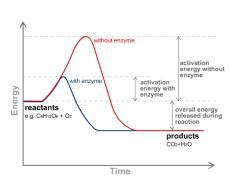
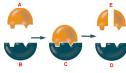
Cells get and use energy as well as materials needed to drive thousands of important cellular reactions on a daily basis.

F	Section 8.1 ®
1.	Define metabolism
2.	What is a metabolic pathway?
3.	Compare catabolic pathways to anabolic pathways. Give an example of both. a.
	b.
4.	The study of energy flow through living organisms is called?
5.	Energy is the capacity to cause change. Explain the difference between the following different energy types; kinetic, thermal, potential, and chemical energy.
	a.
	b.
	c.
	d.
6. 7·	How does heat and light fit into a discussion of energy?


8. Discuss the different forms of energy found in an apple as it is being consumed by a human. Start with the plant and end in the digestive system of the human.

9.	Explain the 1 st and 2 nd Law of thermodynamics.
	ı st Law:
	2 nd Law:
10.	Define entropy.
F	Section 8.2®
11.	Energy conservation is not 100% effective, what is a good example of this idea?
12.	Compare exergonic reactions to endergonic reactions in regards to free energy. a.
	b.
13.	What does it mean if a system reaches equilibrium?
14.	Why is equilibrium a hard goal to reach in living systems?
15.	Organisms are considered open energy systems, describe what this means.
P	Section 8.3 ®
16.	Cells can be involved in three kind of work; explain each of the three.
	a.
	b.
	c.


17. ATP is the molecule responsible for most of the energy transfer within living things. Label the three parts of the ATP molecule. (**Phosphate groups**, **Ribose group**, **Adenine group**)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & &$$

- 18. Explain the importance of the phosphate groups of ATP.
- 19. Describe how ATP is a "renewable" molecule.
- 20. Cellular respiration uses glucose and oxygen to transfer the energy to ATP. Discuss if this is an exergonic or endergonic reaction.
- 21. If a molecule is phosphorylated, a phosphate group is added. (Example: ADP + $P_i \longrightarrow ATP$) Discuss if this is an endergonic or exergonic reaction.
- ☞ Section 8.4 ☜
- 22. What is an enzyme?
- 23. Explain activation energy.
- 24. How specific are enzymes?

25. Label the enzyme model with the following: (Substrate, Enzyme substrate complex, Active site, Product and Enzyme.)

	B C D
26.	Do enzymes emerge after a reaction in their original form? How can this be helpful?
27.	What are two conditions that can influence enzyme reactions? a. b.
28.	Describe cofactors and coenzymes.
	a.
	b.
29.	Compare competitive inhibitors with non-competitive inhibitors.
	a.
	b.
30.	Using a series of arrows draw the branched metabolic reaction pathways that result from the
	following statements: • L can form either M or N
	• M can form O
	• O can form either P or R
	• P can form Q
	• R can form S

- **O** inhibits the reaction of **L** to **M**
- **Q** inhibits the reaction of **O** to **P**
- **S** inhibits the reaction of **O** to **R**

Explain the reactions which would prevail if both \boldsymbol{Q} and \boldsymbol{S} were present in the cell at high concentrations.

☞ Section 8.5 ☜

31. Explain allosteric regulation and the two ways that it can work.

32. Explain feedback inhibition and give an example.

Test Bank Questions: goo.gl/CUYGKD

 $\textbf{Vocabulary Self Quiz}: \underline{goo.gl/6u55ks}$

Take the Enzyme Quiz at: http://www.sciencegeek.net/Biology/review/U2Enzymes.htm