CHAPTER 8
Laplace Transforms

IN THIS CHAPTER we study the method of Laplace transforms, which illustrates one of the basic prob-
lem solving techniques in mathematics: transform a difficult problem into an easier one, solve the lat-
ter, and then use its solution to obtain a solution of the original problem. The method discussed here
transforms an initial value problem for a constant coefficient equation into an algebraic equation whose
solution can then be used to solve the initial value problem. In some cases this method is merely an
alternative procedure for solving problems that can be solved equally well by methods that we considered
previously; however, in other cases the method of Laplace transforms is more efficient than the methods
previously discussed. This is especially true in physical problems dealing with discontinuous forcing
functions.

SECTION 8.1 defines the Laplace transform and developes its properties.
SECTION 8.2 deals with the problem of finding a function that has a given Laplace transform.

SECTION 8.3 applies the Laplace transform to solve initial value problems for constant coefficient second
order differential equations on (0, co).

SECTION 8.4 introduces the unit step function.

SECTION 8.5 uses the unit step function to solve constant coefficient equations with piecewise continu-
ous forcing functions.

SECTION 8.6 deals with the convolution theorem, an important theoretical property of the Laplace trans-
form.

SECTION 8.7 introduces the idea of impulsive force, and treats constant coefficient equations with im-
pulsive forcing functions.

SECTION 8.8 is a brief table of Laplace transforms.

393



394 Chapter 8 Laplace Transforms
8.1 INTRODUCTION TO THE LAPLACE TRANSFORM

Definition of the Laplace Transform

To define the Laplace transform, we first recall the definition of an improper integral. If g is integrable
over the interval [a, T] forevery T > a, then the improper integral of g over [a, c0) is defined as

00 T
/ g(t)dtleim/ g(t)dr. (8.1.1)

We say that the improper integral converges if the limit in (8.1.1) exists; otherwise, we say that the
improper integral diverges or does not exist. Here’s the definition of the Laplace transform of a function

f.

Definition 8.1.1 Let f be defined for 7 > 0 and let s be a real number. Then the Laplace transform of f
is the function F' defined by

o0
F(s) = / e f(t)dt, (8.1.2)
0
for those values of s for which the improper integral converges.

It is important to keep in mind that the variable of integration in (8.1.2) is ¢, while s is a parameter in-
dependent of . We use ¢ as the independent variable for f because in applications the Laplace transform
is usually applied to functions of time.

The Laplace transform can be viewed as an operator L that transforms the function f = f(¢) into the
function F = F(s). Thus, (8.1.2) can be expressed as

F=L(f)

The functions f and F form a transform pair, which we’ll sometimes denote by

f(t) < F(s).
It can be shown that if F(s) is defined for s = s¢ then it’s defined for all s > s¢ (Exercise 14(b)).

Computation of Some Simple Laplace Transforms
Example 8.1.1 Find the Laplace transform of f(z) = 1.
Solution From (8.1.2) with f(¢) =1,

oo T
F(s) = / e *'dt = lim e dt.
0

T—o00 0
If s # 0 then
T —sT
1 T 1—
/ eStdr=— et =T (8.13)
0 N 0 N
Therefore

T 1 0
lim eStdr=1 o 570 (8.1.4)
T—oco Jo 0o, §<0.
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If s = O the integrand reduces to the constant 1, and

T T
lim 1dt = lim 1dt = lim T = oo.

T—o0 Jo T—o0 Jo T —o00
Therefore F(0) is undefined, and
o 1
F(s)z/ e Sldt =, s>0.
0 N

This result can be written in operator notation as
1
L(l)= , s>0,
s

or as the transform pair
1
1< , s5s>0.
s
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REMARK: Itis convenient to combine the steps of integrating from O to 7" and letting 7 — oo. Therefore,

instead of writing (8.1.3) and (8.1.4) as separate steps we write

oo*l 17[00
/ e ldt =— ¢7°
0 S

1

- , §5>0,
=19 s

0 g 0o, §<0.

Example 8.1.2 Find the Laplace transform of f(z) = ¢.

We’ll follow this practice throughout this chapter.

Solution From (8.1.2) with f(¢) =1,

F(s):/ e 't dt.
0

If s # 0, integrating by parts yields

o0 te SH|® 1 [ t 1 o
/ eStrdt = — —+ / e_”dt:—[ —+ z}e_”
0 N 0 S Jo N N 0

1

, §5>0,
_ §

0o, s < 0.

If s = 0, the integral in (8.1.5) becomes
00 12
/ tdt =
0 2

1
F(s) = 5 s > 0.
S

0
Therefore F(0) is undefined and

This result can also be written as |
L(t) = , $>0,
s

or as the transform pair

(8.1.5)
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Example 8.1.3 Find the Laplace transform of f(t) = e?’, where a is a constant.

Solution From (8.1.2) with f () = %,

F(s) =/ e e di.
0

Combining the exponentials yields

F(s) =/ e~ gy,
0

However, we know from Example 8.1.1 that

*© 1
/ eStdt =", s>0.
0 N

Replacing s by s — a here shows that

This can also be written as

1 1
L(e%) = ., s>a, or €Y <

., s>a.
s—a s—a

Example 8.1.4 Find the Laplace transforms of f(¢) = sinwt and g(t) = coswt, where w is a constant.

Solution Define

o0
F(s) = / e Stsinwt dt (8.1.6)
0
and -
G(s) = / e " coswt dt. (8.1.7)
0
If s > 0, integrating (8.1.6) by parts yields
—st 00 00
F(s) = _¢ sina)t‘ +¢ / e coswt dt,
N 0 S Jo
o)
1)
F(s) = s G(s). (8.1.8)

If s > 0, integrating (8.1.7) by parts yields
e Slcoswt (o w [
G(s) = — ‘ — / e *'sinwt dt,
N 0 S Jo
SO |
w
G(s)= — F().
s s
Now substitute from (8.1.8) into this to obtain

1 2
G = - ‘;)2 G(s).
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Solving this for G(s) yields
s

G(s) = 2 402 s> 0.
This and (8.1.8) imply that
1)
F(s) = 2+ s > 0.

Tables of Laplace transforms

Extensive tables of Laplace transforms have been compiled and are commonly used in applications. The
brief table of Laplace transforms in the Appendix will be adequate for our purposes.

Example 8.1.5 Use the table of Laplace transforms to find L(3e%?).

Solution The table includes the transform pair

n!

tn at
(S _a)n+1

e <>

Setting n = 3 and a = 4 here yields

3! 6

3 4ty __ —
Lee™) = (s —4*  (s—4*

We’ll sometimes write Laplace transforms of specific functions without explicitly stating how they are
obtained. In such cases you should refer to the table of Laplace transforms.

Linearity of the Laplace Transform

The next theorem presents an important property of the Laplace transform.

Theorem 8.1.2 [Linearity Property| Suppose L(f;) is defined for s > s;, 1 < i < n). Let s¢ be the
largest of the numbers s1, Sa, ...,Sy, and let ¢1, C2,..., ¢y be constants. Then

Lcifi+tcafo+---+cnfn) =ciL(fi) +c2L(f2) + -+ cnL(fn) fors > so.

Proof We give the proof for the case where n = 2. If s > s¢ then
o0
Licifi+cafa) = / e (e1 fit) + e2f2(1))) dt
0

= Cl/(; e_Stfl(l) dt +C2/(; e_Stfz(l) dt
= c1L(f1) + c2L(f2).

Example 8.1.6 Use Theorem 8.1.2 and the known Laplace transform

1
L(eat) —
S —a

to find L(cosh bt) (b # 0).



398 Chapter 8 Laplace Transforms

Solution By definition,

Therefore
L(coshbt)

1 1
L bt —bt
(26‘ + 26‘
1
2

= ;L(eb’ )+ _ L™ (linearity property) (8.1.9)
1 1 1 1

2s5—b * 2s5+b’

where the first transform on the right is defined for s > b and the second for s > —b; hence, both are
defined for s > |b|. Simplifying the last expression in (8.1.9) yields

L(coshbt) = s > |b|.

N
S2_b2’

The First Shifting Theorem

The next theorem enables us to start with known transform pairs and derive others. (For other results of
this kind, see Exercises 6 and 13.)

Theorem 8.1.3 [First Shifting Theorem] If
F(s) = / e f(t)dt (8.1.10)
0

is the Laplace transform of f(t) for s > so, then F(s — a) is the Laplace transform of e®' f(t) for
s > S0 + a.

PROOF. Replacing s by s — a in (8.1.10) yields
o0
F(s—a) = / e~ £ () dt (8.1.11)
0

if s —a > so; thatis, if s > 59 + a. However, (8.1.11) can be rewritten as

o0
F(s—a) = / e (e f(1)) dt,
0
which implies the conclusion.

Example 8.1.7 Use Theorem 8.1.3 and the known Laplace transforms of 1, ¢, cos wt, and sin wt to find

L(e%), L(te*), L(e* sinwr),and L(e* coswt).

Solution In the following table the known transform pairs are listed on the left and the required transform
pairs listed on the right are obtained by applying Theorem 8.1.3.
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£ty < F(s) e% f(1) < F(s —a)
1 1
l< , s>0 at o , Ss>a
s (s —a)
1 ) 1
t< _, s>0 te? « , S>ua
52 (s —a)?
1)
sinwt < ., s>0 eMsinwr < L8> A
52 4 w? (s —1)? 4+ w?
s—A
coswt < , s>0 eMsinwt < L8> A
52 + w? (s —A)? + w2
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Existence of Laplace Transforms

Not every function has a Laplace transform. For example, it can be shown (Exercise 3) that

o0
/o
. 2
for every real number s. Hence, the function f(z) = ¢’ does not have a Laplace transform.
Our next objective is to establish conditions that ensure the existence of the Laplace transform of a

function. We first review some relevant definitions from calculus.
Recall that a limit

_ 2
e e dt = o0

lim f(z)

=10

exists if and only if the one-sided limits

lim ()

d li
t—to— an ,Jf(?Jr 1@

both exist and are equal; in this case,

lim f() = lim f(t) =  Jm S@).

=10

Recall also that £ is continuous at a point #y in an open interval (a, b) if and only if
lim f(r) = f(t0),
=10

which is equivalent to
lim
t—>to+

f@y = lim f@) = f(). (8.1.12)

For simplicity, we define

o) = Jim f() and  flo-) = Tm f().

s0 (8.1.12) can be expressed as
flto+) = fto—) = f(t0).

If f(to+) and f(fo—) have finite but distinct values, we say that f has a jump discontinuity at ty, and

Sf(to+) — fto—)
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\J
>

Figure 8.1.1 A jump discontinuity

is called the jump in f at ty (Figure 8.1.1).

If f(to+) and f(to—) are finite and equal, but either f isn’t defined at 7o or it’s defined but
f(o) # fto+) = f(t0-),

we say that f has a removable discontinuity at to (Figure 8.1.2). This terminolgy is appropriate since a
function f with a removable discontinuity at #y can be made continuous at ¢y by defining (or redefining)

f(to) = f(to+) = f(to—).

REMARK: We know from calculus that a definite integral isn’t affected by changing the values of its
integrand at isolated points. Therefore, redefining a function f to make it continuous at removable
discontinuities does not change L( f).

Definition 8.1.4
(i) A function f is said to be piecewise continuous on a finite closed interval [0, T'] if f(0+) and
f(T—) are finite and f is continuous on the open interval (0, T") except possibly at finitely many
points, where f may have jump discontinuities or removable discontinuities.

(ii) A function f is said to be piecewise continuous on the infinite interval [0, co) if it’s piecewise
continuous on [0, 7] for every T > 0.

Figure 8.1.3 shows the graph of a typical piecewise continuous function.
It is shown in calculus that if a function is piecewise continuous on a finite closed interval then it’s
integrable on that interval. But if f is piecewise continuous on [0, 00), then so is e —5* f(¢), and therefore

T
/ e St f(t)dt
0
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Figure 8.1.3 A piecewise continuous function on
Figure 8.1.2 la, b]

exists forevery 7' > 0. However, piecewise continuity alone does not guarantee that the improper integral

00 T
/ e f(t)dt = lim / e S f(t)dt (8.1.13)
0 T—>00 0

converges for s in some interval (so, c0). For example, we noted earlier that (8.1.13) diverges for all s
if f(t) = e, Stated informally, this occurs because e’ increases too rapidly as ¢t — oo. The next
definition provides a constraint on the growth of a function that guarantees convergence of its Laplace
transform for s in some interval (sq, 00) .

Definition 8.1.5 A function f is said to be of exponential order sy if there are constants M and 7y such
that
|f()] < Me®™' 1> 1. (8.1.14)

In situations where the specific value of s is irrelevant we say simply that f is of exponential order.

The next theorem gives useful sufficient conditions for a function f to have a Laplace transform. The
proof is sketched in Exercise 10.

Theorem 8.1.6 If f is piecewise continuous on [0, 00) and of exponential order so, then L(f) is defined
fors > sp.

REMARK: We emphasize that the conditions of Theorem 8.1.6 are sufficient, but not necessary, for f to
have a Laplace transform. For example, Exercise 14(c) shows that f may have a Laplace transform even
though f isn’t of exponential order.

Example 8.1.8 If f is bounded on some interval [zy, 00), say
fOl =M. =10,

then (8.1.14) holds with 5o = 0, so f is of exponential order zero. Thus, for example, sin wt and cos wt
are of exponential order zero, and Theorem 8.1.6 implies that L(sinw?) and L(cos wt) exist for s > 0.
This is consistent with the conclusion of Example 8.1.4.
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Example 8.1.9 It can be shown that if lim,_,o, e 50’ f(¢) exists and is finite then f is of exponential
order so (Exercise 9). If « is any real number and 5o > 0 then f(¢) = ¢“ is of exponential order s, since

lim e %0"t* = 0,
—>00

by L'Hopital’s rule. If @ > 0, f is also continuous on [0, 00). Therefore Exercise 9 and Theorem 8.1.6
imply that L(¢%) exists for s > s9. However, since s¢ is an arbitrary positive number, this really implies
that L(z%) exists for all s > 0. This is consistent with the results of Example 8.1.2 and Exercises 6 and 8.

Example 8.1.10 Find the Laplace transform of the piecewise continuous function

1, 0<rt<l,
et t>1.

ro={

Solution Since f is defined by different formulas on [0, 1) and [1, c0), we write

00 1 00
F(s)z/o e f(t)dt /0 e s(l)dt+/1 e 1 (=3e ") dt.

Since . .
—e
[ewa=] 7 a0
0 1, s =0,
and (4 1)
o0 o0 3 —(s
/ e SN (=3e ) dt = —3/ e gy = ¢ .5 > —1,
1 1 s+ 1
it follows that (4 1)
1—e™* e
-3 , os>—1,5#0,
F(s) = s s3+ 1
1— , s=0.
e

This is consistent with Theorem 8.1.6, since
|f(O] <37, 1>1,

and therefore f is of exponential order 5o = —1.
REMARK: In Section 8.4 we’ll develop a more efficient method for finding Laplace transforms of piece-
wise continuous functions.

Example 8.1.11 We stated earlier that

o0 2
/ e St dt = o0
0

for all s, so Theorem 8.1.6 implies that f(z) = e’ ? is not of exponential order, since
12

. . 1
lim = lim e
t—o00 M esot t—00

2
t=—sot
0 = o0,

S0 ,
e’ > Me%o!

for sufficiently large values of 7, for any choice of M and so (Exercise 3).
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8.1 Exercises

Find the Laplace transforms of the following functions by evaluating the integral F(s) = |, Ooo e St f(t)dr.

(a) 1
(d) €% — 3e!

(b) te™?
(e) t2

(¢) sinh bt

Use the table of Laplace transforms to find the Laplace transforms of the following functions.

() cos? 2t
(f) sint cost

(a) cosht sint
(d) cosh? ¢

(g) sin (t + Z)

Show that

(b) sin? ¢

(e) ¢ sinh 2¢
(h) cos 2t — cos 3t

for every real number s.

(i) sin2t + cos 4t

o0 2
/ e te dt = 00
0

Graph the following piecewise continuous functions and evaluate f(t+), f(t—), and f(¢) at each

point of discontinuity.

—t,

(@ f@)=41—4,
L,
sint,

(¢) f(t) =1 2sint,
coSt,

0<t<2,
2 <t <3,
t > 3.

0<t<mn/2,
/2 <t <m,
t =

Find the Laplace transform:

et 0<t<l,
@so=| S 75
CHCE

242, 0<t<l,
(b) f@t) = 4, t=1,
t, t>1.
1, 0<t<l,
2, t =1,
d fe)=3 2—t, 1<t<2,
3, t=2,
6, t>2.
1, 0<t<4,
o ro={ 72
tel, 0<t<1,
@so={ e 2]

Prove that if f(t) <> F(s) then t* f(t) < (—1)k F®)(s). HINT: Assume that it’s permissible to
differentiate the integral fooo eS" f(t) dt with respect to s under the integral sign.

Use the known Laplace transforms

L(e* sinwt) =

w

(s —21)? + w?

and L(e* coswt) =

s—A
(s —2)? + w?

and the result of Exercise 6 to find L(te** cos wt) and L(te sinwt).

Use the known Laplace transform L (1) = 1/s and the result of Exercise 6 to show that

L") =

s”+1 5 n = 1nteger.

(a) Show that if lim; o e 507 f(¢) exists and is finite then f is of exponential order s.
(b) Show thatif f is of exponential order sq then lim, .o ¢ ~* f(1) = 0 for all s > so.
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13.

14.

15.
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Chapter 8 Laplace Transforms

(¢c) Show that if f is of exponential order 5o and g(t) = f(t + t) where t > 0, then g is also
of exponential order sg.

Recall the next theorem from calculus.

THEOREM A. Let g be integrable on [0, T] for every T > 0. Suppose there’s a function w defined
on some interval [t, 00) (witht > 0) such that |g(t)| < w(t) fort > t and froo w(t) dt converges.
Then fooo g(t) dt converges.

Use Theorem A to show that if f is piecewise continuous on [0, co) and of exponential order sq,
then f has a Laplace transform F(s) defined for s > s¢.

Prove: If f is piecewise continuous and of exponential order then lims—, o F(s) = 0.

Prove: If f is continuous on [0, co) and of exponential order s¢o > 0, then

L(/(;tf(z')dt) = iL(f), s > Sp.

HINT: Use integration by parts to evaluate the transform on the left.

Suppose f is piecewise continuous and of exponential order, and that lim;—o4 f(¢)/t exists.

Show that -
L(fft)) :/S F(r)dr.

HINT: Use the results of Exercises 6 and 11.
Suppose [ is piecewise continuous on [0, 00).

(a) Prove: If the integral g(r) = f(; e 50T f(1) dt satisfies the inequality |g(t)] < M (¢t > 0),
then f has a Laplace transform F(s) defined for s > so. HINT: Use integration by parts to
show that

T T
/ e () dt = e T g(T) 4 (s — so)/ e~ o (1) d1.
0 0
(b) Show thatif L(f) exists for s = sq then it exists for s > s¢. Show that the function

f@) = te’’ cos(e’z)

has a Laplace transform defined for s > 0, even though f isn’t of exponential order.
(¢) Show that the function
2 2
f(t) =te" cos(e")
has a Laplace transform defined for s > 0, even though f isn’t of exponential order.

Use the table of Laplace transforms and the result of Exercise 13 to find the Laplace transforms of
the following functions.

sin wt coswt — 1 edt — bt
(a) , (0 >0) (b) , (w0 >0) (c)

cosht — 1 sinh? ¢
(d) ; (e) ;

The gamma function is defined by

F(oc):/ x¥ e ™ dx,
0

which can be shown to converge if o > 0.
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(a) Use integration by parts to show that
MNa+1)=al(x), o>0.

(b) ShowthatT'(n + 1) =n!ifn=1,2,3,....
(¢) From (b) and the table of Laplace transforms,

Mo +1)

L(ta) = gat+l 7

s >0,

if o is a nonnegative integer. Show that this formula is valid for any o > —1. HINT: Change
the variable of integration in the integral for I' (o« + 1).

Suppose f is continuouson [0, 7] and f(t + T) = f(¢) forall > 0. (We say in this case that f
is periodic with period T .)

(a) Conclude from Theorem 8.1.6 that the Laplace transform of f is defined for s > 0. HINT:
Since f is continuous on [0, T| and periodic with period T, it’s bounded on [0, 00).
(b) (b) Show that

1 T
F(s) = | pmsT /O e ft)dt, s>0.

HINT: Write

0 (n+1)T J
a = st .
(s) go / oY

Then show that
(n+1)T T
/ et f(t)dt = e™™T / e S f(r)dt,
nT 0

and recall the formula for the sum of a geometric series.

Use the formula given in Exercise 17(b) to find the Laplace transforms of the given periodic
functions:

(a) f(z>={ NS [+ =f@), 120
1
CIVCES B S fE+D =10, 120

(¢) f(r) = |sint]

sint, 0<t<m,

@ fo={ %" VI S =10

8.2 THE INVERSE LAPLACE TRANSFORM

Definition of the Inverse Laplace Transform

In Section 8.1 we defined the Laplace transform of f by

F(s) = L(f) = /O T e o) de.

We’ll also say that f is an inverse Laplace Transform of F, and write

f=L"YF).
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To solve differential equations with the Laplace transform, we must be able to obtain f from its transform
F. There’s a formula for doing this, but we can’t use it because it requires the theory of functions of a
complex variable. Fortunately, we can use the table of Laplace transforms to find inverse transforms that
we’ll need.

Example 8.2.1 Use the table of Laplace transforms to find

-1 1 -1 §
(a) L (s2—1) and  (b) L (S2+9).

SOLUTION(a) Setting b = 1 in the transform pair

sinh bt <> 2

shows that

SOLUTION(b) Setting @ = 3 in the transform pair

cosSwit <>
52 + w?

L7t ( Zj_ 9) = cos 3t.
s

The next theorem enables us to find inverse transforms of linear combinations of transforms in the
table. We omit the proof.

shows that

Theorem 8.2.1 [Linearity Property]| If Fi, F», ..., F, are Laplace transforms and cy, c3, ..., ¢, are
constants, then

L7 Yc1F1+ c2Fa 4+ 4 cuFn) = 1LY (F1) + oL (F2) + -+ + ey L' Fy.

8 7
L™t + .
(s+5 s2+3)

Solution From the table of Laplace transforms in Section 8.8,,
1

<~ and sinwt < 5 -
s—a s+ w

Theorem 8.2.1 witha = —5 and @ = +/3 yields
8 7 1 1
Lt 8L™! 7L7!
(s+5+s2+3) (s+5)+ s2+3
1 7 V3
= 8L7! L™t
(s+5)+¢3 (s2+3)

7
= 86_5'+\/3sin«/3t.

Example 8.2.2 Find

eat
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11 35 +8
s24+2s+5)°

Solution Completing the square in the denominator yields

Example 8.2.3 Find

35+8 3548
2425 4+5  (s+1)24+4

Because of the form of the denominator, we consider the transform pairs

1
etcos2t < * and e 'sin2t < ,
(s+1)*+4 (s+1)2+4
and write
11 35 + 8 _ gt 3543 4 5
(s+12+4) (s+1)2+4 (s+1)2+4

s+1 5 2
3171 L7t
((s+1)2+4)+2 ((s+1)2+4)

5
= e '(3cos2t + 5 sin21).

REMARK: We’ll often write inverse Laplace transforms of specific functions without explicitly stating
how they are obtained. In such cases you should refer to the table of Laplace transforms in Section 8.8.

Inverse Laplace Transforms of Rational Functions

Using the Laplace transform to solve differential equations often requires finding the inverse transform
of a rational function
_ PO

0(s)’
where P and Q are polynomials in s with no common factors. Since it can be shown that lims—,oc F(s) =
0 if F is a Laplace transform, we need only consider the case where degree(P) < degree(Q). To obtain
L™Y(F), we find the partial fraction expansion of F, obtain inverse transforms of the individual terms in
the expansion from the table of Laplace transforms, and use the linearity property of the inverse transform.
The next two examples illustrate this.

F(s)

Example 8.2.4 Find the inverse Laplace transform of

35+ 2
F(s) = . 8.2.1
() §2—35+42 ( )
Solution (METHOD 1) Factoring the denominator in (8.2.1) yields
35+ 2
F(s) = . 822
)= o — -2 (89
The form for the partial fraction expansion is
3s+2 A B
S + . (8.2.3)

(s—1(s—2) Ts—1 T s-2
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Multiplying this by (s — 1)(s — 2) yields
3s+2=(—-2)A+ (s—1)B.
Setting s = 2 yields B = 8 and setting s = 1 yields A = —5. Therefore

5 8
F(s) = —
() s—1+s—2

and

1 1
L—%F)==—5L—1(S_1)-+8L—1(S_z):=-5e’+8e”.

Solution (METHOD 2) We don’t really have to multiply (8.2.3) by (s — 1)(s — 2) to compute 4 and B.
We can obtain A by simply ignoring the factor s — 1 in the denominator of (8.2.2) and setting s = 1
elsewhere; thus,

_ 3s+2
os=2

Similarly, we can obtain B by ignoring the factor s — 2 in the denominator of (8.2.2) and setting s = 2
elsewhere; thus,

3142
=" =

A

_5. (8.2.4)

s=1

3s+2 3:-242
p="" =TT oy (8.2.5)
s—=1 |4=p 2—-1
To justify this, we observe that multiplying (8.2.3) by s — 1 yields
35+ 2 B
=A -1 ,
s =2 +G )s -2

and setting s = 1 leads to (8.2.4). Similarly, multiplying (8.2.3) by s — 2 yields
A
=(s—2) + B
s =2

and setting s = 2 leads to (8.2.5). (It isn’t necesary to write the last two equations. We wrote them only
to justify the shortcut procedure indicated in (8.2.4) and (8.2.5).)

The shortcut employed in the second solution of Example 8.2.4 is Heaviside’s method. The next theo-
rem states this method formally. For a proof and an extension of this theorem, see Exercise 10.

Theorem 8.2.2 Suppose

P(s
F(s) = () , (8.2.6)
(s—s1)(s—52)---(5s — )
where $1, S2, ..., Sy are distinct and P is a polynomial of degree less than n. Then
A A A
Fs)= "' + 22 4.4 O
s—S81  S—5» S — Sp

where A; can be computed from (8.2.6) by ignoring the factor s — s; and setting s = s; elsewhere.

Example 8.2.5 Find the inverse Laplace transform of

6+ (s +1)(s*— 554 11)

Feo) = s(s—=D(E—=2)(s+1) (8.2.7)
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Solution The partial fraction expansion of (8.2.7) is of the form

A B C D
+

F(s) = . 8.2.8
(s) s+s—1 s—2+s+1 ( )

To find A, we ignore the factor s in the denominator of (8.2.7) and set s = 0 elsewhere. This yields

64+ (1) 17
S =DE)@M) 2

Similarly, the other coefficients are given by

6+ (2)(7)
= = —10,
(D(=DH(2)
64305 7
€= 2(Hh3) 2’
and 6
D= e T
Therefore 71 10 o |
PO = w1 Tas—2 st
and

1 1 1 1 1
L™Y(F) T — 1oLt + = —L7!
2 s s—1 2 s—2 s+ 1

17 7
5, 10e? + 262’ —e !,

REMARK: We didn’t “multiply out” the numerator in (8.2.7) before computing the coefficients in (8.2.8),
since it wouldn’t simplify the computations.

Example 8.2.6 Find the inverse Laplace transform of

88— (s +2)(4s + 10)

F(s) = 8.2.9
) (s + D)(s +2)? ( )
Solution The form for the partial fraction expansion is
A B C
F(s) = (8.2.10)

-+ + :
s+l s+2  (s+2)?

Because of the repeated factor (s + 2)? in (8.2.9), Heaviside’s method doesn’t work. Instead, we find a
common denominator in (8.2.10). This yields

A +22+BGs+D(s+2)+Cs+1)

Fls) = (s + 1)(s +2)2

(8.2.11)

If (8.2.9) and (8.2.11) are to be equivalent, then

A +22 4+ B(s+ 1D(s+2)+C(s+ 1) =8 — (s + 2)(4s + 10). (8.2.12)
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The two sides of this equation are polynomials of degree two. From a theorem of algebra, they will be
equal for all s if they are equal for any three distinct values of 5. We may determine A, B and C by
choosing convenient values of s.

The left side of (8.2.12) suggests that we take s = —2 to obtain C = —8, and s = —1 to obtain A = 2.
We can now choose any third value of s to determine B. Taking s = 0 yields 44 + 2B + C = —12.
Since A = 2 and C = —8 this implies that B = —6. Therefore

2 6 8
s+l s+2 0 (s+2)2

-1 _ -1 1 71 1 ey -1 1
L=\ = 2 (s+l) oL (s+2) 8L ((s+2)2)

= 2e¢t—6e? —8re .

F(s)

and

Example 8.2.7 Find the inverse Laplace transform of

§s2—55+7

Fis) = (s +2)3

Solution The form for the partial fraction expansion is

A B C

F(S):s+2+(s+2)2+(s+2)3‘

The easiest way to obtain A, B, and C is to expand the numerator in powers of s + 2. This yields

s2—55+T7=[s4+2)—2>=5[(s+2)—2]+7= (s +2)>—9(s +2) + 21.

Therefore
(s +2)2 -9 +2)+21
F =
() (s +2)3
B 1 9 n 21
Cos+2 (542?20 (s+2)3
and

. AN U 1 21, 2
Lm# =1 (s+2) oL ((s+2)2)+2L ((s+2)3)

21
e (1 -9 + 5 IZ).

Example 8.2.8 Find the inverse Laplace transform of

_1=s(5+3s)
F(s) = S+ D2+ 1] (8.2.13)
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Solution One form for the partial fraction expansion of F is

A Bs+C
F(s)= + o

AL PRAPVE (8.2.14)

However, we see from the table of Laplace transforms that the inverse transform of the second fraction
on the right of (8.2.14) will be a linear combination of the inverse transforms

e 'cost and e 'sint

of
s+ 1 1

d
s+ 1D2+1 o (s+1)2+1

respectively. Therefore, instead of (8.2.14) we write

A Bs+DA+C
Fs) ="+ PUNTIRE (8.2.15)

Finding a common denominator yields

AlGs+ 1>+ 1]+ B(s+ 1)s + Cs
sls+ D2 +1]

If (8.2.13) and (8.2.16) are to be equivalent, then

F(s) = (8.2.16)

A[(s+1D*+ 1]+ B(s + )s + Cs = 1 — (5 + 3s).

This is true for all s if it’s true for three distinct values of s. Choosing s = 0, —1, and 1 yields the system

24 = 1
A-C =
54+2B+C = -1
Solving this system yields
1
A = s B = —7’ C = —5
2 2 2
Hence, from (8.2.15),
7 1 5 1
F(s)=_ — ST — .
2s 2 (+1D%2+1 2(+D2+1
Therefore
1 1 7 1 5 1
' Fy = o ()20t _ 7
2 s 2 s+D2+1 2 s+D2+1
1 s S ;.
= — e 'cost— _e 'sint.
2 2 2

Example 8.2.9 Find the inverse Laplace transform of

8+ 3s

FO= @i ne2+4

(8.2.17)
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Solution The form for the partial fraction expansion is

A+Bs+C+Ds
Cos2+41 s2+4

The coefficients A, B, C and D can be obtained by finding a common denominator and equating the
resulting numerator to the numerator in (8.2.17). However, since there’s no first power of s in the denom-
inator of (8.2.17), there’s an easier way: the expansion of

1

RO = 26219

can be obtained quickly by using Heaviside’s method to expand

1 IRV 1
(x+1)(x+4)_3(x+l_x+4)

and then setting x = s2 to obtain

1 1 1 1
24+ 1)(s24+4)  3\s24+1 s2+44)°

Multiplying this by 8 + 3s yields

8 + 3s 1 (843s 8+43s
F(s) = = — .
2+ 1)(s2+4) 3\s2+1 s2+4
Therefore g 4
L™YF) = 3 sint 4 cost — 3 sin2¢ — cos 2t.
USING TECHNOLOGY

Some software packages that do symbolic algebra can find partial fraction expansions very easily. We
recommend that you use such a package if one is available to you, but only after you’ve done enough
partial fraction expansions on your own to master the technique.

8.2 Exercises

1. Use the table of Laplace transforms to find the inverse Laplace transform.

3 25— 4 1
(@) (s —7)* () s2—4s+13 © §2 +4s + 20
2 s2—1 1
@2y © (52 4172 D224
125 — 24 2 . s2—4s+3
®) (2 _ 45 1 8572 ™ 329 @ 245450

2. Use Theorem 8.2.1 and the table of Laplace transforms to find the inverse Laplace transform.
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2
(@) (is—+7)34 (b) (i —_2;6 © (2 j ;i 8
@ iii; © s2+;s+l ® sSZt19
©" +(s2S: 1_)5_3 ® isl;r23+4 @ i N szj—l
0n 0 ety O e

Use Heaviside’s method to find the inverse Laplace transform.

3—(s+D(s—2)
s+ D +2)(s—2)

24+ (s —2)(3—2s)
s—=2)(s+2)(s—3)

34 (s—2)(10 =25 — 5?)

(a)

(c)

74 (s + 4)(18 — 3s)

(s=3)(s—D(s +4)
3—(s—D(s+1)

(s+4)Es—2)(s—1)

34 (s —3)2s% +s5—21)

(b)

(d)

e
(© (s=2)(s +2)(s — D(s +3) ® (=3 —D(s+4)(s—2)
Find the inverse Laplace transform.
24 3s 352425+ 1
@ ) )
2+ DE+2)s+ 1) (s2+ D2+ 25 +2)
35 +2 352+ 25+ 1
(C) 2 (d) 2
(s—=2)(s2+25+5) (s =12 +2)(s +3)
257 4+5+3 3s+2
(s —1)2(s +2) (s2+ D(s—1)
Use the method of Example 8.2.9 to find the inverse Laplace transform.
3s+2 —4s + 1 5s+3
b
®erneery Peinerg Qeane e
—s +1 17s — 34 2s — 1
d
D uszinsz+ny @ erieaesz+n P @2+ nos2+1)
Find the inverse Laplace transform.
17s — 15 8s + 56
(a) 2 2 (b) 2 2
(s2 —2s + 5)(s2 + 25 + 10) (s2 — 65 + 13)(s> + 25+ 5)
s+9 3s =2
(s2 +4s +5)(s2 —4s + 13) (52 —4s + 5)(s? — 65 + 13)
3s —1 20s + 40
(52 =25 +2)(s? + 25 + 5) (452 —4s + 5)(4s% +4s +5)
Find the inverse Laplace transform.
1 1
b
@ (241 ®) - 1y2 25+ 17)
3s+2 34—17s
(C) 2 (d) 2
(s —2)(s% + 25 + 10) 2s —=1)(s? =25+ 5)
s+2 25 —2
(e) ®

(s —3)(s2+2s+5)
Find the inverse Laplace transform.

(s —2)(s2 + 25 + 10)

413
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@) 2s + 1 (b) s+2
(s2+1D(s—1)(s —3) 2425 +2)(s2-1)
25 — 1 s—6
d
© (s2—=25+2)(s + (s —2) @ (s2=1)(s2+ 4
25 =3 55 — 15
(© ) ®
s(s —2)(s2 =25 +5) (s2—4s+13)(s —2)(s — 1)
9. Given that f(t) <> F(s), find the inverse Laplace transform of F(as — b), where a > 0.
10. (a) Ifsy,ss,..., s, are distinct and P is a polynomial of degree less than n, then
P(s A A A
( ) _ 1 + 2 4ot n ]
(s—=s1)(s—82)---(s—5p) S—81 S§—82 S — Sn

Multiply through by s — s; to show that A; can be obtained by ignoring the factor s — s; on

the left and setting s = s; elsewhere.
(b) Suppose P and Q; are polynomials such that degree(P) < degree(Q1) and Q1(s1) # 0.
Show that the coefficient of 1/(s — s1) in the partial fraction expansion of
P
(s —s1)Q1(s)

is P(s1)/Q1(s1).

(¢) Explain how the results of (a) and (b) are related.

8.3 SOLUTION OF INITIAL VALUE PROBLEMS

Laplace Transforms of Derivatives

In the rest of this chapter we’ll use the Laplace transform to solve initial value problems for constant
coefficient second order equations. To do this, we must know how the Laplace transform of f” is related
to the Laplace transform of f. The next theorem answers this question.

Theorem 8.3.1 Suppose [ is continuous on [0, 00) and of exponential order so, and f' is piecewise
continuous on [0, 00). Then f and [’ have Laplace transforms for s > s¢, and

L(f") = sL(f) - f(0). (8.3.1)
Proof
We know from Theorem 8.1.6 that L( /) is defined for s > s9. We first consider the case where f” is
continuous on [0, co). Integration by parts yields

T
/ e ST (1) dt
0

T

T
e‘”f(t)‘o +s/0 e £ (1) di i
T . ..

= T f(T)- f0)+s /O e SUf(t)dt

forany 7 > 0. Since f is of exponential order 5o, lim7 o ¢ T f(T) = 0 and the last integral in (8.3.2)
converges as T — oo if § > s§9. Therefore

/Ooo e f1(t) dt

—£(0) + s/ooe‘s’f(t)dt
0
= —f(0)+sL(f),
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which proves (8.3.1). Now suppose T > 0 and f” is only piecewise continuous on [0, T'], with dis-
continuities at ; < f < --+ < ft,—1. For convenience, let tp = 0 and 7, = T. Integrating by parts
yields

t; i I
/ S rydt = el +s / e F (1) dt
ti—1 li—1 ti—1

)~ S +s [ e 0

i—1

Summing both sides of this equation from i = 1 to n and noting that
(€™ f (1) = e f(t0)) + (€72 f (1) — e f(t1)) + -+ + (7N f(tw) — €N f(tn-1))

= e f(tn) — e f(to) = e =T f(T) = £(0)
yields (8.3.2), so (8.3.1) follows as before.

Example 8.3.1 In Example 8.1.4 we saw that

s
L(coswt) = 4w
Applying (8.3.1) with f(z) = cos wt shows that
. w?
L(—wsinwt) = Ss2 o 1T T
Therefore
L(sinwt) = 2 402

which agrees with the corresponding result obtained in 8.1.4.

In Section 2.1 we showed that the solution of the initial value problem

y ' =ay, y(0) = yo, (8.3.3)

is y = yge?’. We’ll now obtain this result by using the Laplace transform.
Let Y(s) = L(y) be the Laplace transform of the unknown solution of (8.3.3). Taking Laplace trans-
forms of both sides of (8.3.3) yields

L(y) = L(ay).

which, by Theorem 8.3.1, can be rewritten as

sL(y) = y(0) = aL(y),

or
sY(s) —yo = a¥(s).

Solving for Y(s) yields

Yy = ° .
S

SO
1
=ty =17 (0 Y= (L) = e
S—a sS—a

which agrees with the known result.
We need the next theorem to solve second order differential equations using the Laplace transform.
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Theorem 8.3.2 Suppose f and [’ are continuous on [0, 00) and of exponential order sg, and that [ is
piecewise continuous on [0,00). Then f, f’, and " have Laplace transforms for s > s,

L(f") =sL(f) - f(0), (8.3.4)

and

L(f") =s>L(f)— f'(0) = sf(0). (8.3.5)

Proof Theorem 8.3.1 implies that L( /') exists and satisfies (8.3.4) for s > s¢. To prove that L(f")
exists and satisfies (8.3.5) for s > 59, we first apply Theorem 8.3.1 to g = f’. Since g satisfies the
hypotheses of Theorem 8.3.1, we conclude that L(g’) is defined and satisfies

L(g') =sL(g) —g(0)

for s > s9. However, since g’ = f”, this can be rewritten as

L(f") =sL(f) = f'(0).
Substituting (8.3.4) into this yields (8.3.5).
Solving Second Order Equations with the Laplace Transform

We’ll now use the Laplace transform to solve initial value problems for second order equations.
Example 8.3.2 Use the Laplace transform to solve the initial value problem

y" —6y 4+ 5y =3¢, y0)=2, y'(0)=3. (8.3.6)

Solution Taking Laplace transforms of both sides of the differential equation in (8.3.6) yields
LO" =6y +5y) =L3e¥) = ",
S —_—
which we rewrite as

3
LOM) =6LO) +5L0) =~ . (8.3.7)

Now denote L(y) = Y (s). Theorem 8.3.2 and the initial conditions in (8.3.6) imply that
L(y') = sY(s) = y(0) = sY(s) -2

and
L(y") = s2Y(s) — y'(0) — sy(0) = s2Y(s) — 3 — 2s.

Substituting from the last two equations into (8.3.7) yields
5 3
(s*Y(s) —3—=2s) —6(sY(s) —2) +5Y(s) =
S —_—

Therefore 3

(s — 65 +5)Y(s) = .t (3 + 25) + 6(=2), (8.3.8)
SO
3+ (—2)25—9)

(s =5 = DY(s) = RO
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and
34+ (s—2)2s5s—-9)

(s—=2)(s=5(—-1)

Heaviside’s method yields the partial fraction expansion

Y(s) =

1 1 1 51

Y(s) = —
== st stos

and taking the inverse transform of this yields

1 5
2t 5t t
=—e" + e+ e
4 2 2

as the solution of (8.3.6).
It isn’t necessary to write all the steps that we used to obtain (8.3.8). To see how to avoid this, let’s
apply the method of Example 8.3.2 to the general initial value problem

ay” +by" +cy = f(t), y©0) =ko, y'(0)=ki. (8.3.9)
Taking Laplace transforms of both sides of the differential equation in (8.3.9) yields
al(y") +bL(Y") + cL(y) = F(s). (8.3.10)
Now let Y(s) = L(y). Theorem 8.3.2 and the initial conditions in (8.3.9) imply that
L()=sY(s)—ko and L(y")=s2Y(s)— k — kos.
Substituting these into (8.3.10) yields
a (s2Y(s) — ki —kos) + b (sY(s) — ko) + cY(s) = F(s). (8.3.11)
The coefficient of Y (s) on the left is the characteristic polynomial
p(s) =as®> +bs +c

of the complementary equation for (8.3.9). Using this and moving the terms involving k¢ and k; to the
right side of (8.3.11) yields

p()Y(s) = F(s) + a(ky + kos) + bko. (8.3.12)

This equation corresponds to (8.3.8) of Example 8.3.2. Having established the form of this equation in
the general case, it is preferable to go directly from the initial value problem to this equation. You may
find it easier to remember (8.3.12) rewritten as

p($)Y(s) = F(s) +a (¥ (0) + sy(0)) + by(0). (8.3.13)
Example 8.3.3 Use the Laplace transform to solve the initial value problem

2" +3y +y =82, y(0)=—4, y(0) =2. (8.3.14)

Solution The characteristic polynomial is

p(s)=2524+3s+1=Q2s+ (s +1)
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and
8

F(s) = L(8e™%) = Y

so (8.3.13) becomes

@2s+ D(s+ DY(s) = s 8

Ly H 22— 49) +3(-4).

Solving for Y (s) yields
Y(s) = 4(1—=(s+2)(s+ 1))
S+ 1D+ D +2)

Heaviside’s method yields the partial fraction expansion

4 1 8 8 1

Y(s) = - ,
)= 35412 541 3542

so the solution of (8.3.14) is
4 8
y =LY (Y(s5)) = 3e—'/2 —8e ™ + 3e—2'

(Figure 8.3.1).

y y
A A
A
K3 il ottt
1 2 3 4 5 T 1 2 3 4 5 6
1+ -1
2L -2
-3 -3
_4 4l
4 8 1 7 5
Figure 8.3.1 y = 36‘71/2 — 8" + 36‘72[ Figure 8.3.2 y = 5 2671 cost — 2671 sin¢

Example 8.3.4 Solve the initial value problem

y'+2y +2y =1, y0)=-3, y'(0) =1. (8.3.15)

Solution The characteristic polynomial is

p)=sT+2s+2=(s+1*+1

and |
F(s) = L(1) = §
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so (8.3.13) becomes
[(s+ D>+ 1]Y(s) = i +1-(1—=3s)+2(=3).
Solving for Y (s) yields
Y(s) = 1 —s(5+3s)
s+ D21

In Example 8.2.8 we found the inverse transform of this function to be

b7 t “sint
= — e COS7T — e Sin
YT 07 2

(Figure 8.3.2), which is therefore the solution of (8.3.15).

419

REMARK: In our examples we applied Theorems 8.3.1 and 8.3.2 without verifying that the unknown
function y satisfies their hypotheses. This is characteristic of the formal manipulative way in which the
Laplace transform is used to solve differential equations. Any doubts about the validity of the method for
solving a given equation can be resolved by verifying that the resulting function y is the solution of the

given problem.

8.3 Exercises

In Exercises 1-31 use the Laplace transform to solve the initial value problem.

1. Y/ +3y+2y=¢€", y0)=1, y'(0)=-6
2. Y=y —6y=2 y0)=1 )'(0)=0
3. Y4y —2y=2e3 y0)=-1, y(0)=4
4. y'—4y =2e3, yO0)=1, y(0)=-1
5. 0 +y =2y=e" y0O) =1 y(0)=-1
6. y' +3y +2y=6e", y0)=1, y(0)=-1
7. y'+y=sin2t, y0)=0, y(0)=1
8. /=3y +2y=2e%% y0)=1, y(0)=-1
9. y' =3y 42y =e*, y0)=1, y'(0)=-2
10. y" =3y +2y =e¥, y(0)=-1, y'(0)=—4
11. Yy +3y +2y =2e", y(0) =0, y(@©0) =-1
12. y'+y =2y =—4, y0)=2, y(0)=3
13. y'+4y=4, y0)=0, y@©0) =1
14. y'—y —6y =2, y0)=1, y'(0)=0
15. y'+3y +2y=¢, y(0)=0, y(0) =1
16. y'—y=1 y@0) =1 y(0)=0
17. y" 4+ 4y =3sint, y(0) =1, y'(0)=-1
18. y'+y =2¢% y0)=-1, y(0) =4
19. y'4+y=1, y0)=2, Y (@0)=0
20 y'+y=t, y(0)=0, y(0)=2
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21.
22,
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
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y'+y=1t-3sin2t, y0)=1, ' (0)=-3

y'+5y +6y=2e" yO0) =1, Hy(0)=3

y" 42y +y =6sint —4cost, y(0)=-—1, y'(0) =1

y' =2y =3y =10cost, y(0) =2, y(0)=7

y" +y =4sint + 6cost, y(0)=—6, y'(0) =2

y" +4y =8sin2f +9cost, y(0) =1, Y (0)=0

y' =5y + 6y =10e’cost, y(0) =2, y(0)=1
Y42y +2y =21, y0)=2, y(0)=-7

y" =2y’ 4+ 2y =5sint + 10cost, y(0) =1, y'(0) =2
Y+ 4y 4+ 13y = 10e™" —36¢’, y(0) =0, y'(0) = —16
Y+ 4y +5y = e '(cost + 3sint), y(0)=0, y'(0) =4
2y" =3y =2y =4e', y(0)=1, y'(0)=-2

6y —y' —y=3e* y(0)=0.y'(0)=0

2y" +2y +y=2t, y0) =1, y'(0)=-1

4y"” — 4y’ + 5y = 4sint —4cost, y(0) =0, y'(0) =11/17
4y" +4y" + y = 3sint +cost,  y(0) =2, y'(0) = —1

9y” + 6y +y =33, y(0) =0, y'(0)=-3

Suppose a, b, and ¢ are constants and a # 0. Let

as+b a
=L"! and =L"! .
1 (as2+bs+c) 72 (as2+bs+c)

y1(0)=1, »1(0)=0 and y(0)=0, y5(0)=1.

HINT: Use the Laplace transform to solve the initial value problems

Show that

ay’ +by +cy = 0, y0) =1, y(0)=0
ay” +by +cy = 0, y0)=0, y(0)=1.

8.4 THE UNIT STEP FUNCTION

In the next section we’ll consider initial value problems

ay”" +by" +cy = f(t), y0)=ko, y'(0)=ki,

where a, b, and ¢ are constants and f is piecewise continuous. In this section we’ll develop procedures
for using the table of Laplace transforms to find Laplace transforms of piecewise continuous functions,
and to find the piecewise continuous inverses of Laplace transforms.
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Example 8.4.1 Use the table of Laplace transforms to find the Laplace transform of

1) 2t +1, 0<t <2, 84.1)
- 3, t>2 o
(Figure 8.4.1).
Solution Since the formula for f changes at ¢ = 2, we write
o0
L) = [ e
) oo (8.4.2)
= / e 12t + 1) dt +/ e *'(3t)dt.
0 2
To relate the first term to a Laplace transform, we add and subtract
o0
/ et (2t + 1)dt
2
in (8.4.2) to obtain
o0 o0
L(f) = / e STt + 1) dt +/ e S'(3t —2t — 1) dt
OOO 200
= / e STt + 1) dt +/ e St —1)dt (8.4.3)
0 2

L2t + 1)+/ et —1)dt.
2

To relate the last integral to a Laplace transform, we make the change of variable x = ¢ — 2 and rewrite
the integral as

/ et —1)dt = / eSO (x 4+ 1) dx
2 0

o0
= e_zs/ e (x + 1 dx.
0

Since the symbol used for the variable of integration has no effect on the value of a definite integral, we
can now replace x by the more standard ¢ and write

o0

/ et —1)dr =e‘”/ et 4+ 1)dt = e Lt + 1).
2

0

This and (8.4.3) imply that
L(f)=LQt+1)+e 2Lt +1).

Now we can use the table of Laplace transforms to find that

L(f):szz+i+e‘zs(1 +1).

s2 s
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Figure 8.4.1 The piecewise continuous function
(8.4.1) Figure 8.4.2 y = u(t — 1)

Laplace Transforms of Piecewise Continuous Functions

We’ll now develop the method of Example 8.4.1 into a systematic way to find the Laplace transform of a
piecewise continuous function. It is convenient to introduce the unit step function, defined as

t<0

>0 (8.4.4)

u(t) = { ‘1):

Thus, u(?) “steps” from the constant value 0 to the constant value 1 at t = 0. If we replace ¢ by # — 7 in
(8.4.4), then

0, t<m,
"(I_T):%l r>t

that is, the step now occurs at t = t (Figure 8.4.2).
The step function enables us to represent piecewise continuous functions conveniently. For example,
consider the function

fo(t), 0<t <1,
fi@®), t =1,

where we assume that fo and f; are defined on [0, 00), even though they equal f only on the indicated
intervals. This assumption enables us to rewrite (8.4.5) as

f(o) = § (8.4.5)

f(@0) = fot) +ult —11) (f1(1) = fo(0)). (8.4.6)
To verify this, note that if 1 < #; then u(z — #1) = 0 and (8.4.6) becomes
J@) = fo() +(0) (L)) = fo(1)) = Jfo(®).
Ift >ty thenu(t —t;) = 1 and (8.4.6) becomes
f@) = fo() + (1) (1L (@) = fo(1)) = /D).

We need the next theorem to show how (8.4.6) can be used to find L(f).
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Theorem 8.4.1 Let g be defined on [0, 00). Suppose t > 0 and L (g(t + 1)) exists for s > so. Then
L (u(t —v)g(t)) exists fors > sg, and

Lu(t —1)g(t)) = e "L (gt +1)).
Proof By definition,
Lu(—1)gt) = /o e Stu(t —1)g(t) dt.

From this and the definition of u(t — 1),

Lu@—1)g(t)) :/o e (0) dt +/ e lg(t)dr.

The first integral on the right equals zero. Introducing the new variable of integration x = ¢ — 7 in the
second integral yields

o0

Lu(t—1)glt)) = /Oooe_s(x”)g(x +1)dx = e_”/o e Fg(x + 1)dx.

Changing the name of the variable of integration in the last integral from x to ¢ yields

o0
Lu(t—1)gt) = e_"/ e gt +1)dt =eTL(g(t + 1)).
0
Example 8.4.2 Find
Lu@—1@*+1).
Solution Here r = 1 and g(t) = t> + 1, so
g+ ) =@+ 1)2+1=1>+2t+2.

Since 5 5 5
L(g(t+1)) = s+t L+
s s s

Theorem 8.4.1 implies that

) (2 2 2
Lu@—-D@*+1)=e (S3+S2+S).

Example 8.4.3 Use Theorem 8.4.1 to find the Laplace transform of the function

2t +1, 0<t <2,
3¢, t>2,

f@) =

from Example 8.4.1.

Solution We first write f in the form (8.4.6) as

f@) =2t +1+u(—-2)—1).
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Therefore

L(f)

LQ2t+ 1)+ Lu@—2)t—1))
= LQ2t+1)+e 2Lt +1) (from Theorem 8.4.1)

2 n 1 42 1 n 1

e ’
52 s 52 s
which is the result obtained in Example 8.4.1.

Formula (8.4.6) can be extended to more general piecewise continuous functions. For example, we can
write

fo(®), 0=<t<t,
SO =13 H@), n=t<b,
(1), t =1,
as
J@) = fo(t) +u —t1) (f1(@) — fo1)) +ult —12) (f2(1) — f1(1))
if fo, f1,and f, are all defined on [0, c0).

Example 8.4.4 Find the Laplace transform of

1, 0<t<?2,
1) —2t+1, 2<t<3, (847)
N 31, 3<t<5, o

t—1, t>5

(Figure 8.4.3).

Solution In terms of step functions,
J@t) = 1+u@—-2)(2t+1-1)+u@—-3)3t+2t—-1)
+u(t =5) —1-31),

or
f@)=1=2u(@—-2)t+u—3)5t—1)—u(t—5Q2t+1).

Now Theorem 8.4.1 implies that

L(f) L) =2 5Lt +2)4+e XL GE+3)—1)—e > LQ20+5+1)

L) —2e"L(t +2)+e L5t + 14) —e L2t + 11)

1 1 2 5 14 2 11
=27 4+ T+ L+ e T+ ).
s s2 s 52 s 52 s

The trigonometric identities

sin(A + B) = sinAcos B + cos Asin B (8.4.8)
cos(A+ B) = cosAcosB —sinAsinB (8.4.9)

are useful in problems that involve shifting the arguments of trigonometric functions. We’ll use these
identities in the next example.
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Figure 8.4.3 The piecewise contnuous function (8.4.7)

Example 8.4.5 Find the Laplace transform of

sint, 0<t< 721,
f(0) = cost — 3sint, 721 <t<m, (8.4.10)
3cost, t>m

(Figure 8.4.4).

Solution In terms of step functions,
f(t) =sint +u(t —mw/2)(cost —4sint) +u(t — w)(2cost + 3sint).
Now Theorem 8.4.1 implies that
L(f) = L(sint)+e 25L (cos (14 %) —4sin(r + 7)) 84.11)
+e ™SL(2cos(t + ) + 3sin(t + 7)) .

Since
T . 4 .
cos(t+ 2)—4sm(t+ 2) = —sint — 4 cost

and
2cos(t + ) + 3sin(t + ) = —2cost — 3 sint,
we see from (8.4.11) that

L(f) = L(sint)—e ™/2L(sint 4+ 4cost) —e ™ L(2cost + 3sint)

1 a1 44s\ . [(3+2s
= —e 2 —e .
s2 41 s2+1 s24+1
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\J

-3

Figure 8.4.4 The piecewise continuous function (8.4.10)

The Second Shifting Theorem

Replacing g(z) by g(t — ) in Theorem 8.4.1 yields the next theorem.

Theorem 8.4.2 [Second Shifting Theorem] If t > 0 and L(g) exists for s > so then L (u(t —t)g(t — 1))
exists for s > so and

L(u(t —1)g(t — 1)) = e " L(g(1)),
or, equivalently,

ifg(t) < G(s), thenu(t — t)g(t — 1) < ¢ **G(s). (8.4.12)

REMARK: Recall that the First Shifting Theorem (Theorem 8.1.3 states that multiplying a function by
¢! corresponds to shifting the argument of its transform by a units. Theorem 8.4.2 states that multiplying
a Laplace transform by the exponential e ~** corresponds to shifting the argument of the inverse transform

by 7 units.
—2s
—_1(¢€
(L)
Solution To apply (8.4.12) we let T = 2 and G(s) = 1/s2. Then g(¢) = ¢ and (8.4.12) implies that

. e—2s
L ( 2 ):u(z—Z)(z—Z).

Example 8.4.6 Use (8.4.12) to find
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Example 8.4.7 Find the inverse Laplace transform / of

1 1 2 4 1
H(s) = Z—e_s(2+ )+e_4s(3+ ),
s s s s s

and find distinct formulas for / on appropriate intervals.

Solution Let . . 5 A .
Go(s)= ,. Gi)= ,+ . Gas)= ;+ .
S S S s s

Then
go(t) =1, g1(t) =1 +2, g2(1) = 26> + 1.

Hence, (8.4.12) and the linearity of L™ imply that

h(t) = L7'(Go(s)) = L7 (€™ Gi(s)) + L7 (e7¥Ga(s))
t—u(t =D —1)+2]+u—4) 20 — 4>+ 1]
= t—u(t—1D@+1)+u( — 421> — 161 + 33),

which can also be written as

1, 0<tr<l,
h(t) = -1, 1 <t<4,
212 — 16t +32, t>4.

Example 8.4.8 Find the inverse transform of

2s _72133s+1 —xs ST+

H(s) = —e +e .
() s2+4 5249 52+ 65+ 10

Solution Let

2s Bs+1)
G = B G = - B
o) =5y 1(5) 249
and 1 (s+3)—2
s+ s+3)—
G = = .
2= 2 46510 (s+3)2+1
Then |
go(t) =2cos2t, gi(t) = —3cos3t— 3 sin 3¢,
and

g2(t) = e 3 (cost — 2sint).

Therefore (8.4.12) and the linearity of L™! imply that
1 . m
h(t) = 2cos2t—u(t —m/2) [30033(t —n/2) + 3 sin 3 (t ) )}

+u(t — m)e 3¢ [cos(t — ) — 2sin(t — )] .

427
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Using the trigonometric identities (8.4.8) and (8.4.9), we can rewrite this as

h(t) = 2cos2t+u(r —m/2) (3sin3t — } cos3t)
(8.4.13)
—u(t —m)e 3" (cost — 2sint)

(Figure 8.4.5).

N w b~ o
I

| |
N —
[ [
<
A
[6)]
[e)]
\J

Figure 8.4.5 The piecewise continouous function (8.4.13)

8.4 Exercises

In Exercises 1-6 find the Laplace transform by the method of Example 8.4.1. Then express the given
function f in terms of unit step functions as in Eqn. (8.4.6), and use Theorem 8.4.1 to find L(f). Where
indicated by C/G , graph f.

t, 0<tr<l,
1, 0<t<4, 2. f@)=
1. f@) = 1, t>1.
t, t>4.
2t—1, 0<t<2, 1, 0<t<l,
3. CIG f(t)= 4. CIG f(r)=
t t>2. t+2, t>1.
0 t—1, 0<t<2, 0 2, 0<t<l,
5. 1) = 6, 1) =
4, =12, 0, t>1.
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In Exercises 7—18 express the given function f in terms of unit step functions and use Theorem 8.4.1 to

find L(f). Where indicated by C/G , graph f.

242, 0<t<l,
0, 0<t<2, 8. f()=
7. f(1) = t, t>1.
2431, t>2.
5. 1) tel!, 0<t<l, 0 1) et 0<t<l,
. 1) = 1, 1) =
e, t>1. ( e, t>1.
—t, 0<t<2, 0, 0<t<1,
1. f@)=4 t—4, 2<t<3, 12. f@)=4t, 1<t<2,
1, t>3. 0, t>2.
t, 0<t<l, t, 0<t<l,
13. f@)=1 2, 1<t<2, 4. f(t)=14 2—t, 1<t<2,
0, t>2. 6, t>2.

sint, O§t<721,
15.  C/G f() =14 2sint, Z§t<m

cost, t =m.

2, 0<1t<l,

16. C/G f(t)=4 —2t+2, 1<t<3,
3t, t>3.

3, 0<t<2,

17. C/G f(t)y=14 3t+2, 2<t<4,
4t, 1 >4.

(t+1)% 0<t<1,

18. C/G =
f® (t+2)2 t>1.

In Exercises 19-28 use Theorem 8.4.2 to express the inverse transforms in terms of step functions, and
then find distinct formulas the for inverse transforms on the appropriate intervals, as in Example 8.4.7.
Where indicated by C/G , graph the inverse transform.

e
-2 20. H(s) =
9. Hi=¢ s(s+1)
s—2
—S —2s
2. CG He) =", +°
S S

2 1 3 1 1 1
2. C/G H(s):( n 2)+e—3( N 2)+e_3s( N 2)
s s s s s
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23.

24.

25.

26.

27.

28.

29.
30.

31.

Chapter 8 Laplace Transforms

5 1 6 7T\ 3¢S
H(s)z( - 2)+e_3s( + 2)+ 5
N N N N N

3 e—ns(l_zs)
H(S)_ s2+4S+5
1 s —xs 31
C/IG H(s)=(S—S2+1)+e (s2+1)
_ ,72s 3(S_3) — sl
sy =e [(s+1)(s_2) (S-”(S‘Z)}

1 1 3 2 4 3
H(s)= + 2+e_s( + 2)+e_3s( + 2)
s s s s s s
1 2 301 e
H — _ —25 _
(s) s s3+e (s s3)+ 52
Find L (u(t — 1)).

Let {t,,}5r_, be a sequence of points such that tg = 0, t;41 > t, and limy 0ty = oo. For
each nonnegative integer m, let f;, be continuous on [t,,, 00), and let f be defined on [0, co) by

fO) = fut) tm <t <tmy1 (Mm=0,1,...).

Show that f is piecewise continuous on [0, co) and that it has the step function representation

SO = fo) + Y ult —tm) (fn(®) = fu1(1)), 0 < 1 < 00.

m=1

How do we know that the series on the right converges for all # in [0, 00)?

In addition to the assumptions of Exercise 30, assume that

| fmn (O] < Me*' 1 > 1, m =0.1,..., (A)
and that the series
o0
Y emrim (B)
m=0
converges for some p > 0. Using the steps listed below, show that L( f') is defined for s > s¢ and
o0
L(f)=L(fo) + ) ™" L(gm) ©
m=1

fors > so + p, where
gm(t) = fu(t + tm) = fn—1(t + tm).

(a) Use (A) and Theorem 8.1.6 to show that
ot tm+1 .
L= [ e (D)
m=0"Y!m

is defined for s > s¢.
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(b) Show that (D) can be rewritten as

L) =3, ( / e futydi - / N e—”fm(zmz). (E)

m=0 Im Im+1

(¢) Use (A), the assumed convergence of (B), and the comparison test to show that the series

ooe_”fm(t) dt and - e S fu(t) dt
pyl Ny}

m—+1

both converge (absolutely) if s > 5o + p.
(d) Show that (E) can be rewritten as

LN =L+ Y [ € Un) = fua(0) di
m=1"Y1Im

if s > 50 + p.
(e) Complete the proof of (C).
32.  Suppose {tm}n—o and { fin}or—, satisfy the assumptions of Exercises 30 and 31, and there’s a
positive constant K such that #,, > Km for m sufficiently large. Show that the series (B) of

Exercise 31 converges for any p > 0, and conclude from this that (C) of Exercise 31 holds for
s > So.

In Exercises 33-36 find the step function representation of f and use the result of Exercise 32 to find
L(f). HINT: You will need formulas related to the formula for the sum of a geometric series.

3. fO)=m+1l,m<t<m+1m=0,1,2,...)
M., fO)=CF)", m<t<m+1@m=0,1,2,...)
35. fO)=m+1)2. m<t<m+1(m=0,1,2,...)
6. fO)=-D"m,m<t<m+1(m=0,1,2,...)

8.5 CONSTANT COEEFFICIENT EQUATIONS WITH PIECEWISE CONTINUOUS FORCING FUNC-
TIONS

We’ll now consider initial value problems of the form
ay" + by +cy= f@t), y(0) =ko, y'(0)=ki, (8.5.1)

where a, b, and ¢ are constants (¢ # 0) and f is piecewise continuous on [0, 00). Problems of this
kind occur in situations where the input to a physical system undergoes instantaneous changes, as when
a switch is turned on or off or the forces acting on the system change abruptly.

It can be shown (Exercises 23 and 24) that the differential equation in (8.5.1) has no solutions on an
open interval that contains a jump discontinuity of f. Therefore we must define what we mean by a
solution of (8.5.1) on [0, 0o) in the case where f has jump discontinuities. The next theorem motivates
our definition. We omit the proof.
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Theorem 8.5.1 Suppose a, b, and ¢ are constants (a # 0), and f is piecewise continuous on [0, 00).
with jump discontinuities at ty, ..., ty, where

O0<t) <+ <ty

Let ko and k1 be arbitrary real numbers. Then there is a unique function y defined on [0, 0co) with these
properties:
(@ y(0) = ko and y'(0) = k;.

(b) y and y’ are continuous on [0, 00).

(¢) y" is defined on every open subinterval of [0, 00) that does not contain any of the points t1, ..., Iy,
and

ay” +by +cy = f(0)
on every such subinterval.

(d) y” has limits from the right and left at ty, ..., t,.

We define the function y of Theorem 8.5.1 to be the solution of the initial value problem (8.5.1).
We begin by considering initial value problems of the form

fo(®), 0=t <1,

ay” +by +cy =
Y roe fi(@®), t >t

y(0) =ko, »'(0) =ky, (8.5.2)

where the forcing function has a single jump discontinuity at 7;.
We can solve (8.5.2) by the these steps:

Step 1. Find the solution yq of the initial value problem

ay” +by' +cy = fot), y(0)=ko, »(0)=ki.
Step 2. Compute co = yo(t1) and ¢1 = yg(t1).
Step 3. Find the solution y; of the initial value problem

ay" + by +cy = fi(t), y(t)=co, y'(t1)=cr
Step 4. Obtain the solution y of (8.5.2) as

yo(t), 0=<t<t
yi(@), t=t.

It is shown in Exercise 23 that y’ exists and is continuous at #;. The next example illustrates this
procedure.

Example 8.5.1 Solve the initial value problem

Y4y =f@), y0)=2 y(0)=-1, (8.5.3)
where -
1, 0<tr< .
f@) = .
-1, t>
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\J

Figure 8.5.1 Graph of (8.5.4)

Solution The initial value problem in Step 1 is
YVity=1 y0) =2, y(0)=-1
We leave it to you to verify that its solution is
Yo = 1 4+ cost —sint.

Doing Step 2 yields yo(r/2) = 0 and y((r/2) = —1, so the second initial value problem is

Pt ()= ()=

We leave it to you to verify that the solution of this problem is
y1 = —1 4 cost + sint.

Hence, the solution of (8.5.3) is

1+ cost — sint, O§t<721,
y = e (8.5.4)
—1 +cost +sint, > 5

(Figure:8.5.1).
If fo and f; are defined on [0, 00), we can rewrite (8.5.2) as

ay” + by’ +cy = fo) +ult —t1) (f1(t) = fo()). y(0) =ko, ' (0) =k,

and apply the method of Laplace transforms. We’ll now solve the problem considered in Example 8.5.1
by this method.
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Example 8.5.2 Use the Laplace transform to solve the initial value problem

yi+y=f., y0) =2, y0) =-1, (8.5.5)
where
T
1, 0<t< _,
f(t): T 2
-1, > .
2

Solution Here

T
fo=1-2u(t=7).
so Theorem 8.4.1 (with g(¢#) = 1) implies that

1—2¢7m5/2
L(f) =
s
Therefore, transforming (8.5.5) yields
) 1— Ze—ns/z
“+DY(s) = -1+ 2s,
s
o) S
— (1 —2e-78/2 5
Y(s) =(1—=2e"9)G(s) + 21 (8.5.6)
with
G(s) = .
(s) s(s2+1)
The form for the partial fraction expansion of G is
1 A B C
o (8.5.7)

- .
s(s2+1) s 5241
Multiplying through by s(s? + 1) yields
A2+ 1)+ (Bs+C)s =1,

or
(A+B)s> +Cs +A=1.

Equating coefficients of like powers of s on the two sides of this equation shows that A =1, B = —4 =
—1 and C = 0. Hence, from (8.5.7),

1 s
G(s)= -— .
() s 5241
Therefore
g(t) =1—cost.

From this, (8.5.6), and Theorem 8.4.2,
y=1—cost —2u (t - 721) (1 — COos (t - 721)) + 2cost —sint.
Simplifying this (recalling that cos(t — 7 /2) = sint) yields

y =1+4cost —sint —2u (t— Z)(l—sint),
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or
T

1+4+cost —sint, 0<t< _,
y= 2
. m
—1 +cost +sint, > 5
which is the result obtained in Example 8.5.1.
REMARK: It isn’t obvious that using the Laplace transform to solve (8.5.2) as we did in Example 8.5.2
yields a function y with the properties stated in Theorem 8.5.1; that is, such that y and y’ are continuous
on [0, o) and y” has limits from the right and left at #,. However, this is true if fo and f; are continuous

and of exponential order on [0, o). A proof is sketched in Exercises 8.6.11-8.613.

Example 8.5.3 Solve the initial value problem

y'—y=f@). y0)=-1,y(0) =2, (8.5.8)
where
t, 0<tr<l1,
Jo=311 /2

Solution Here
S@)=t—u@ -1 -1),
)
L(f) = L@)—-Lu@-1)F-1)
= L(t) — e *L(t) (from Theorem 8.4.1)

Since transforming (8.5.8) yields

(s> =DY(s) = L(f)+2—s,

we see that )
Ye)=A-eDHES + 5 (8.5.9)
where
Hs) 1 1 1
S) = = —_ ;
s2(s2—1) s2-—-1 2
therefore
h(t) = sinht —¢. (8.5.10)
Since
—1 2 — S .
L ) = 2sinht —cosh?,
sz —1
we conclude from (8.5.9), (8.5.10), and Theorem 8.4.1 that
y =sinht —¢ —u(t — 1) (sinh(z — 1) —¢ + 1) + 2sinh# — cosh?,
or
y = 3sinht —cosht — ¢ —u(t — 1) (sinh(t — 1) — ¢ + 1) (8.5.11)

We leave it to you to verify that y and y’ are continuous and y” has limits from the right and leftat 1; = 1.
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Example 8.5.4 Solve the initial value problem

y'+y=f@)., y0)=0,y'0)=0,

where -
0, 0<t< ,
- 4
T
f(0) = cos2t, A <t<m,
0, t>.

Solution Here
f(t) =u(t —m/4)cos2t —u(t — ) cos 2t,

SO

L)

L (u(t —m/4)cos2t) — L (u(t — m)cos2t)
= e /4L (cos2(t + m/4)) —e L (cos 2(t + 1))
= —e /4L (sin21) — e ™ L(cos 21)
Qe TS/4 geTTS
244 5244
Since transforming (8.5.12) yields
>+ DY (s) = L(f),

we see that
Y(s) = e ™/ Hi(s) + e " Hy(s).

where
2 s

- and Ha(s) = — .
(52 4 1)(s2 + 4) 2= 2 p )2 44
To simplify the required partial fraction expansions, we first write

Hi(s) =

1 Iy 1
(x+1)(x+4)_3[x+l_x+4]

Setting x = s2 and substituting the result in (8.5.14) yields

Hl(s):—z[ ! ! i| and Hz(s):—;[ y N i|

35241 244 241 s244

The inverse transforms are

2 . I . 1 1

hi(t) = — _sint + _sin2t and hy(t) = —_cost + _ cos?2t.

3 3 3 3

From (8.5.13) and Theorem 8.4.2,
y = u(t— ”)h1 (z— ”) Fu(t — m)ha(t — 7).
4 4

Since

hy (I—Z) = —isin(t—j)+;sin2(t—7;)

2 1
= —\é (sint —cost) — 3 cos 2t

(8.5.12)

(8.5.13)

(8.5.14)

(8.5.15)
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1.0

0.5

y

-0.5 -

Figure 8.5.2 Graph of (8.5.16)

and
ho(t —m) = —; cos(t —m) + ; cos2(t —m)
= ! cost + ! cos2t,
3 3
(8.5.15) can be rewritten as

1 1
y = —3u (t — Z) («/Z(Sint — cos?t) +0032t) + 3u(t — m)(cost + cos 2t)

or .
0, 0<t< ,
4
2 1
y = —\é (sint —cost) — 3 cos 2t, Z <t <m, (8.5.16)
V2 142
— 3 sint + 3 Ccost, 1 >n.

We leave it to you to verify that y and y’ are continuous and y” has limits from the right and left at
t;y = /4 and t, = 7 (Figure 8.5.2).

8.5 Exercises

In Exercises 1-20 use the Laplace transform to solve the initial value problem. Where indicated by
C/G , graph the solution.
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=

10.

11.

12.

13.

14.

15.

16.

17.

Chapter 8 Laplace Transforms

. 3, 0<t<m, ,
yiot+y= y(0) =0, y(0)=0
0, t>m,
3, 0<t<4,
yav=t o0 Yk YO =1, YO =0
. , 4, 0<t <1, ,
yi=2y' = y(0) =—-6, y'(0)=1
6, t>1,
, e 0<t<2, )
yo-y= y(0) =3, y(0)=-1
1, t>2,
0, 0<tr<l1,
y' =3y +2y = 1, 1<t<2, y(0)=-3, y(0)=1
_13 tzza
|sint|, 0<t <2m,
CIG y'+4y = y(0)=-3, y'(0)=1
0, t>2m,
1, 0<r<l1
y' =5y +4y =13 -1, 1<t<2, y(©0) =3, y'(0)=-5
0, t>2,
3
cost, 0<t< 5
Y49y = 3 y(0)=0. y'(0)=0
sint, t > ,
2
t O§t<”,
C/G y" +4y = 2 O =0 Y0 =0
jT’ tz 9
2
, t, 0<t<m, )
yio+y= y(0) =0, y'(0)=0
—t, t>m,
"n__a.r _ 0, 0=<1<2, _ / _
t, 0<t<2m,
y”+y={ ot > or y(0) =1, »'(0)=2
C/G y”+3y’+2y:{ PUEIEE 0 =050 =0
-1, tzza
-1, 0<t<l1,
y'—4y' +3y = { Lo y(0) =0, y'(0) =0
e’, 0<t<l,
y”+2y’+y={ o1 =1 y(0) =3, y'(0) = -1
4elt, 0<t <1,
y”+2y’+y={ 0. 151 y(0) =0, y'(0) =0
—t
” / )y e, 0<tr<l, _ / _
y+3y +2y—{ 0. 1>1, y(0) =1, y(0) = -1



18.

19.

20.

21.

22,

23.
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e, 0<t<2,

" 1 . — 4 ——
y'o—4y +4y = _e. 150, y(0) =0, y'(0) = -1
2, 0<t<l,
C/IG y" = —t, 1<t<2, y0)=1,y0)=0
t+1, t>2,
1, 0<t<2m,
y'+2y +2y = t, 2 <t <3m y0)=2, y0)=-1
-1, t > 3m,

Solve the initial value problem

y'=f(t), y0)=0, y'(0)=0,

where
fOy=m+1, m<t<m+1, m=0,12,....

439

Solve the given initial value problem and find a formula that does not involve step functions and

represents y on each interval of continuity of f.
@ Y'+y=/f0. y0) =0 (0 =0

f@)y=m+1, mn<t<@m+m, m=0,1,2,....
(b) y'+y=7@). y0)=0, y'(0)=0;

f@t) = m+ Ht, 2mm <t <2(m+ D, m = 0,1,2,... HINT: You’ll need the

Jormula
m(m + 1)

1424 =
+24--+m )

© y'+y=/70. y0) =0 y'(0)=0;
f@)y==D", mr<t<@m+l)m, m=0,1,2,....
d y'—y=/@. y0)=0. »y(0)=0;
f@)y=m+1, m<t<@m+1), m=0,1,2,....
HINT: You will need the formula

1— rm+1

l+r+--4+r"= - (r #1).

e y'+2y'+2y=f@). y0) =0 )'(0)=0;
f(t) = (m+ 1)(sint + 2cost), 2mmx <t <2m+ )x, m=0,1,2,....
(See the hint in (d).)
® y'=3y"+2y=f@), y0)=0 y(0)=0;
f@y=m+1, m<t<m+1, m=0,1,2,....
(See the hints in (b) and (d).)

(a)

(b)

Let g be continuous on («, §) and differentiable on the («, #9) and (t9, ). Suppose A =
limy—4y— g'(¢) and B = lim;—,+ g’(¢) both exist. Use the mean value theorem to show that

. g() —glt) . g)—glo)
lim =A and lim =
t—>to— t—1o t—>to+ t—1y

B.

Conclude from (a) that g’(z9) exists and g’ is continuous at fo if A = B.
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24.

25.

26.

(¢) Conclude from (a) that if g is differentiable on (&, 8) then g’ can’t have a jump discontinuit
g g jump y

on («, f).

(a) Leta, b, and ¢ be constants, witha # 0. Let f be piecewise continuous on an interval (¢, ),
with a single jump discontinuity at a point #y in (¢, 8). Suppose y and y’ are continuous on

(a, B) and y” on (a, tp) and (t9, B). Suppose also that
ay" + by’ +cy= f()
on («, tp) and (9, B). Show that

_ Jlto+) = f(to-)

a

V' (to+) — y"(to—) #£0.

(b) Use (a) and Exercise 23(c) to show that (A) does not have solutions on any interval («, )

that contains a jump discontinuity of f.

Suppose Py, Py, and P, are continuous and Py has no zeros on an open interval (a, b), and that F/

has a jump discontinuity at a point #y in (a, b). Show that the differential equation
Po(1)y” + P1(t)y" + P2(t)y = F(1)

has no solutions on (@, b). HINT: Generalize the result of Exercise 24 and use Exercise 23(c).

LetO =19 <t; <--- <ty. Suppose f is continuous on [t,,, 00) form = 1,...,n. Let

fm(t), tm§t<tm+1, m=1,...,n—l,

TO=0ho. 1= 0.
Show that the solution of
ay” +by" +cy = f(t), y0)=ko, y'(0)=ki,
as defined following Theorem 8.5.1, is given by

Zo(1), 0<t<t,
zo(t) + z1(1), 1 <t <ty

20+ 4 Za1 (1), ;n—l =1 <ty
zot -+ zat), 1=ty
where z is the solution of
az’ + bz +cz = fo(t), z(0)=ko, Z'(0) =k,
and z,, is the solution of
az" + bz’ +cz = fin(t) = fmo1@), z(tm) =0, Z'(tm) =0

form=1,...,n.

8.6 CONVOLUTION
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In this section we consider the problem of finding the inverse Laplace transform of a product H(s) =
F(s)G(s), where F and G are the Laplace transforms of known functions f and g. To motivate our
interest in this problem, consider the initial value problem

ay” + by +cy = f(@). y0)=0 ' (0)=0.
Taking Laplace transforms yields

(as? + bs + ¢)Y(s) = F(s),

)
Y(s) = F(s)G(s), (8.6.1)
where |
Gls) = as> +bs +c¢’

Until now wen’t been interested in the factorization indicated in (8.6.1), since we dealt only with differ-
ential equations with specific forcing functions. Hence, we could simply do the indicated multiplication
in (8.6.1) and use the table of Laplace transforms to find y = L™!(Y). However, this isn’t possible if we
want a formula for y in terms of f, which may be unspecified.

To motivate the formula for L™! (FG), consider the initial value problem

y' —ay = f(t), y(0)=0, (8.6.2)

which we first solve without using the Laplace transform. The solution of the differential equation in
(8.6.2) is of the form y = ue?’ where

u =e M f(1).

Integrating this from 0 to # and imposing the initial condition #(0) = y(0) = 0 yields

u:/o e ‘T f(r)dr.

Therefore ) )
y(t) = e“’/ e T f(n)dt = / e f(1) dx. (8.6.3)
0 0

Now we’ll use the Laplace transform to solve (8.6.2) and compare the result to (8.6.3). Taking Laplace
transforms in (8.6.2) yields
(s —a)Y(s) = F(s),

o) |
Y(s) = F(s) :
s—a
which implies that

y(t) =L} (F(s) ! ) . (8.6.4)
S —da

If we now let g(r) = e?’, so that
1
G(s) = :

then (8.6.3) and (8.6.4) can be written as

o) = /O F()glt — 1) dr
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and
y =L7Y(FG),

respectively. Therefore

LY (FG) = /O t fgt —1)de (8.6.5)

in this case.
This motivates the next definition.

Definition 8.6.1 The convolution f * g of two functions f and g is defined by

(f %)) = /0 F(D)gl — 1) dr.

It can be shown (Exercise 6) that f * g = g * f; that s,

/f(f—f)g(f)dfzf f(r)gt —1)dr.
0 0

Eqn. (8.6.5) shows that L™ (FG) = f % g in the special case where g(t) = e%’. This next theorem
states that this is true in general.

Theorem 8.6.2 [The Convolution Theorem| If L(f) = F and L(g) = G, then
L(f xg)=FQG.
A complete proof of the convolution theorem is beyond the scope of this book. However, we’ll assume

that f * g has a Laplace transform and verify the conclusion of the theorem in a purely computational
way. By the definition of the Laplace transform,

L(f*g) = /O eS(f % g)(1) di = /O e /O F@gt — v dr dr.

This iterated integral equals a double integral over the region shown in Figure 8.6.1. Reversing the order
of integration yields

L(f *g) =/O f(r)/ elg(t —1)dtdr. (8.6.6)

However, the substitution x = t — 7 shows that
o0 o0
/ e Slg(t —1)dt = / e 0D o (x) dx
T 0
o0
= e / e Xg(x)dx = e TG (s).
0
Substituting this into (8.6.6) and noting that G (s) is independent of 7 yields

L(fxg) = /O TG (s) d e

G(s) /Oooe_”f(t)dt = F(s)G(s).
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\J

Figure 8.6.1

Example 8.6.1 Let
ft)=e* and g(t) = e (a #b).
Verify that L(f * g) = L(f)L(g), as implied by the convolution theorem.

Solution We first compute

4 t
(f*g)(t) = /ea‘reb(t—r)dz_ = ebt e(a—b)rdf

0
bt e(a—b)r t ebt [e(a—b)t o 1]
B a-b |, a—>b
eat _ebt
N a—>b
Since
at 1 bt 1
e < and e”" < b’
s—a s —
it follows that
1 1 1
L * = —
(/*8) a—b[s—a s—bi|
-~ 1
 (s—a)s—b)

L(e“)L(e"") = L(f)L(g).
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A Formula for the Solution of an Initial Value Problem

The convolution theorem provides a formula for the solution of an initial value problem for a linear
constant coefficient second order equation with an unspecified. The next three examples illustrate this.

Example 8.6.2 Find a formula for the solution of the initial value problem

y'=2y'+y=f@), y0)=ko y'(0)=ki.

Solution Taking Laplace transforms in (8.6.7) yields

(52 =25+ 1)Y(s) = F(s) + (k1 + kos) — 2ko.

Therefore
1 k1 + kos — 2kg
Y = F
1 ko k1 —ko
= a .
-1 FOF Tt o

From the table of Laplace transforms,
I ko ki1 —ko
s—1  (s—1)2

Since
1

(s —1)?

the convolution theorem implies that

Lt ((S_ll)zF(s)) = /Ot e’ f(t —1)dr.

Therefore the solution of (8.6.7) is

< te! and F(s) < f(1),

t

y(t) = e’ (ko + (k1 — ko)1) +/O te" f(t —1)dr.

Example 8.6.3 Find a formula for the solution of the initial value problem

V' +4y = f(t), y0) =ko, y'(0)=ki.

Solution Taking Laplace transforms in (8.6.8) yields
(s2 + 4)Y(s) = F(s) + k1 + kos.
Therefore

k1 + kos

Y(s) = .
(®) 5244

(s2+4) Fs) +

From the table of Laplace transforms,

I (kl + kos

k
= ko cos2t + ! sin 2.
5244 2

) — o' (ko + (ki — ko).

(8.6.7)

(8.6.8)
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Since
1

(s2 4+ 4)

the convolution theorem implies that

- 1 L[ .
L 1((S2+4)F(s)) = 2/0 f(@t—1)sin2tdr.

Therefore the solution of (8.6.8) is

1
<~ ) sin2t and  F(s) < f(1),

k 1 [
y(t) = kocos2t + 21 sin2¢ + 2/ f(t —t)sin2tdr.
0

Example 8.6.4 Find a formula for the solution of the initial value problem

y'+2y +2y = f(t), y(0)=ko. y'(0)=ki. (8.6.9)

Solution Taking Laplace transforms in (8.6.9) yields
(52 + 25 + 2)Y(s) = F(s) + k1 + kos + 2ko.

Therefore
k1 + kos + 2k
(s+1D2+1

(k1 4+ ko) + ko(s + 1)
s+D2+1

1
Ye) = (s+1)2+1F(S)+

1
= F(s) +
(s+12+1 (s)
From the table of Laplace transforms,

11 ((k1 + ko) + ko(s +1)

(s+1)2+1 ):e_t((kl+k0)Sinl+kQCOSI).

Since
1

<~
(s+1D2+1
the convolution theorem implies that

_ 1 ! .
L 1((s+1)2+1F(S)) :/0 f(t—1)e “sintdr.

e 'sint and F(s) < f(1),

Therefore the solution of (8.6.9) is

t
y(t) = e " ((ky + ko)sint + kgcost) + / f(t—t)e Fsintdr. (8.6.10)
0

Evaluating Convolution Integrals

We’ll say that an integral of the form f(; u(t)v(t — t)drt is a convolution integral. The convolution
theorem provides a convenient way to evaluate convolution integrals.
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Example 8.6.5 Evaluate the convolution integral

h(t) = /Ot(t —1)’c’dr.

Solution We could evaluate this integral by expanding (t — 7)> in powers of 7 and then integrating.
However, the convolution theorem provides an easier way. The integral is the convolution of f(¢) = ¢°
and g(¢) = t”. Since

5! 7!
5 7
t <—>S6 and ¢ <—>S8,
the convolution theorem implies that
5170 5171 13!
h(t) < s14 7131 5147

where we have written the second equality because

13! 13
(14 1
Hence,
517!
h(t) = 13,
@) 13!

Example 8.6.6 Use the convolution theorem and a partial fraction expansion to evaluate the convolution
integral

h(t) = /Ot sina(t —t)cosbtdt (|la| # |b]).

Solution Since 4
sinat <> and cosht < ,
52 +a? 52 + b?
the convolution theorem implies that

a N

H(s) = .
(®) s2 +a? 5% + b2

Expanding this in a partial fraction expansion yields

a s s
H(s) = — .
(s) b% —a? [s2+a2 s2+b2:|

Therefore u
h(t) = b2 — g2 (cosat —cosbt).
Volterra Integral Equations

An equation of the form

y(t) = f(t) +/0 k(t —t)y(r)dt (8.6.11)
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is a Volterra integral equation. Here f and k are given functions and y is unknown. Since the integral
on the right is a convolution integral, the convolution theorem provides a convenient formula for solving
(8.6.11). Taking Laplace transforms in (8.6.11) yields

Y(s) = F(s) + K(5)Y(s),

and solving this for Y (s) yields
F(s)
Y(s) = .
)= _ k)

We then obtain the solution of (8.6.11) as y = L™1(Y).

Example 8.6.7 Solve the integral equation

t
y(it) =1+ 2/ e 2=y () dr. (8.6.12)
0

Solution Taking Laplace transforms in (8.6.12) yields

1 2
Y(s)= + Y(s),
() s s+2 (s)
and solving this for Y (s) yields
1 2
Y(s)= + .
s s
Hence,
y(@) =142t

Transfer Functions

The next theorem presents a formula for the solution of the general initial value problem

ay”" +by" +cy = f(t), y0)=ko, y'(0)=ki,

where we assume for simplicity that f is continuous on [0, co) and that L( f) exists. In Exercises 11-14
it’s shown that the formula is valid under much weaker conditions on f.

Theorem 8.6.3 Suppose f is continuous on [0, 00) and has a Laplace transform. Then the solution of
the initial value problem

ay” + by +cy = f(t), y©0) =ko, y'(0)=ki, (8.6.13)
is ,
y(t) = koy1(t) + k1y2(t) + / w(t) f(t —1)dr, (8.6.14)
0
where y1 and y, satisfy
ay{ + byl +cy1 =0, y1(0) =1, y{(0)=0, (8.6.15)
and
ayy +bys +cy2 =0, y2(0) =0, y5(0) =1, (8.6.16)
and .
w(t) = ya(1). (8.6.17)

a
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Proof Taking Laplace transforms in (8.6.13) yields

p()Y(s) = F(s) + a(ky + kos) + bko,

where
p(s) = as®> + bs +c.
Hence,
Y(s) = W(s)F(s) + V(s) (8.6.18)
with |
W(s) = (8.6.19)
p(s)
and ki + kos) + bk
y(sy = A1+ kos) + bko. (8.6.20)
p(s)

Taking Laplace transforms in (8.6.15) and (8.6.16) shows that

p(s)Yi(s) =as+b and p(s)Ya(s) =a.

Therefore b
as +
Yi(s) =
1(s) 2(5)
and u
Ya(s) = . (8.6.21)
p(s)

Hence, (8.6.20) can be rewritten as
V(s) = koY1(s) + k1Y2(s).

Substituting this into (8.6.18) yields

Y(s) = koY1(s) + k1 Ya(s) + ;Yz(S)F(S).

Taking inverse transforms and invoking the convolution theorem yields (8.6.14). Finally, (8.6.19) and
(8.6.21) imply (8.6.17).
It is useful to note from (8.6.14) that y is of the form

y=v+h,

where
v(t) = koy1(?) + k1y2(t)

depends on the initial conditions and is independent of the forcing function, while

h(t) = /(;tw(l')f(t —1)drt

depends on the forcing function and is independent of the initial conditions. If the zeros of the character-
istic polynomial
p(s) =as®> +bs+c
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of the complementary equation have negative real parts, then y; and y, both approach zero as t — oo,
0 lim;—eo v(t) = O for any choice of initial conditions. Moreover, the value of h(z) is essentially
independent of the values of f (¢t — t) for large t, since lim; o, w(7) = 0. In this case we say that v and
h are transient and steady state components, respectively, of the solution y of (8.6.13). These definitions
apply to the initial value problem of Example 8.6.4, where the zeros of

pis)=s+2s+2=(s+ 1) +1

are —1 £ i. From (8.6.10), we see that the solution of the general initial value problem of Example 8.6.4
is y = v + h, where
v(t) = e " ((k1 + ko) sint + ko cost)

is the transient component of the solution and

h(t) = /Ot f({t—1)e Fsintdr

is the steady state component. The definitions don’t apply to the initial value problems considered in
Examples 8.6.2 and 8.6.3, since the zeros of the characteristic polynomials in these two examples don’t
have negative real parts.

In physical applications where the input f and the output y of a device are related by (8.6.13), the
zeros of the characteristic polynomial usually do have negative real parts. Then W = L(w) is called the
transfer function of the device. Since

H(s) = W(s)F(s).

we see that

is the ratio of the transform of the steady state output to the transform of the input.
Because of the form of

W) = /O w(R) (i — ) dr.

w is sometimes called the weighting function of the device, since it assigns weights to past values of the
input f. It is also called the impulse response of the device, for reasons discussed in the next section.

Formula (8.6.14) is given in more detail in Exercises 8—10 for the three possible cases where the zeros
of p(s) are real and distinct, real and repeated, or complex conjugates, respectively.

8.6 Exercises

1. Express the inverse transform as an integral.

1 )
@ 22 1 4 ® 1262 +9)
S S
2+ 6219 NCERIE
1 1
(© s(s —a) ® s+ D(s2+2s+2)
1 1

(h)

® (41202 + 45 4 5) (s — 1)3(s + 2)2
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s—1
§2(s2 =25 +2)
1
(s —3)3s0
1
s2(s —2)3

(@
(k)

(m)

2. Find the Laplace transform.
t
(a) / sinatcosh(t —1)drt
0
t
(¢ / sinhat cosha(t —t)dt
0
t
(e) e’ / sinwtcosw(t —1)dt
0
t
(@e’ / e "rcosw(t —1)dt
0
t
i) / te?sin2(t — 1) dt
0
t
(k) / %~ Din 3(t—1)drt
0

t
(m)/ (t—1)e "sin2tdr
0

s(s +3)
(s2 + 4)(s2 + 65 + 10)
1
(5= 1362 +4)
1
s7(s —2)°

@
()

(m)

(b) /Otefsina(z—f)df

(d /Ot T(t — 1) sinwtcosw(t —t)dt
() e’ /Ot 2(t —1)etdr

(h) e’ /O t e>Tsinh(t — 1) dt

() /(;t(l—f)3erdt

) /Ot 2t —1)dr

t
(n)/ (t—1)*sin2tdt
0

3. Find a formula for the solution of the initial value problem.

(@y"+3y' +y=f@), y0) =0,
y'(0) =0

(b) y" +4y = f(), y(0) =0,

©y'+2y'+y=f@), y0)=0,
)y +k*y = f(1), y©0) =1,
(e) y" +6y +9y = f(t), y0)=0,
y'(0) =3

® y"—4y = f(t), y(0)=0,

8y =5"+6y=f(t), y0) =1,
() y" +w*y = f(t). y(0) = ko.

4. Solve the integral equation.

(@) (1) = 1 — /O (t — Oy de

y'(0) =0

y'(0) =0

y'(0) =—1

y'(0) =-2

y'(0)=3

y'(0) = k;

(b) y(t) = sint — Z/t cos(t —1)y(r)dt
0

t

) y(t):1+2/0 y(t)cos(t —t)dt (d)y(t)=t+/0 y()e D dr

ey ()=t +/0 y(t)cos(t —1)dt, y(0) =4



S.

10.

Section 8.6 Convolution
t
(f) y(t) = cost —sint + / y(t)sin(t —1)dt
0

Use the convolution theorem to evaluate the integral.
t t
(a)/ (t—1)%dr (b)/ (t—0)B37de
0 0
t t
(c) / (t—1)°c"dr (d) / e Tsin(t —1)dt
0 0

t
(e) / sintcos2(t —t)dt
0

Show that . .
/ £t - Dg0)dr = / F@gt 1) de
0 0

by introducing the new variable of integration x = ¢ — t in the first integral.

Use the convolution theorem to show that if f(z) <> F(s) then

/t f(r)ydr < F(S).
0 N

Show that if p(s) = as? + bs + c has distinct real zeros r1 and r; then the solution of

ay” +by" +cy = f(t), y0) =ko, y'(0)=k
is

rit rat rat rit
rpe —rpe e —e
y(t) = ko + k1
rp —rp rp —rp

1 ! rt __ ,rt _
+a(r2—r1)/0(e e f(t—1)dr.

Show that if p(s) = as? + bs + ¢ has a repeated real zero r; then the solution of
ay” +by' +cy = f(), y©) =ko. y'(0) =k
is
1 t
y(t) = ko(l —rit)e™ + kyte™ + / e T f(t —1)dr.
alo

Show that if p(s) = as? + bs + ¢ has complex conjugate zeros A % i then the solution of
ay” + by’ +cy=f(). y0) =ko. y(0) =k
is

A k
y(i) = P [ko(cos wt —  sinwt) + ! sina)ti|
w W

1 t
+ / M f(t —1)sinwrdr.
aw Jo

451
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11.

12.

Let

1
w=L""! ,
(as2+bs+c)

where a, b, and ¢ are constants and a # 0.

(a) Show that w is the solution of
1
aw”" +bw' +cw =0 w0 =0, w(0)= .
a

(b) Let f be continuous on [0, co) and define

h(t)z/o w( —1)f(r)dr.

Use Leibniz’s rule for differentiating an integral with respect to a parameter to show that / is
the solution of
ah” +bh" +ch=f, h(0) =0, HK(0) =0.

(c) Show that the function y in Eqn. (8.6.14) is the solution of Eqn. (8.6.13) provided that f is
continuous on [0, 00); thus, it’s not necessary to assume that f has a Laplace transform.

Consider the initial value problem
ay” +by' +cy = f(@), y©) =0, y'(0)=0, (A)
where a, b, and ¢ are constants, a # 0, and
Jo@), 0=t <1,
hH@),  rzn.

Assume that fy is continuous and of exponential order on [0, c0) and f; is continuous and of
exponential order on [t, 00). Let

f@) =

p(s) = as®> + bs +c.
(a) Show that the Laplace transform of the solution of (A) is

Y(s) = Fo(s) 4;7 Z‘)”lG(s)

where g(1) = fi(t +11) — fo(t + 11).

(b) Let w be as in Exercise 11. Use Theorem 8.4.2 and the convolution theorem to show that the
solution of (A) is

y(t) :/ w(t—t)fo(t)dt+u(t—t1)/ _lw(t—tl—t)g(t)dt
0 0
fort > 0.

(¢) Henceforth, assume only that fy is continuous on [0, 00) and f; is continuous on [t1, 00).
Use Exercise 11 (a) and (b) to show that

y’(t):/O w’(t—t)fo(t)dt+u(t—t1)/0_lw’(t—tl—t)g(t)dt
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14.
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fort > 0, and

y'(@t) = SO +/ w'(t — 1) fo(r)dr +u(t—t1)/ o w'(t—t —1)g(t)dt
a 0 0

forO <t < t; and t > t1. Also, show y satisfies the differential equation in (A) on(0, #1)
and (11, 00).
(d) Show that y and y’ are continuous on [0, o).

Suppose
Jo), 0=t <1,
[, n =t <,
fo) = :
Je—1(0), ti—1 <1 <1,
Je@). =1,
where f,, is continuous on [t,,, 00) form = 0, ...,k (let to = 0), and define

gm(t) = ft +tm) — frn—1(t +tm), m=1,... k.
Extend the results of Exercise 12 to show that the solution of
ay” +by' +cy = f(@t), y0) =0, y'(0)=0
is
t k t—tm
y() = / w(t —1)folr)dr + Z u(t — tm)/ Wt —ty —1)gm(r)dr.
0 1 0

Let {t,,}5r_, be a sequence of points such that tg = 0, t;41 > t, and limy 0ty = oo. For
each nonegative integer m let f,, be continuous on [t,,, 00), and let f be defined on [0, co) by

f@)= fu@®), tm<t<tmy1 m=0,1,2....

Let
gm(t) = fm(t + tm) _fm—l(l +ty), m=1,... k.

Extend the results of Exercise 13 to show that the solution of
ay” +by' +cy = f(t), y0) =0, y(0)=0
is

y0 = [(wa—0f@dr+ Yt =) [ 0= = Den @ dr,
m=1

HINT: See Exercise30.

8.7 CONSTANT COEFFICIENT EQUATIONS WITH IMPULSES

So far in this chapter, we’ve considered initial value problems for the constant coefficient equation

ay” + by +cy = f(),
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where f is continuous or piecewise continuous on [0, 00). In this section we consider initial value prob-
lems where f represents a force that’s very large for a short time and zero otherwise. We say that such
forces are impulsive. Impulsive forces occur, for example, when two objects collide. Since it isn’t feasible
to represent such forces as continuous or piecewise continuous functions, we must construct a different
mathematical model to deal with them.

If f is an integrable function and f'(r) = 0 for 7 outside of the interval [fo, fo + /], then |, ;0+h f(t)dt
is called the toral impulse of f. We’re interested in the idealized situation where / is so small that the
total impulse can be assumed to be applied instantaneously at ¢ = 9. We say in this case that f is an
impulse function. In particular, we denote by (¢ — o) the impulse function with total impulse equal to
one, applied at ¢ = t9. (The impulse function §(¢) obtained by setting #o = 0 is the Dirac § function.) It
must be understood, however, that §(¢ — #¢) isn’t a function in the standard sense, since our “definition”
implies that §(r — t9) = 0if t # 1o, while

40)
/ 8(t —to)dt = 1.
40)

From calculus we know that no function can have these properties; nevertheless, there’s a branch of
mathematics known as the theory of distributions where the definition can be made rigorous. Since the
theory of distributions is beyond the scope of this book, we’ll take an intuitive approach to impulse
functions.

Our first task is to define what we mean by the solution of the initial value problem

ay” + by +cy =38t —to), y©0)=0, y(©0) =0,
where 1y is a fixed nonnegative number. The next theorem will motivate our definition.

Theorem 8.7.1 Suppose tg > 0. For each positive number h, let yy, be the solution of the initial value
problem

ayy + by, +cyn = fu®),  yn(0) =0, y,(0)=0, (8.7.1)

where
0, 0<t<ty,

Ja() =4 1/h, to <t <to+h, (8.7.2)
0, t>to+h,
so [y, has unit total impulse equal to the area of the shaded rectangle in Figure 8.7.1. Then

lim yu(t) = u(t —to)w(t — to), (8.7.3)
h—0+
where
w=L"" !
N as>+bs+c)’
Proof Taking Laplace transforms in (8.7.1) yields
(as? 4 bs + ¢)Y;,(s) = Fy(s),

SO
Fy(s)

Yi(s) = .
n(s) as?+bs+c

The convolution theorem implies that

yu(1) :/0 w(t —1)fr(r)dr.
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I

1‘0 to+h
Figure 8.7.1 y = f5(t)
Therefore, (8.7.2) implies that
0, 0<t<ty,
1 t
yh([): h/ w(t_‘[)dtv t05t5t0+ha
0]

1 to+h
h/ w(t —1)dt, t>ty+h.
40)

Since y, (1) = 0 forall 1 if 0 <t < tg, it follows that

lim yh(l) =0 if 0<t<t.
h—0+

We’ll now show that
lim y,(t) = w( —1to) if > to.
h—0+

Suppose ¢ is fixed and ¢ > #9. From (8.7.4),

1 to+h
yu(t) = / w(—1)dt if h<t—ty.
h Jy,

1 to+h
/ dt =1,
h o

Since

we can write

1 to+h 1 to+h
w(t —ty) = hw(z—to)/ dt = h/ w(t —ty)dr.
1) 1)

455

(8.7.4)

(8.7.5)

(8.7.6)

(8.7.7)

(8.7.8)
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From this and (8.7.7),

1 to+h
() —wlt — 1) = h/ (Wit — 1) — w(t — 1)) dr.

Therefore
1 to+h
@ ==l <, [ w0 - we-w)d (879)
40)
Now let M}, be the maximum value of |w(t — t) — w(t — to)| as t varies over the interval [to, to + h].
(Remember that 7 and ¢ are fixed.) Then (8.7.8) and (8.7.9) imply that

1 to+h
lyn() —w(t —1o)| < th/ dt = M,. (8.7.10)

to

But limy, g+ Mj = 0, since w is continuous. Therefore (8.7.10) implies (8.7.6). This and (8.7.5) imply
(8.7.3).
Theorem 8.7.1 motivates the next definition.

Definition 8.7.2 If 7y > 0, then the solution of the initial value problem
ay” + by +cy=68(t —t9), y(0)=0, () =0, (8.7.11)

is defined to be
y =u(t —to)w(t — to),

1
=L .
v (asz—}—bs—}—c)

In physical applications where the input f* and the output y of a device are related by the differential
equation

where

ay” +by +cy = f(),

w is called the impulse response of the device. Note that w is the solution of the initial value problem
aw” +bw' +cw =0, w0)=0, w(0)=1/a, (8.7.12)

as can be seen by using the Laplace transform to solve this problem. (Verify.) On the other hand, we can
solve (8.7.12) by the methods of Section 5.2 and show that w is defined on (—o0, c0) by
erzt _ erlt 1

1
w= w= te", or w= eMsinwr, (8.7.13)

a(r—r)’ a aw

depending upon whether the polynomial p(r) = ar?+ br +c has distinct real zeros r; and r,, a repeated
zero r, or complex conjugate zeros A £7w. (In most physical applications, the zeros of the characteristic
polynomial have negative real parts, so lim; o w(¢) = 0.) This means that y = u(t — to)w(t — to) is
defined on (—o0, 0o) and has the following properties:

y@it) =0, t<t,

ay’ +by +cy=0 on (—oo,tp) and (ty,0o0),

and
V() =0, Y, (o) =1/a (8.7.14)
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Figure 8.7.2 An illustration of Theorem 8.7.1

(remember that y’ (o) and y’, (t9) are derivatives from the right and left, respectively) and y’(9) does not
exist. Thus, even though we defined y = u(t — to)w (¢ — t9) to be the solution of (8.7.11), this function
doesn’t satisfy the differential equation in (8.7.11) at 1y, since it isn’t differentiable there; in fact (8.7.14)
indicates that an impulse causes a jump discontinuity in velocity. (To see that this is reasonable, think of
what happens when you hit a ball with a bat.) This means that the initial value problem (8.7.11) doesn’t
make sense if 7y = 0, since y'(0) doesn’t exist in this case. However y = u(f)w() can be defined to be
the solution of the modified initial value problem

ay” +by +cy=468(t), y0)=0, y (0)=0,

where the condition on the derivative at # = 0 has been replaced by a condition on the derivative from the
left.

Figure 8.7.2 illustrates Theorem 8.7.1 for the case where the impulse response w is the first expression
in (8.7.13) and r; and r; are distinct and both negative. The solid curve in the figure is the graph of w.
The dashed curves are solutions of (8.7.1) for various values of i. As h decreases the graph of y;, moves
to the left toward the graph of w.

Example 8.7.1 Find the solution of the initial value problem
y' =2y +y=8(t—1). y0)=0, y'(0)=0, (8.7.15)

where 79 > 0. Then interpret the solution for the case where 79 = 0.

w=L"! ! =L"! ! =te”!
s2—2s+1 (s —1)2 '

Solution Here
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0.2 —

Figure 8.7.3 y = u(t — to)(t — to)e 10

so Definition 8.7.2 yields
y =u(t —10)(t — to)e 71

as the solution of (8.7.15) if 1o > 0. If 7o = 0, then (8.7.15) doesn’t have a solution; however, y =
u(t)te™" (which we would usually write simply as y = te™") is the solution of the modified initial value
problem

Y'=2y'+y=45@0). y0) =0, y.(0)=0.
The graph of y = u(t — t9)(t — to)e~“~) is shown in Figure 8.7.3
Definition 8.7.2 and the principle of superposition motivate the next definition.

Definition 8.7.3 Suppose « is a nonzero constant and f is piecewise continuous on [0, co). If 7o > 0,
then the solution of the initial value problem

ay” +by +cy = f(t) +adt —to), y(0) =ko. y'(0) =k
is defined to be
y(1) = @) + au(t —to)w(t —to),
where y is the solution of
ay” +by +cy = f(). y(0)=ko. y'(0)=ki.
This definition also applies if 7o = 0, provided that the initial condition y’(0) = k; is replaced by
yL(0) = ki.

Example 8.7.2 Solve the initial value problem

V' 46y +5y =3¢ +28(t—1), y(0)=-3, ' (0)=2. (8.7.16)
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Solution We leave it to you to show that the solution of
Y +6y +5y =3, y(0)=-3,y(0)=2
is 5
A2t -5t 2 —t
y =—e + e 2e
Since :
w(t) = L™t = Lt ( )
® ( +6s+5) s+ D(s+5)
el — o5t
= L 1 =
(s +1 s+ 5) 4 '
the solution of (8.7.16) is
1 5 —(@-1) _ ,—50@-1)
y=—e 4 e = e - ¢ 2e (8.7.17)

(Figure 8.7.4)

Figure 8.7.4 Graph of (8.7.17) Figure 8.7.5 Graph of (8.7.19)

Definition 8.7.3 can be extended in the obvious way to cover the case where the forcing function

contains more than one impulse.

Example 8.7.3 Solve the initial value problem

Y +y=1+4+28t—m)—38(t—2m), y0)=—1, y'(0) =2. (8.7.18)

Solution We leave it to you to show that

y=1—2cost + 2sint

is the solution of
i

yVi+y=1 y0)=-1, y(©0) =2

w—L_l( ! )—sint
N s24+1) ’

Since
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the solution of (8.7.18) is

y = 1—=2cost +2sint + 2u(t — m)sin(t — ) — 3u(t — 27) sin(t — 27)
1 —2cost +2sint —2u(t — ) sint — 3u(t — 2m) sint,
or
1—2cost +2sint, 0<t <m,
y = 1 —2cost, T <t<2m, (8.7.19)
1—2cost —3sint, t>2m

(Figure 8.7.5).
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8.7 Exercises
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In Exercises 1-20 solve the initial value problem. Where indicated by C/G , graph the solution.

1
2
3
4
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.
22,
23.
24.
25.

V' 4+ 3y 42y = 6e? +28(t —1), y0)=2, y'(0)=-6
C/IG y'+y =2y =—10e"" + 55 —1), y0)=7, y(0)=-9
y'—dy =27 +58(t —1), y0)=-1, y'(0)=2
C/G y" 4y =sin3t +25(t —x/2), y0)=1, y(0)=-1
y'+4y =448 —3m), y0)=0, y©0) =1
y'—y=8+25(t—-2), y0)=-1, y'(0) =1
Y'+y =e" +35t—6), y0)=-1, y(0) =4
V' 4+ dy =8e? +8(t —m/2), y(0)=38, y(0)=0
CIG y"4+3y'+2y=146¢—-1), y0) =1, y(©0)=-1
Y'+2y +y=e +250t—-2), y0)=-1, y(0)=2
C/IG y" + 4y =sint +8(t —/2), y(0) =0, y(0)=2
Y +2y +2y =8(t —m)—38(t —2m), y(0)=-—1, y'(0)=2
Y4+ 4y + 13y =8(t —7/6) +28(t —w/3), y(0) =1, »y'(0)=2
2y" =3y’ =2y =148t —-2), y(0)=-1, y'(0)=2
4y” —4y" + 5y = 4sint —4cost + 8(t —n/2) =8t —n), y(O0)=1, Yy (©0)=1
Y+ y =cos2t +28(t —mw/2)—38(t —m), y(0)=0, y(0)=-1
CIG y'—y=4de " —=55(t—1)+35(t—2), y©0) =0, »(©0)=0
Y +2y +y=e =8t —-1)+25t—2), y0)=0, y(0)=-1
y'+y=f@t)+8t—2n), y0) =0, y(0)=1,and

sin2t, 0<t<m,
f) = §

0, t>.

y'+4y = f(t) + 8@t —m) =38t —37/2), y(0) =1, y'(0)=—1,and

I, 0<t<mn/2,
f0 = § 2, t>mn/2
Yi+y=2680. yO) =1y (0)=-2
y'—4y =38(). y(0)=-1. yL(0)=7
y'+3y +2y =-58(t), y(0)=0, y (0)=0
Y'+4y +4y ==8@0), y0)=1, y (0)=5
4y" + 4y +y =38(), yO) =1, y (0)=-6

In Exercises 26-28, solve the initial value problem

0, 0§t<to,
ay] + by, +cyn=14 1/h, t9<t<to+h, yp(0)=0, y,(0)=0,
0, t2t0+h,
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where to > 0 and h > 0. Then find

1
=L7!
v (as2+bs+c)

and verify Theorem 8.7.1 by graphing w and yy, on the same axes, for small positive values of h.

26.
27.

28.
29.

30.

L y"+2y +2y = fu(t), y0)=0, »y'(0)=0
L y'"+2y' +y=fut), y©0)=0, »(0)=0
L y"+3y' +2y = fu(t), y(©0)=0, »(©0)=0

Recall from Section 6.2 that the displacement of an object of mass m in a spring—mass system in
free damped oscillation is

my" +cy' +ky =0, y(©0) =yo. y'(0)=nwo.
and that y can be written as
y = Re™!/2" cos(wit — )

if the motion is underdamped. Suppose y(r) = 0. Find the impulse that would have to be applied
to the object at # = t to put it in equilibrium.

Solve the initial value problem. Find a formula that does not involve step functions and represents
¥ on each subinterval of [0, c0) on which the forcing function is zero.

@y’ —y =7 8-k, y0)=0 Y0 =1
k=1

(b)Y +y =) 8t—2m), y0)=0 y(©) =1
k=1

©)" =3y +2y =) 86—k, y0)=0. YO =1
k=1

@y +y=> 8¢—kr), y©0)=0, y(©0)=0
k=1
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S@)

tn

(n = integer > 0)

t?, p>—1

at

tneat

(n = integer > 0)

cos wt

sin wt
eM cos wt
eM sinwt

cosh bt

sinh bt

1 coswt

F(s)

n!
(S _ a)n+1

s
52 + w?
13
52 + w?
s—A
(s —2)? + w?
1)
(s —21)? + w?
s
§2 _ b2
b
§2 _ b2
§2— w?
(52 + w?)?

Section 8.8 A Brief Table of Laplace Transforms

(s >0)

(s >0)

(s >0)

(s >0)

(s >0)

(s >0)

(s > A1)

(s > A1)

(s > |b])

(s > |b])

(s >0)
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. 2ws
t sin wt (52 + 02)? (s >0)
3
sinwt — wt cos wt (s2 iwa)z)z (s >0)
. w?
wt — sin wt §2(s2 + w?)? (s >0)
1. w
; sin wt arctan ( s ) (s >0)
e f(1) F(s—a)
* () DFF® ()
f(wt) ;F(;), w >0
u(t — 1) e (s > 0)
s
u(t —tv)f(t —1)(r >0) e T F(s)
| 1@ =na F(s)-G(s)

3(t —a) e 48 (s >0)



