r.  Integration results in: 

ln        K=constant
Kθ

ψ K r
φ =

= −
 

2D vortex is irrotational everywhere except at the origin where V  and V ×∇ are infinity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B 

C 
D 
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Circulation 
 
Circulation is defined by: 

c
C closed contour

Γ V d s 

=

= ⋅∫       For irrotational flow 

Or by using Stokes theorem: ( if no singularity of 
the flow in A) 

.  0
c A A

 Γ V d s V d A ndAω= ⋅ = ∇× ⋅ = =∫ ∫ ∫    

Therefore, for potential flow 0=Γ  in general.  
 
However, this is not true for the point vortex due to the singular point at vortex core 
where V and V ×∇ are infinity. 

If singularity exists: Free vortex 
r
K

=θυ  



2 2

0 0
ˆ ˆ ( ) 2

2
      and    

V d s

Kv e rd e rd K K
r

π π

θ θ θθ θ π
π
Γ

Γ = ⋅ = = =∫ ∫  

Note: for point vortex, flow still irrotational everywhere except at origin itself where 

V∞, i.e., for a path not including (0,0)  0Γ =  
Γ = � 𝑣𝑣𝜃𝜃𝑒𝑒𝜃𝜃� ⋅ 𝑒𝑒𝑟𝑟� 𝑑𝑑𝑟𝑟

𝐵𝐵

𝐴𝐴
+ � 𝑣𝑣𝜃𝜃𝑒𝑒𝜃𝜃� 𝑟𝑟𝑑𝑑𝜃𝜃 ⋅ 𝑒𝑒𝜃𝜃�

𝐶𝐶

𝐵𝐵
+ � 𝑣𝑣𝜃𝜃𝑒𝑒𝜃𝜃� ⋅ 𝑒𝑒𝑟𝑟� 𝑑𝑑𝑟𝑟 

𝐷𝐷

𝐶𝐶
+ � 𝑣𝑣𝜃𝜃𝑒𝑒𝜃𝜃�𝑟𝑟𝑑𝑑𝜃𝜃 ⋅ 𝑒𝑒𝜃𝜃� 

𝐴𝐴

𝐷𝐷
= Δ𝜃𝜃𝐾𝐾 − Δ𝜃𝜃𝐾𝐾 = 0 

 
Also, we can use Stokes theorem to show the existence of φ : 

'
C

ABC AB C

V d s V d s φ⋅ = ⋅ =∫ ∫   Since 
'

. 0
ABCB A

V d s =∫  

Therefore in general for irrotational motion: 
.V d x φ=∫  

 

Where:  se =unit tangent vector along curve x 
Since  se  is not zero we have shown: 
V φ= ∇  

.

ˆ

ˆ( ). 0

s

s

V d x d
d x d d xV
ds ds ds

d xe
ds

V e

φ
φ φ

φ

⋅ =

⋅ = = ∇

=

− ∇ =
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i.e. velocity vector is gradient of a scalar function φ  if the motion is irrotational. (
0V d s⋅ =∫ ) 

 
The point vortex singularity is important in aerodynamics, since, distribution of sources 
and sinks can be used to represent airfoils and wings as we shall discuss shortly. To see 
this, consider as an example: 
 
an infinite row of vortices: 





 −−=−= ∑

∞

=

)2cos2(cosh
2
1ln

2
1ln

1 a
x

a
yKrK

i
i

ππψ  

Where ir  is radius from origin of ith vortex. 

 
Equally speed and equal strength (Fig 8.11 of Text book) 

 
 
For ay ≥  the flow approaches uniform flow with  

a
K

y
u πψ

±=
∂
∂

=   

+: below x axis 
-: above x axis 
Note: this flow is just due to infinite row of vortices and there isn’t any pure uniform 
flow   
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Vortex sheet: 
From afar (i.e. ay ≥ ) looks like a thin sheet with velocity discontinuity. 

 
Define ==

a
Kπγ 2 strength of vortex sheet 

dx
a
Kdxuudxudxud ulul

π2)( =−=−=Γ  

i.e.  
dx
dΓ

=γ =Circulation per unit span 

Note: There is no flow normal to the sheet so that vortex sheet can be used to simulate a 
body surface. This is the basis of airfoil theory where we let )(xγγ =  to represent body 
geometry. 
 
Vortex theorem of Helmholtz: (important role in the study of the flow about wings) 
 

1) The circulation around a given vortex line is constant along its length 
2) A vortex line cannot end in the fluid. It must form a closed path, end at a 

boundary or go to infinity. 
3) No fluid particle can have rotation, if it did not originally rotate 
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8.3 Potential Flow Solutions for Simple Geometries 
 

Circular cylinder (without rotation): 
 
In the previous we derived the following 
equation for the doublet: 
 

2 2

sin
Doublet

y
x y r

λ λ θψ = = − = −
+

 

When this doublet is superposed with a 
uniform flow parallel to the x- axis, we get: 
 

2

sin 1sin 1 sinU r U r
r U r

λ θ λψ θ θ∞ ∞
∞

 
= − = − 

 
 

Where: =λ doublet strength which is determined from the kinematic body boundary 
condition that the body surface must be a stream surface. Recall that for inviscid flow it is 
no longer possible to satisfy the no slip condition as a result of the neglect of viscous 
terms in PDEs. 
 
The inviscid flow boundary condition is: 
F=r-R: Surface Function 

10 . 0 0DF F FV F V n
Dt t F t

∂ ∂
= → + ∇ = → ⋅ = − =

∂ ∇ ∂
  (for steady flow) 

 
Therefore at  r=R, V.n=0 i.e. 

Rrrv
=

= 0 . 

ˆ ˆr rV v e v eθ θ= + ,   
2 2

ˆ ˆ
ˆ

r

r

r

F Fe eF rn e
F F F

θ

θ

θ
∂ ∂

+∇ ∂ ∂= = =
∇ +

 

2

1 1 cosrV n v U
r U r

ψ λ θ
θ ∞

∞

 ∂
⋅ = = = − ∂  

=0 

2U Rλ ∞⇒ =  

 If we replace the constant 
U
λ

∞

by a new constant R2, the above equation becomes: 

2

21 sinRU r
r

ψ θ∞

 
= − 

 
 

This radial velocity is zero on all points on the circle r=R. That is, there can be no velocity 
normal to the circle r=R. Thus this circle itself is a streamline.  
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We can also compute the tangential component of velocity for flow over the circular 
cylinder. From equation, 

2

21 sinRv U
r rθ
ψ θ∞

 ∂
= − = − + ∂  

 

 
On the surface of the cylinder r=R, we get the following expression for the tangential and 
radial components of velocity: 
 

2 sinv Uθ θ∞= −  
 

 0=rv  
 
Is obtained from Bernoulli's equation: 

( )2 2 21 1
2 2r

pp v v Uθρ ρ
∞

∞+ + = +  

 
After some rearrangement we get the following non-dimensional form: 

( )
2 2

2
2

, 11
2

r
p

v vp pC r
UU

θθ
ρ

∞

∞
∞

+−
= = −  

 
At the surface, the only velocity component that is non-zero is the tangential component of 
velocity. Using 2 sinv Uθ θ∞= − , we get at the cylinder surface the following expression for 
the pressure coefficient: 

 
 

Where θ is the angle measured from the rear stagnation point (at the intersection of the 
back end of the cylinder with the x- axis).  

 

Cp = −1 4 2sin θ

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5

0 30 60 90 120 150 180 210 240 270 300 330 360

C
p

Theta, Degrees

Cp over a Circular Cylinder
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From pressure coefficient we can calculate the fluid force on the cylinder: 

21( ) ( , )
2 p

A A

F p p nds U C R ndsρ θ∞ ∞= − − = −∫ ∫  

( )ds Rd bθ=    b=span length 
2

2 2

0

1 ˆ ˆ(1 4sin )(cos sin )
2

F U bR i j d
π

ρ θ θ θ θ∞= − − +∫  

2 2

ˆ
1 1
2 2

L
Lift F jC
U bR U bRρ ρ∞ ∞

⋅
= = = 0sin)sin41(

2

0

2 =−− ∫
π

θθθ d  (due to symmetry of flow 

around x axis) 

2 2

ˆ
1 1
2 2

F
Drag F iC

U bR U bRρ ρ∞ ∞

⋅
= = = 0cos)sin41(

2

0

2 =−− ∫
π

θθθ d  (dÁlembert paradox) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
D 
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Circular cylinder with circulation: 
The stream function associated with the flow over a circular cylinder, with a point vortex 
of strength Γ placed at the cylinder center is: 

sinsin ln
2

U r r
r

λ θψ θ
π∞

Γ
= − −  

From V.n=0 at r=R: 2U Rλ ∞=  
 

Therefore, 
2 sinsin ln

2
U RU r r

r
θψ θ

π
∞

∞

Γ
= − −  

 
The radial and tangential velocity is given by: 

2

2

1 1 cosr
Rv U

r r
ψ θ
θ ∞

 ∂
= = − ∂  

                      
2

21 sin
2

Rv U
r r rθ
ψ θ

π∞

 ∂ Γ
= − = − + + ∂  

 

On the surface of the cylinder (r=R): 

             
2

2

1 1 cos 0r
Rv U

r R
ψ θ
θ ∞

 ∂
= = − = ∂  

                2 sin
2

v U
r Rθ
ψ θ

π∞

∂ Γ
= − = − +

∂
 

2

0

V dr v rd
π

θ θ−Γ = • =∫ ∫ , i.e., vortex strength is circulation 

 
Next, consider the flow pattern as a function of Γ . To start lets calculate the stagnation 
points on the cylinder i.e.: 

2 sin 0
2

v U
Rθ θ

π∞

Γ
= − + =  

sin / 2
4 2

K
U R U R

θ β
π ∞ ∞

Γ
= = =  

Note: 
2

KK
U R

β
π ∞

Γ
= =  

 
So, the location of stagnation point is function of Γ .  
 

2
K

U R U R
β

π∞ ∞

Γ
= =  sθ  (stagnation point) 

0 ( 0sin =θ ) 0,180 
1( 5.0sin =θ ) 30,150 
2 ( 1sin =θ ) 90 
>2( 1sin >θ ) Is not on the circle but where  0rv vθ= =  
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For flow patterns like above (except a), we should expect to have lift force in –y 
direction. 
Summary of stream and potential function of elementary 2-D flows: 
In Cartesian coordinates: 

yx

xy

v
u

φψ

φψ

=−=

==
 

In polar coordinates: 

r
v

rr
vr

∂
∂

−=
∂
∂

=

∂
∂

=
∂
∂

=

ψ
θ
φ

θ
ψφ

θ r
1

1

 

 
Flow φ  ψ   
Uniform Flow xU ∞  yU ∞  
Source (m>0) 
Sink (m<0) 

lnm r  mθ  

Doublet 
r

θλ cos  
r

θλ sin
−  

Vortex Kθ  - lnK r  
90 Corner flow )(2/1 22 yxA −  Axy 
Solid-Body rotation Doesn’t exist 2

2
1 rω  

 
These elementary solutions can be combined in such a way that the resulting solution can 
be interpreted to have physical significance; that is, represent the potential flow solution 



 058:0160  Chapter 8 
Professor Fred Stern     Fall 2018  16 

for various geometries. Also, methods for arbitrary geometries combine uniform stream 
with distribution of the elementary solution on the body surface.   
 
Some combination of elementary solutions to produce body geometries of practical 
importance  
Body name Elemental combination Flow Patterns 
Rankine Half Body Uniform stream+source 

 
Rankine Oval Uniform stream+source+sink 

 
Kelvin Oval Uniform stream+vortex point 

 
Circular Cylinder 
without circulation 

Uniform stream+doublet 

 
Circular Cylinder with 
circulation 

Uniform 
stream+doublet+vortex 

 
 
Keep in mind that this is the potential flow solution and may not well represent the real 
flow especially in region of adverse px. 
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The Kutta – Joukowski lift theorem: 
    
Since we know the tangential component of velocity at any point on the cylinder (and the 
radial component of velocity is zero), we can find the pressure field over the surface of 
the cylinder from Bernoulli’s equation: 

22 2

2 2 2
r vv p Up θ

ρ ρ
∞ ∞+ + = +

 
Therefore: 
 

2 2
2 2 2 2

2 2

2

1 12 sin 2 sin sin
2 2 2 8

sin sin

Up p U U p U U
R R R

A B C

ρρρ θ ρ ρ θ θ
π π π

θ θ

∞
∞ ∞ ∞ ∞ ∞ ∞

    ΓΓ Γ = + − − = + − − +    
     

= + +
 

where 
 

2
2

2 2

1
2 8

A p U
R

ρρ
π∞ ∞

 Γ
= + − 

   
UB

R
ρ
π

∞Γ
=

 
22C Uρ ∞= −
 Calculation of Lift: Let us first consider lift. Lift per unit span, L (i.e. per unit distance 

normal to the plane of the paper) is given by: 
 

On the surface of the cylinder,  x = Rcosθ. Thus, dx = -Rsinθdθ, and the above integrals 
may be thought of as integrals with respect to θ. For the lower surface, θ varies between 
π and 2π. For the upper surface, θ varies between π and 0. Thus, 

 

Reversing the upper and lower limits of the second integral, we get: 
 

 

Substituting for B ,we get: 
 

This is an important result. It says that clockwise vortices (negative numerical values of Γ) 
will produce positive lift that is proportional to Γ and the free stream speed with direction 
90 degrees from the stream direction rotating opposite to the circulation. Kutta and 
Joukowski generalized this result to lifting flow over airfoils. Equation  is 
known as the Kutta-Joukowski theorem. 
 

∫ ∫−=
Lower upper

pdxpdxL

( ) ( )∫ ∫ +++++−=
π

π π

θθθθθθθθ
2 0

22 sinsinsinsinsinsin dCBARdCBARL

( ) ( )∫∫ −=++−=++−=
ππ

πθθθθθθθθ
2

0

32
2

0

2 sinsinsinsinsinsin BRdCBARdCBARL

Γ−= ∞uL ρ

Γ−= ∞uL ρ
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Drag: We can likewise integrate drag forces. The drag per unit span, D, is given by: 

 

Since y=Rsinθ on the cylinder, dy=Rcosθdθ. Thus, as in the case of lift, we can convert 
these two integrals over y into integrals over θ. On the front side, θ varies from 3π/2 to π/2. 
On the rear side, θ varies between 3π/2 and π/2. Performing the integration, we can show 
that 

 
This result is in contrast to reality, where drag is high due to viscous separation. This 
contrast between potential flow theory and drag is the dÁlembert Paradox. 
 
The explanation of this paradox are provided by Prandtl (1904) with his boundary layer 
theory i.e. viscous effects are always important very close to the body where the no slip 
boundary condition must be satisfied and large shear stress exists which contributes the 
drag. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∫ ∫−=
Front rear

pdypdyD

0=D
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Lift for rotating Cylinder: 
 
We know that L Uρ ∞= − Γ  therefore:     

21 (2 )
2

L
LC

U RU Rρ ∞
∞

−Γ
= =  

Define: 





 Γ

== ∫ R
dvv

Average π
θ

π

π

θθ 2
1

2
1 2

0

       Note:   
c c c

Γ V d s V d A V Rdθ θ θ= ⋅ = ⋅ =∫ ∫ ∫    

2
averagfeLC v

U θ
π

∞

⇒ =  

 
Velocity ratio:   a

U
ω

∞

 

 
Theoretical and experimental lift and drag of a rotating cylinder 

 
Experiments have been performed that simulate the previous flow by rotating a circular 
cylinder in a uniform stream. In this case ωθ Rv =  which is due to no slip boundary 
condition. 

- Lift is quite high but not as large as theory (due to viscous effect ie flow separation) 
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- Note drag force is also fairy high 
 
Flettner (1924) used rotating cylinder to produce forward motion. 
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8.4 Method of Images 
 
The method of image is used to model “slip” wall effects by constructing appropriate image 
singularity distributions. 
 
Plane Boundaries: 

 
2-D: ( )[ ] ( )[ ] ( )[ ] ( )[ ]22222222 11ln

2
1ln1ln

2
yxyxmyxyxmQ +++−=++++−=  

3-D: ( ) ( )
1 1

2 22 22 2 2 21 1M x y z x y zφ
− −    = − − + + + + + +     

 

 
Similar results can be obtained for dipoles and vortices: 
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Spherical and Curvilinear Boundaries:  
 
The results for plane boundaries are obtained from consideration of symmetry. For 
spherical and circular boundaries, image systems can be determined from the Sphere & 
Circle Theorems, respectively.  For example: 
 
 

Flow field Image System 
Source of strength M at c outside sphere 
of radius a, c>a 

Sources of strength c
ma at c

a 2
and line 

sink of strength a
m extending from center 

of sphere to c
a 2

 

Dipole of strength µ at l outside sphere of 
radius a, l>a 

dipole of strength l
a µ3

− at l
a 2

−  

Source of strength m at b outside circle of 
radius a, b>a 

equal source at b
a 2

and sink of same 

strength at the center of the circle 
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Multiple Boundaries: 
 
The method can be extended for multiple boundaries by using successive images.  
 
 

(1) For example, the solution for a source equally spaced between two parallel planes 
 

 
 
 

( )[ ] ( )[ ][ ]

( ) ( ) ( ) ( ) ( ) ( )[ ]



++++−+++−++−++−+−=

−+−++−= ∑
±±=

azazazazazazm

anzanzmzw
m

2ln4ln6ln4ln2lnln

24ln4ln)(
,2,1,0  
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(2) As a second example of the method of successive images for multiple boundaries 

consider two spheres A and B moving along a line through their centers at velocities 
U1 and U2, respectively: 
 

 
 
 
Consider the kinematic BC for A: 

( ) ( ) 2222, azyytxtxF −++−=  

1 1
ˆˆ ˆ0  or cosR R R

DF V e U k e U
Dt

φ ν= ⇒ ⋅ = ⋅ =  

where 2 cos
R

ϕ ν∆
= − , 

3

3

2 cos
2R

Ua
R

φ ν∆
= − ⇒ ∆ = for single sphere 

 
Similarly for B 2 cos 'R Uφ ν=  
 
This suggests the potential in the form 
 

1 1 2 2U Uϕ ϕ ϕ= +  
 
where φ1 and φ2 both satisfy the Laplace equation and the boundary condition: 
 

1 1

'

cos ,  0
'R a R bR R

φ φν
= =

∂ ∂   = =   ∂ ∂   
     (*) 

 
2 2

'

0,  cos '
'R a R bR R

φ φ ν
= =

∂ ∂   = =   ∂ ∂   
    (**) 

 
φ1 = potential when sphere A moves with unit velocity towards B, with B at rest 
φ2 = potential when sphere B moves with unit velocity towards A, with A at rest 
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If B were absent. 

3
0

1 2 2cos cos
2
a
R R

φ ν ν∆
= − = − , 

2

3

0
a

=∆  

 
but this does not satisfy the second condition in (*). To satisfy this, we introduce the image 
of 0∆ in B, which is a doublet 1∆ directed along BA at A1, the inverse point of A with 
respect to B.  This image requires an image 2∆ at A2, the inverse of A1 with respect to A, 
and so on. Thus we have an infinite series of images A1, A2, … of strengths 1∆ , 2∆ , 3∆ etc. 
where the odd suffixes refer to points within B and the even to points within A. 
 
Let &n nf AA AB c= =  

c
bcf

2

1 −= , 
1

2

2 f
af = , 

2

2

3 fc
bcf
−

−= ,… 









−∆=∆ 3

3

01 c
b , 










−∆=∆ 3

1

3

12 f
a , 

( ) 










−
−∆=∆ 3

2

3

23 fc
b ,… 

where  1∆  = image dipole strength, 0∆  = dipole strength × 3

3

sistance
radius  

0 1 1 2 2
1 2 2 2

1 2

cos cos cos
R R R

ν ν νφ ∆ ∆ ∆
= − − − −with a similar development procedure for φ2. 

Although exact, this solution is of unwieldy form. Let’s investigate the possibility of an 
approximate solution which is valid for large c (i.e. large separation distance) 
 

 
 

2
2 2 2 2

2

1 1
2 22 2

2 2

2' 2 cos 1 cos

1 1 11 2 cos 1 2 cos
'

c cR R c cr R
R R

c c R R
R R R R c c c

ν ν

ν ν
− −

 
= + − = − + 

 

   
= − + = − +   

   

 

 

Considering the former representation first defining c
R

µ = and cosu υ=  

[ ] 2
1

2211
'

1 −
+−= µµu

RR
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By the binomial theorem valid for 1<x  

( ) ++++=− − 3
3

2
2102

1
1 xxxx αααα , 10 =α  and ( )

n
n

n 242
1231

⋅⋅
−⋅⋅

=α  

Hence if 12 2 <− µµu  

[ ] ( ) ( ) ( ) ( ) ( ) 2
210

2
2

2
102

1
2 µµαµµαα uPuPuPu ++=++−+=−

  
 
After collecting terms in powers of µ , where the Pn are Legendre functions of the first 
kind (i.e. Legendre polynomials which are Legendre functions of the first kind of order 
zero). Thus, 

( ) ( )

( ) ( )

2

1 22 3

2

1 22 3

1 1: cos cos
'

1 1: cos cos
'

R RR C P P
R c c c

c cR C P P
R R R R

ν ν

ν ν

< = + + +

> = + + +





 

 
Next, consider a doublet of strength ∆  at A 

( )

( ) ( )
3 12

2 2 2 22 2

coscos 1
' 2 cos 2 cos

R c
R cR c cR R c cR

ναφ
ν ν

 
−∆ −∆ ∂  

= − = = −∆  ∂  + − + − 

 

Thus, 
( ) ( )

( ) ( ) ( )

2
1 2

2 2 3

2

1 2 32 3 4

2 cos 3 coscos 1:
'

1 2 3: cos cos cos

RP R P
R c

R c c c

c cR c P P P
R R R

ν ναφ
ν

φ ν ν ν

 −∆
< = = ∆ + + + 

 
 

> = −∆ + + + 
 





 

 
Going back to the two sphere problem. If B were absent 
 

 
3

1 2 cos
2
a
R

φ ν= −  

using the above expression for the origin at B and near B ' 1R
c

 < 
 

, RR’, 'νν →  

( )33 3
1

2 2 3

3

3

' cos1cos
2 2

cos
R

a R Pa a
R c c

a
c

ν
φ ν

νφ

 
= − = − + + 

 
−

= +
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which can be cancelled by adding a term to the first approximation, i.e. 
3 3 3

1 2 3 2

1 cos 1 cos '
2 2 '

a a b
R c R

ν νφ = − −  

to confirm this 
3 3 3

1 2 3 3

1 3 'cos ' 1 cos
2 2

a a R a b
c c c R

ν νφ = − − −  

 

3

3 3 3 '
'1

' 3 3 '

cos ' cos( ) 0a a bR b hot
R c c R
φ ν ν∂

= = − + = +
∂

 

 
Similarly, the solution for f2 is  
 

2

3 ' 3 3

2 3 2'

1 cos 1 cos
2 2

b a b
c RR

ν νφ = − −  

 
These approximate solutions are converted to ( )3c−Ο . 
 
To find the kinetic energy of the fluid, we have 

1
2

A B

n n
S S

K dS dSρ φφ φφ
 

= − + 
  
∫ ∫  

2 2
11 1 12 1 2 22 2

1
2 2

A B

n
S S

K A U A U U A U dSρ φφ
+

 = + + = −  ∫  

1
11 1 A

A

A dS
n
φρ φ ∂

= −
∂∫ , 2

22 2 B
B

A dS
n
φρ φ ∂

= −
∂∫ , 1 1

12 2 1A B
A B

A dS dS
n n
φ φρ φ ρ φ∂ ∂

= − = −
∂ ∂∫ ∫  

where 22 sindS R dπ υ υ=  

ρπ 3
11 3

2 aA = , 
3 3

12 3

2 a bA
c

π ρ= , ρπ 3
22 3

2 bA = , 

3 3
2 2

1 1 1 2 2 23

1 2 1' '
4 4

a bK M U U U M U
c

π ρ
= + + : using the approximate form of the potentials 

where 2 2
1 1 2 2

1 1' , '
4 4

M U M U : masses of liquid displaced by sphere. 

 
8.5 Complex variable and conformal mapping 
 
This method provides a very powerful method for solving 2-D flow problems. Although 
the method can be extended for arbitrary geometries, other techniques are equally useful. 
Thus, the greatest application is for getting simple flow geometries for which it provides 
closed form analytic solution which provides basic solutions and can be used to validate 
numerical methods.  
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Function of a complex variable 
 

Conformal mapping relies entirely on complex mathematics. Therefore, a brief review is 
undertaken at this point.  
 
A complex number z is a sum of a real and imaginary part;  z =  real + i imaginary 
 
The term i, refers to the complex number   
 
so that;   
 
Complex numbers can be presented in a graphical format. If the real portion of a complex 
number is taken as the abscissa, and the imaginary portion as the ordinate, a two-
dimensional plane is formed. 
 
z = real +i imaginary = x + iy 
 
 
 
 
 
-A complex number can be written in polar 
form using Euler's equation; 
 

 z = x + iy  =  reiθ  =  r(cosθ  + i⋅sinθ) 
 
Where:   r2  =  x2  +  y2 
 
- Complex multiplication: z1⋅z2 = (x1+iy1)(x2+iy2) = (x1x2 - y1y2) + i(x1y2 + y1x2) 

- Conjugate:  z = x + iy   z x iy= − 22. yxzz +=  
-Complex function: 

w(z)  = f(z)= φ (x,y) +  iψ (x,y) 
 
 
 

1−=i

1,,1,1 432 =−=−=−= iiiii

y, imaginary 

x, real 

)(
2121

2121 θθθθ +⋅=⋅= iii errerer
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If function w(z) is differentiable for all values of z in a region of z plane is said to be regular 
and analytic in that region. Since a complex function relates two planes, a point can be 
approached along an infinite number of paths, and thus, in order to define a unique 
derivative f(z) must be independent of path. 
 

 
1 1 1

1 1

1

1 1 1

( )1( 0) :

: ( , ) ( , )

x x

w w i iwPP y
z z z x x
dw i
dz

Note w x x y i x x y

φ ψ φ ψδδ
δ

φ ψ

φ δ ψ δ

− + − +
= = =

− −

⇒ = +

= + + +

 

2 2 2

2 2

2

( )2( 0) :
( )

y y

w w i iwPP x
z z z i y y
dw i
dz

φ ψ φ ψδδ
δ

φ ψ

− + − +
= = =

− −

⇒ = − +
 

For 
dz
dw  to be unique and independent of path: 

x y y xandφ ψ φ ψ= − =    Cauchy Riemann Eq. 
 
Recall that the velocity potential and stream function were shown to satisfy this relationship 
as a result of their othogonality. Thus, complex function ψφ iw +=  represents 2-D flows. 

xx yx yy xyφ ψ φ ψ= = −  i.e.  0=+ yyxx φφ  and similarly for ψ.  Therefore if analytic and 
regular also harmonic, i.e., satisfy Laplace equation. 
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Application to potential flow 
 

( )w z iφ ψ= +  Complex potential where φ : velocity potential, ψ : stream function 

( ) i
x x r

dw i u iv u iu e
dz

θ
θφ ψ −= + = − = −  Complex velocity 

 
 

)('' αθθ ρ += ii reer where rr ρ=' (magnification) and αθθ +=' (rotation) 
Triangle about z0 is transformed into a similar triangle in the ζ-plane which is magnified 
and rotated. 
 
Implication: 
 
-Angles are preserved between the intersections of any two lines in the physical domain 
and in the mapped domain. 
 
-The mapping is one-to-one, so that to each point in the physical domain, there is one and 
only one corresponding point in the mapped domain. 
 
For these reasons, such transformations are called conformal. 
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Usually the flow-field solution in the ζ-plane is known: 
 

),(),()( ηξηξς Ψ+Φ= iW  
Then 

( )( ) ),(),()( yxiyxzfWzw ψφ +==  or Ψ=Φ= ψφ  &  
 
Conformal mapping 
 
The real power of the use of complex variables for flow analysis is through the application 
of conformal mapping: techniques whereby a complicated geometry in the physical z-
domain is mapped onto a simple geometry in the ζ-plane (circular cylinder) for which the 
flow-field solution is known. The flow-field solution in the z-plane is obtained by relating 
the ζ-plane solution to the z-plane through the conformal transformation ζ=f(z) (or inverse 
mapping z=g(ζ)). 
 
Before considering the application of the technique, we shall review some of the more 
important properties and theorems associated with it. 
 
Consider the transformation, 
ζ=f(z) where f(z) is analytic at a regular point Z0 where f’(z0)≠0 
δζ= f’(z0) δz 

'' θδς ier= , iz re θδ = , ( ) αρ iezf =0
'  

 
The streamlines and equipotential lines of the ζ-plane (Φ, Ψ) become the streamlines of 
equipotential lines of the z-plane (φ, ψ). 

 


2 2

2 2

0

0
z

z

ς

ς

ϕ φ

ψ ψ

∇ = ∇ =

∇ = ∇ =
 i.e. Laplace equation in the z-plane transforms into Laplace equation is 

the ζ-plane. 
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The complex velocities in each plane are also simply related 
 

' ( )dw dw d dw f z
dz d dz d

ς
ς ς

= =  

 

( ) ( ) '( ) ( ( ))dw dWz u iv U iV f z f z
dz d

ζ
ζ

= − = − = =  

 
i.e. velocities in two planes are proportional. 
 
Two independent theorems concerning conformal transformations are: 

(1) Closed curves map to closed curves 
(2) Rieman mapping theorem: an arbitrary closed profile can be mapped onto the unit 

circle. 
 
More theorems are given and discussed in AMF Section 43. Note that these are for the 
interior problems, but are equally valid for the exterior problems through the inversion 
mapping. 
 
Many transformations have been investigated and are compiled in handbooks. The AMF 
contains many examples: 
1) Elementary transformations: 

 a) linear: 0 , ≠−
+
+

= bcad
dcz
bazw  

 b) corner flow: nAzw =  
 c) Jowkowsky: ςς

2cw +=  

 d) exponential: new =  
 e) szw = , s irational 
 
2) Flow field for specific geometries 
 a) circle theorem 
 b) flat plate 
 c) circular arc 
 d) ellipse 
 e) Jowkowski foils 
 f) ogive (two circular areas) 
 g) Thin foil theory [solutions by mapping flat plate with thin foil BC onto unit 
circle] 
 h) multiple bodies 
 
3) Schwarz-Cristoffel mapping 
4) Free-streamline theory 
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The techniques of conformal mapping are best learned through their applications. Here we 
shall consider corner flow.  
 
A simple example: Corner flow 
 
1. In ζ-plane, let ςς =)(W  i.e. uniform stream 

2. Say θ
π

ς zzf == )(  

3. θ
π

zzfWzw == ))(()(  i.e. corner flow 
Note that 1-3 are unit uniform stream. 
 

 
θθ niURURUzzw nnn sincos)( +== , where θiz Re=  

i.e. θφ nURn cos= , θψ nURn sin=  
θψ nURn sin= =const.=streamlines 
θφ nURn cos= =const.=equipotentials 

 
1 1 ( 1) 1 1( cos sin )

( )

n n i n n n i

i
r

dw dW d nUz nUR e nUR n inUR n e
dz d dz

u iu e

θ θ

θ
θ

ς θ θ
ς

− − − − − −

−

= = = = +

= −
 

θ

θ

θ nnURu
nnURu

n

n
r

sin

cos
1

1

−

−

−=

=
 

 
( )n20 πθ <<  0>ru , 0<θu  

( ) ( )nn
πθπ <<2  0<ru , 0<θu  

i.e. nUzzw =)(  
 
represents corner flow: n=1uniform stream, n=290° corner 
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8.6 Introduction to Surface Singularity methods 
(also known as Boundary Integral and Panels Methods) 
 
Next, we consider the solution of the potential flow problem for an arbitrary geometry. 
Consider the BVP for a body of arbitrary geometry fixed in a uniform stream of an inviscid, 
incompressible, and irrotational fluid. 
 

 
 
The surface singularity method is founded on the symmetric form of Greens theorem and 
what is known as Greens function. 
 

( )2 2

B SV S S S S

GG G dV G dS
n n

∞= + +

∂Φ ∂ ∇ Φ − Φ∇ = − Φ ∂ ∂ ∑
∫ ∫    (1) 

 
where Φ and G are any two scalar field in V (control volume bounded by s infinity S body 
and S inserted to render the domain simply connected) and for our application. 
Φ= velocity potential 
G= Green’s function 
 
Say,  

)( 0
2 xxG −−=∇ δ  in V+V’ (i.e. entire domain) where δ is the Dirac delta function. 

G0 on S∞  
 
Solution for G (obtained Fourier Transforms) is: rG ln= , 0xxr −= , i.e. elementary 2-

D source at 0xx = of unit strength, and (1) becomes 
 

∫
∑









∂
∂

Φ−
∂
Φ∂

=Φ
= BSS

dS
n
G

n
G  
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First term in integrand represents source distribution and second term dipole distribution, 
which can be transformed to vortex distribution using integration by parts. By extending 
the definition of Φ into V’ it can be shown that Φ can be represented by distributions of 
sources, dipoles or vortices, i.e. 
 

∫
∑

=Φ
= BSS

GdSσ : source distribution, σ : source strength 

or 

∫
∑ ∂

∂
=Φ

= BSS

dS
n
Gλ : dipole distribution, λ : dipole strength 

 
Also, it can be shown that a source distribution representation can only be used to represent 
the flow for a non-lifting body; that is, for lifting flow dipole or vortex distributions must 
be used. 
 
As this stage, let’s consider the solution of the flow about a non-lifting body of arbitrary 
geometry fixed in a uniform stream. Note that since G0 on S∞ Φ already satisfy the 
condition S∞. The remaining condition, i.e. the condition is a stream surface is used to 
determine the source distribution strength. 
 
Consider a source distribution method for representing non-lifting flow around a body of 
arbitrary geometry. 
 

 
 
V U φ∞= + ∇ : total velocity 
 

∞U : uniform stream, φ∇ : perturbation potential due to presence of body 
 )ˆsinˆ(cos jiUU αα += ∞∞ : note that for non-lifting flow Γ must be zero (i.e. for a 

symmetric foil 0=α or for cambered filed oLiftα α= ) 

ln
2

BS

K rdsφ
π

= ∫ : source distribution on body surface 
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Now, K is determined from the body boundary condition. 

0=⋅ nV  i.e. 0U n nφ∞ ⋅ + ∇ ⋅ =  or U n
n
φ

∞
∂

= − ⋅
∂

 

i.e. normal velocity induced by sources must cancel uniform stream

nUrdsK
n

BS

⋅−=
∂
∂

∞∫ ln
2π

 

This singular integral equation for K is solved by descretizing the surface into a number of 
panels over which K is assumed constant, i.e. we write 
 

 no. of panels

1
ln

2

M

ij i iSi
ji

Kj r dS U n
n π

=

∞
=

∂
= − ⋅

∂ ∑ ∫ , i=1,M, j=1,M 

 

where  ( ) ( )22
jijiij zzxxr −+−= =distance from ith panel control point to jr = position 

vector along jth panel. 
 
Note that the integral equation is singular since 

i

ij

ij
ij

i n
r

r
r

n ∂

∂
=

∂
∂ 1ln  

at for 0=ijr this integral blows up; that is, when i=j and we trying to determine the 
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Consider the ith panel 

 
jiS iii
ˆsinˆcos δδ += , jijSn iiii

ˆcosˆsinˆ δδ +−=×=  

ixin δsin−= , izin δcos=  
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⋅−=
∂
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∞∫ ln
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ijj SSrr += 0 , :0jr origin of jth panel coordinate system, iSS : distance along jth panel 
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: Matrix equation for Ki and can be solved using Standard methods 

such as Gauss-Siedel Iteration. 
In order to evaluate Ij, we make the substitution 
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Therefore, we can write the integral equation in the form 
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which can be solved by standard techniques for linear systems of equations with Gauss-
Siedel Iteration. 
 
Once Ki is known,  
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