
CHAPTER 8
Laplace Transforms

IN THIS CHAPTER we study the method of Laplace transforms, which illustrates one of the basic prob-

lem solving techniques in mathematics: transform a difficult problem into an easier one, solve the lat-

ter, and then use its solution to obtain a solution of the original problem. The method discussed here

transforms an initial value problem for a constant coefficient equation into an algebraic equation whose

solution can then be used to solve the initial value problem. In some cases this method is merely an

alternative procedure for solving problems that can be solved equally well by methods that we considered

previously; however, in other cases the method of Laplace transforms is more efficient than the methods

previously discussed. This is especially true in physical problems dealing with discontinuous forcing

functions.

SECTION 8.1 defines the Laplace transform and developes its properties.

SECTION 8.2 deals with the problem of finding a function that has a given Laplace transform.

SECTION 8.3 applies the Laplace transform to solve initial value problems for constant coefficient second

order differential equations on .0;1/.

SECTION 8.4 introduces the unit step function.

SECTION 8.5 uses the unit step function to solve constant coefficient equations with piecewise continu-

ous forcing functions.

SECTION 8.6 deals with the convolution theorem, an important theoretical property of the Laplace trans-

form.

SECTION 8.7 introduces the idea of impulsive force, and treats constant coefficient equations with im-

pulsive forcing functions.

SECTION 8.8 is a brief table of Laplace transforms.
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394 Chapter 8 Laplace Transforms

8.1 INTRODUCTION TO THE LAPLACE TRANSFORM

Definition of the Laplace Transform

To define the Laplace transform, we first recall the definition of an improper integral. If g is integrable

over the interval Œa; T � for every T > a, then the improper integral of g over Œa;1/ is defined as

Z 1

a

g.t/ dt D lim
T!1

Z T

a

g.t/ dt: (8.1.1)

We say that the improper integral converges if the limit in (8.1.1) exists; otherwise, we say that the

improper integral diverges or does not exist. Here’s the definition of the Laplace transform of a function

f .

Definition 8.1.1 Let f be defined for t � 0 and let s be a real number: Then the Laplace transform of f

is the function F defined by

F.s/ D
Z 1

0

e�st f .t/ dt; (8.1.2)

for those values of s for which the improper integral converges:

It is important to keep in mind that the variable of integration in (8.1.2) is t , while s is a parameter in-

dependent of t . We use t as the independent variable for f because in applications the Laplace transform

is usually applied to functions of time.

The Laplace transform can be viewed as an operator L that transforms the function f D f .t/ into the

function F D F.s/. Thus, (8.1.2) can be expressed as

F D L.f /:

The functions f and F form a transform pair, which we’ll sometimes denote by

f .t/ $ F.s/:

It can be shown that if F.s/ is defined for s D s0 then it’s defined for all s > s0 (Exercise 14(b)).

Computation of Some Simple Laplace Transforms

Example 8.1.1 Find the Laplace transform of f .t/ D 1.

Solution From (8.1.2) with f .t/ D 1,

F.s/ D
Z 1

0

e�st dt D lim
T!1

Z T

0

e�st dt:

If s ¤ 0 then Z T

0

e�st dt D �1

s
e�st

ˇ̌̌T
0
D 1 � e�sT

s
: (8.1.3)

Therefore

lim
T!1

Z T

0

e�st dt D
(

1

s
; s > 0;

1; s < 0:
(8.1.4)
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If s D 0 the integrand reduces to the constant 1, and

lim
T!1

Z T

0

1 dt D lim
T!1

Z T

0

1 dt D lim
T!1

T D1:

Therefore F.0/ is undefined, and

F.s/ D
Z 1

0

e�st dt D 1

s
; s > 0:

This result can be written in operator notation as

L.1/ D 1

s
; s > 0;

or as the transform pair

1 $ 1

s
; s > 0:

REMARK: It is convenient to combine the steps of integrating from 0 to T and letting T !1. Therefore,

instead of writing (8.1.3) and (8.1.4) as separate steps we write

Z 1

0

e�st dt D �1

s
e�st

ˇ̌̌1
0
D
(

1

s
; s > 0;

1; s < 0:

We’ll follow this practice throughout this chapter.

Example 8.1.2 Find the Laplace transform of f .t/ D t .

Solution From (8.1.2) with f .t/ D t ,

F.s/ D
Z 1

0

e�st t dt: (8.1.5)

If s ¤ 0, integrating by parts yieldsZ 1

0

e�st t dt D � te�st

s

ˇ̌̌
ˇ
1

0

C 1

s

Z 1

0

e�st dt D �
�

t

s
C 1

s2

�
e�st

ˇ̌̌
ˇ
1

0

D
(

1

s2
; s > 0;

1; s < 0:

If s D 0, the integral in (8.1.5) becomesZ 1

0

t dt D t2

2

ˇ̌̌
ˇ
1

0

D1:

Therefore F.0/ is undefined and

F.s/ D 1

s2
; s > 0:

This result can also be written as

L.t/ D 1

s2
; s > 0;

or as the transform pair

t $ 1

s2
; s > 0:
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Example 8.1.3 Find the Laplace transform of f .t/ D eat , where a is a constant.

Solution From (8.1.2) with f .t/ D eat ,

F.s/ D
Z 1

0

e�st eat dt:

Combining the exponentials yields

F.s/ D
Z 1

0

e�.s�a/t dt:

However, we know from Example 8.1.1 thatZ 1

0

e�st dt D 1

s
; s > 0:

Replacing s by s � a here shows that

F.s/ D 1

s � a
; s > a:

This can also be written as

L.eat / D 1

s � a
; s > a; or eat $ 1

s � a
; s > a:

Example 8.1.4 Find the Laplace transforms of f .t/ D sin !t and g.t/ D cos !t , where ! is a constant.

Solution Define

F.s/ D
Z 1

0

e�st sin !t dt (8.1.6)

and

G.s/ D
Z 1

0

e�st cos !t dt: (8.1.7)

If s > 0, integrating (8.1.6) by parts yields

F.s/ D �e�st

s
sin !t

ˇ̌̌1
0
C !

s

Z 1

0

e�st cos !t dt;

so

F.s/ D !

s
G.s/: (8.1.8)

If s > 0, integrating (8.1.7) by parts yields

G.s/ D �e�st cos !t

s

ˇ̌̌1
0
� !

s

Z 1

0

e�st sin !t dt;

so

G.s/ D 1

s
� !

s
F.s/:

Now substitute from (8.1.8) into this to obtain

G.s/ D 1

s
� !2

s2
G.s/:
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Solving this for G.s/ yields

G.s/ D s

s2 C !2
; s > 0:

This and (8.1.8) imply that

F.s/ D !

s2 C !2
; s > 0:

Tables of Laplace transforms

Extensive tables of Laplace transforms have been compiled and are commonly used in applications. The

brief table of Laplace transforms in the Appendix will be adequate for our purposes.

Example 8.1.5 Use the table of Laplace transforms to find L.t3e4t/.

Solution The table includes the transform pair

tneat $ nŠ

.s � a/nC1
:

Setting n D 3 and a D 4 here yields

L.t3e4t/ D 3Š

.s � 4/4
D 6

.s � 4/4
:

We’ll sometimes write Laplace transforms of specific functions without explicitly stating how they are

obtained. In such cases you should refer to the table of Laplace transforms.

Linearity of the Laplace Transform

The next theorem presents an important property of the Laplace transform.

Theorem 8.1.2 ŒLinearity Property� Suppose L.fi / is defined for s > si ; 1 � i � n/: Let s0 be the

largest of the numbers s1, s2; . . . ,sn ; and let c1, c2,. . . , cn be constants: Then

L.c1f1 C c2f2 C � � � C cnfn/ D c1L.f1/C c2L.f2/C � � � C cnL.fn/ for s > s0:

Proof We give the proof for the case where n D 2. If s > s0 then

L.c1f1 C c2f2/ D
Z 1

0

e�st .c1f1.t/C c2f2.t/// dt

D c1

Z 1

0

e�st f1.t/ dt C c2

Z 1

0

e�st f2.t/ dt

D c1L.f1/C c2L.f2/:

Example 8.1.6 Use Theorem 8.1.2 and the known Laplace transform

L.eat / D 1

s � a

to find L.cosh bt/ .b ¤ 0/.
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Solution By definition,

cosh bt D ebt C e�bt

2
:

Therefore

L.cosh bt/ D L

�
1

2
ebt C 1

2
e�bt

�
D 1

2
L.ebt/C 1

2
L.e�bt / (linearity property)

D 1

2

1

s � b
C 1

2

1

s C b
;

(8.1.9)

where the first transform on the right is defined for s > b and the second for s > �b; hence, both are

defined for s > jbj. Simplifying the last expression in (8.1.9) yields

L.cosh bt/ D s

s2 � b2
; s > jbj:

The First Shifting Theorem

The next theorem enables us to start with known transform pairs and derive others. (For other results of

this kind, see Exercises 6 and 13.)

Theorem 8.1.3 ŒFirst Shifting Theorem� If

F.s/ D
Z 1

0

e�stf .t/ dt (8.1.10)

is the Laplace transform of f .t/ for s > s0, then F.s � a/ is the Laplace transform of eatf .t/ for

s > s0 C a.

PROOF. Replacing s by s � a in (8.1.10) yields

F.s � a/ D
Z 1

0

e�.s�a/t f .t/ dt (8.1.11)

if s � a > s0; that is, if s > s0 C a. However, (8.1.11) can be rewritten as

F.s � a/ D
Z 1

0

e�st
�
eatf .t/

�
dt;

which implies the conclusion.

Example 8.1.7 Use Theorem 8.1.3 and the known Laplace transforms of 1, t , cos !t , and sin !t to find

L.eat /; L.teat/; L.e�t sin !t/; and L.e�t cos !t/:

Solution In the following table the known transform pairs are listed on the left and the required transform

pairs listed on the right are obtained by applying Theorem 8.1.3.
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f .t/ $ F.s/ eatf .t/ $ F.s � a/

1 $ 1

s
; s > 0 eat $ 1

.s � a/
; s > a

t $ 1

s2
; s > 0 teat $ 1

.s � a/2
; s > a

sin !t $ !

s2 C !2
; s > 0 e�t sin !t $ !

.s � �/2 C !2
; s > �

cos !t $ s

s2 C !2
; s > 0 e�t sin !t $ s � �

.s � �/2 C !2
; s > �

Existence of Laplace Transforms

Not every function has a Laplace transform. For example, it can be shown (Exercise 3) thatZ 1

0

e�st et2

dt D 1

for every real number s. Hence, the function f .t/ D et2

does not have a Laplace transform.

Our next objective is to establish conditions that ensure the existence of the Laplace transform of a

function. We first review some relevant definitions from calculus.

Recall that a limit

lim
t!t0

f .t/

exists if and only if the one-sided limits

lim
t!t0�

f .t/ and lim
t!t0C

f .t/

both exist and are equal; in this case,

lim
t!t0

f .t/ D lim
t!t0�

f .t/ D lim
t!t0C

f .t/:

Recall also that f is continuous at a point t0 in an open interval .a; b/ if and only if

lim
t!t0

f .t/ D f .t0/;

which is equivalent to

lim
t!t0C

f .t/ D lim
t!t0�

f .t/ D f .t0/: (8.1.12)

For simplicity, we define

f .t0C/ D lim
t!t0C

f .t/ and f .t0�/ D lim
t!t0�

f .t/;

so (8.1.12) can be expressed as

f .t0C/ D f .t0�/ D f .t0/:

If f .t0C/ and f .t0�/ have finite but distinct values, we say that f has a jump discontinuity at t0, and

f .t0C/ � f .t0�/
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 t
0

 x

 y

 f (t
0
+)

 f (t
0
−)

Figure 8.1.1 A jump discontinuity

is called the jump in f at t0 (Figure 8.1.1).

If f .t0C/ and f .t0�/ are finite and equal, but either f isn’t defined at t0 or it’s defined but

f .t0/ ¤ f .t0C/ D f .t0�/;

we say that f has a removable discontinuity at t0 (Figure 8.1.2). This terminolgy is appropriate since a

function f with a removable discontinuity at t0 can be made continuous at t0 by defining (or redefining)

f .t0/ D f .t0C/ D f .t0�/:

REMARK: We know from calculus that a definite integral isn’t affected by changing the values of its

integrand at isolated points. Therefore, redefining a function f to make it continuous at removable

discontinuities does not change L.f /.

Definition 8.1.4

(i) A function f is said to be piecewise continuous on a finite closed interval Œ0; T � if f .0C/ and

f .T�/ are finite and f is continuous on the open interval .0; T / except possibly at finitely many

points, where f may have jump discontinuities or removable discontinuities.

(ii) A function f is said to be piecewise continuous on the infinite interval Œ0;1/ if it’s piecewise

continuous on Œ0; T � for every T > 0.

Figure 8.1.3 shows the graph of a typical piecewise continuous function.

It is shown in calculus that if a function is piecewise continuous on a finite closed interval then it’s

integrable on that interval. But if f is piecewise continuous on Œ0;1/, then so is e�stf .t/, and thereforeZ T

0

e�stf .t/ dt
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Figure 8.1.3 A piecewise continuous function on

Œa; b�

exists for every T > 0. However, piecewise continuity alone does not guarantee that the improper integral

Z 1

0

e�st f .t/ dt D lim
T!1

Z T

0

e�st f .t/ dt (8.1.13)

converges for s in some interval .s0;1/. For example, we noted earlier that (8.1.13) diverges for all s

if f .t/ D et2

. Stated informally, this occurs because et2

increases too rapidly as t ! 1. The next

definition provides a constraint on the growth of a function that guarantees convergence of its Laplace

transform for s in some interval .s0;1/ .

Definition 8.1.5 A function f is said to be of exponential order s0 if there are constants M and t0 such

that

jf .t/j � Mes0t ; t � t0: (8.1.14)

In situations where the specific value of s0 is irrelevant we say simply that f is of exponential order.

The next theorem gives useful sufficient conditions for a function f to have a Laplace transform. The

proof is sketched in Exercise 10.

Theorem 8.1.6 If f is piecewise continuous on Œ0;1/ and of exponential order s0; then L.f / is defined

for s > s0.

REMARK: We emphasize that the conditions of Theorem 8.1.6 are sufficient, but not necessary, for f to

have a Laplace transform. For example, Exercise 14(c) shows that f may have a Laplace transform even

though f isn’t of exponential order.

Example 8.1.8 If f is bounded on some interval Œt0;1/, say

jf .t/j � M; t � t0;

then (8.1.14) holds with s0 D 0, so f is of exponential order zero. Thus, for example, sin !t and cos !t

are of exponential order zero, and Theorem 8.1.6 implies that L.sin !t/ and L.cos !t/ exist for s > 0.

This is consistent with the conclusion of Example 8.1.4.



402 Chapter 8 Laplace Transforms

Example 8.1.9 It can be shown that if limt!1 e�s0 tf .t/ exists and is finite then f is of exponential

order s0 (Exercise 9). If ˛ is any real number and s0 > 0 then f .t/ D t˛ is of exponential order s0, since

lim
t!1

e�s0t t˛ D 0;

by L’Hôpital’s rule. If ˛ � 0, f is also continuous on Œ0;1/. Therefore Exercise 9 and Theorem 8.1.6

imply that L.t˛/ exists for s � s0. However, since s0 is an arbitrary positive number, this really implies

that L.t˛/ exists for all s > 0. This is consistent with the results of Example 8.1.2 and Exercises 6 and 8.

Example 8.1.10 Find the Laplace transform of the piecewise continuous function

f .t/ D
�

1; 0 � t < 1;

�3e�t ; t � 1:

Solution Since f is defined by different formulas on Œ0; 1/ and Œ1;1/, we write

F.s/ D
Z 1

0

e�st f .t/ dt D
Z 1

0

e�st .1/ dt C
Z 1

1

e�st.�3e�t / dt:

Since Z 1

0

e�st dt D
8<
:

1 � e�s

s
; s ¤ 0;

1; s D 0;

and Z 1

1

e�st .�3e�t / dt D �3

Z 1

1

e�.sC1/t dt D �3e�.sC1/

s C 1
; s > �1;

it follows that

F.s/ D

8̂<
:̂

1 � e�s

s
� 3

e�.sC1/

sC 1
; s > �1; s ¤ 0;

1 � 3

e
; s D 0:

This is consistent with Theorem 8.1.6, since

jf .t/j � 3e�t ; t � 1;

and therefore f is of exponential order s0 D �1.

REMARK: In Section 8.4 we’ll develop a more efficient method for finding Laplace transforms of piece-

wise continuous functions.

Example 8.1.11 We stated earlier that Z 1

0

e�st et2

dt D 1

for all s, so Theorem 8.1.6 implies that f .t/ D et2

is not of exponential order, since

lim
t!1

et2

Mes0 t
D lim

t!1
1

M
et2�s0 t D1;

so

et2

> Mes0 t

for sufficiently large values of t , for any choice of M and s0 (Exercise 3).
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8.1 Exercises

1. Find the Laplace transforms of the following functions by evaluating the integral F.s/ D R1
0 e�st f .t/ dt .

(a) t (b) te�t (c) sinh bt

(d) e2t � 3et (e) t2

2. Use the table of Laplace transforms to find the Laplace transforms of the following functions.

(a) cosh t sin t (b) sin2 t (c) cos2 2t

(d) cosh2 t (e) t sinh 2t (f) sin t cos t

(g) sin
	
t C �

4



(h) cos 2t � cos 3t (i) sin 2t C cos 4t

3. Show that Z 1

0

e�st et2

dt D1

for every real number s.

4. Graph the following piecewise continuous functions and evaluate f .tC/, f .t�/, and f .t/ at each

point of discontinuity.

(a) f .t/ D
8<
:

�t; 0 � t < 2;

t � 4; 2 � t < 3;

1; t � 3:

(b) f .t/ D
8<
:

t2 C 2; 0 � t < 1;

4; t D 1;

t; t > 1:

(c) f .t/ D
8<
:

sin t; 0 � t < �=2;

2 sin t; �=2 � t < �;

cos t; t � �:

(d) f .t/ D

8̂̂
ˆ̂<
ˆ̂̂̂:

t; 0 � t < 1;

2; t D 1;

2 � t; 1 � t < 2;

3; t D 2;

6; t > 2:

5. Find the Laplace transform:

(a) f .t/ D
�

e�t ; 0 � t < 1;

e�2t ; t � 1:
(b) f .t/ D

�
1; 0 � t < 4;

t; t � 4:

(c) f .t/ D
�

t; 0 � t < 1;

1; t � 1:
(d) f .t/ D

�
tet ; 0 � t < 1;

et ; t � 1:

6. Prove that if f .t/ $ F.s/ then tkf .t/ $ .�1/kF .k/.s/. HINT: Assume that it’s permissible to

differentiate the integral
R1

0
e�st f .t/ dt with respect to s under the integral sign.

7. Use the known Laplace transforms

L.e�t sin !t/ D !

.s � �/2 C !2
and L.e�t cos !t/ D s � �

.s � �/2 C !2

and the result of Exercise 6 to find L.te�t cos !t/ and L.te�t sin !t/.

8. Use the known Laplace transform L.1/ D 1=s and the result of Exercise 6 to show that

L.tn/ D nŠ

snC1
; n D integer:

9. (a) Show that if limt!1 e�s0t f .t/ exists and is finite then f is of exponential order s0.

(b) Show that if f is of exponential order s0 then limt!1 e�st f .t/ D 0 for all s > s0.
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(c) Show that if f is of exponential order s0 and g.t/ D f .t C �/ where � > 0, then g is also

of exponential order s0.

10. Recall the next theorem from calculus.

THEOREM A. Let g be integrable on Œ0; T � for every T > 0: Suppose there’s a function w defined

on some interval Œ�;1/ (with � � 0) such that jg.t/j � w.t/ for t � � and
R1

�
w.t/ dt converges.

Then
R1

0
g.t/ dt converges.

Use Theorem A to show that if f is piecewise continuous on Œ0;1/ and of exponential order s0,

then f has a Laplace transform F.s/ defined for s > s0.

11. Prove: If f is piecewise continuous and of exponential order then lims!1 F.s/ D 0.

12. Prove: If f is continuous on Œ0;1/ and of exponential order s0 > 0, then

L

�Z t

0

f .�/ d�

�
D 1

s
L.f /; s > s0:

HINT: Use integration by parts to evaluate the transform on the left.

13. Suppose f is piecewise continuous and of exponential order, and that limt!0C f .t/=t exists.

Show that

L

�
f .t/

t

�
D
Z 1

s

F.r/ dr:

HINT: Use the results of Exercises 6 and 11.

14. Suppose f is piecewise continuous on Œ0;1/.

(a) Prove: If the integral g.t/ D R t

0
e�s0� f .�/ d� satisfies the inequality jg.t/j � M .t � 0/,

then f has a Laplace transform F.s/ defined for s > s0. HINT: Use integration by parts to

show that Z T

0

e�stf .t/ dt D e�.s�s0/T g.T /C .s � s0/

Z T

0

e�.s�s0/t g.t/ dt:

(b) Show that if L.f / exists for s D s0 then it exists for s > s0. Show that the function

f .t/ D tet2

cos.et2

/

has a Laplace transform defined for s > 0, even though f isn’t of exponential order.

(c) Show that the function

f .t/ D tet2

cos.et2

/

has a Laplace transform defined for s > 0, even though f isn’t of exponential order.

15. Use the table of Laplace transforms and the result of Exercise 13 to find the Laplace transforms of

the following functions.

(a)
sin !t

t
.! > 0/ (b)

cos !t � 1

t
.! > 0/ (c)

eat � ebt

t

(d)
cosh t � 1

t
(e)

sinh2 t

t
16. The gamma function is defined by

�.˛/ D
Z 1

0

x˛�1e�x dx;

which can be shown to converge if ˛ > 0.



Section 8.2 The Inverse Laplace Transform 405

(a) Use integration by parts to show that

�.˛ C 1/ D ˛�.˛/; ˛ > 0:

(b) Show that �.n C 1/ D nŠ if n D 1, 2, 3,. . . .

(c) From (b) and the table of Laplace transforms,

L.t˛/ D �.˛ C 1/

s˛C1
; s > 0;

if ˛ is a nonnegative integer. Show that this formula is valid for any ˛ > �1. HINT: Change

the variable of integration in the integral for �.˛ C 1/.

17. Suppose f is continuous on Œ0; T � and f .t C T / D f .t/ for all t � 0. (We say in this case that f

is periodic with period T .)

(a) Conclude from Theorem 8.1.6 that the Laplace transform of f is defined for s > 0. HINT:

Since f is continuous on Œ0; T � and periodic with period T , it’s bounded on Œ0;1/.

(b) (b) Show that

F.s/ D 1

1 � e�sT

Z T

0

e�st f .t/ dt; s > 0:

HINT: Write

F.s/ D
1X

nD0

Z .nC1/T

nT

e�stf .t/ dt:

Then show that Z .nC1/T

nT

e�st f .t/ dt D e�nsT

Z T

0

e�stf .t/ dt;

and recall the formula for the sum of a geometric series.

18. Use the formula given in Exercise 17(b) to find the Laplace transforms of the given periodic

functions:

(a) f .t/ D
�

t; 0 � t < 1;

2 � t; 1 � t < 2;
f .t C 2/ D f .t/; t � 0

(b) f .t/ D
�

1; 0 � t < 1
2
;

�1; 1
2
� t < 1;

f .t C 1/ D f .t/; t � 0

(c) f .t/ D j sin t j
(d) f .t/ D

�
sin t; 0 � t < �;

0; � � t < 2�;
f .t C 2�/ D f .t/

8.2 THE INVERSE LAPLACE TRANSFORM

Definition of the Inverse Laplace Transform

In Section 8.1 we defined the Laplace transform of f by

F.s/ D L.f / D
Z 1

0

e�stf .t/ dt:

We’ll also say that f is an inverse Laplace Transform of F , and write

f D L�1.F /:
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To solve differential equations with the Laplace transform, we must be able to obtain f from its transform

F . There’s a formula for doing this, but we can’t use it because it requires the theory of functions of a

complex variable. Fortunately, we can use the table of Laplace transforms to find inverse transforms that

we’ll need.

Example 8.2.1 Use the table of Laplace transforms to find

(a) L�1

�
1

s2 � 1

�
and (b) L�1

�
s

s2 C 9

�
:

SOLUTION(a) Setting b D 1 in the transform pair

sinh bt $ b

s2 � b2

shows that

L�1

�
1

s2 � 1

�
D sinh t:

SOLUTION(b) Setting ! D 3 in the transform pair

cos !t $ s

s2 C !2

shows that

L�1

�
s

s2 C 9

�
D cos 3t:

The next theorem enables us to find inverse transforms of linear combinations of transforms in the

table. We omit the proof.

Theorem 8.2.1 ŒLinearity Property� If F1; F2; . . . ; Fn are Laplace transforms and c1; c2; . . . , cn are

constants; then

L�1.c1F1 C c2F2 C � � � C cnFn/ D c1L�1.F1/C c2L�1.F2/C � � � C cnL�1Fn:

Example 8.2.2 Find

L�1

�
8

s C 5
C 7

s2 C 3

�
:

Solution From the table of Laplace transforms in Section 8.8„

eat $ 1

s � a
and sin !t $ !

s2 C !2
:

Theorem 8.2.1 with a D �5 and ! D p
3 yields

L�1

�
8

s C 5
C 7

s2 C 3

�
D 8L�1

�
1

s C 5

�
C 7L�1

�
1

s2 C 3

�

D 8L�1

�
1

s C 5

�
C 7p

3
L�1

 p
3

s2 C 3

!

D 8e�5t C 7p
3

sin
p

3t:
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Example 8.2.3 Find

L�1

�
3s C 8

s2 C 2sC 5

�
:

Solution Completing the square in the denominator yields

3s C 8

s2 C 2sC 5
D 3s C 8

.s C 1/2 C 4
:

Because of the form of the denominator, we consider the transform pairs

e�t cos 2t $ s C 1

.s C 1/2 C 4
and e�t sin 2t $ 2

.s C 1/2 C 4
;

and write

L�1

�
3s C 8

.s C 1/2 C 4

�
D L�1

�
3sC 3

.s C 1/2 C 4

�
C L�1

�
5

.s C 1/2 C 4

�

D 3L�1

�
s C 1

.s C 1/2 C 4

�
C 5

2
L�1

�
2

.s C 1/2 C 4

�

D e�t.3 cos 2t C 5

2
sin 2t/:

REMARK: We’ll often write inverse Laplace transforms of specific functions without explicitly stating

how they are obtained. In such cases you should refer to the table of Laplace transforms in Section 8.8.

Inverse Laplace Transforms of Rational Functions

Using the Laplace transform to solve differential equations often requires finding the inverse transform

of a rational function

F.s/ D P.s/

Q.s/
;

where P and Q are polynomials in s with no common factors. Since it can be shown that lims!1 F.s/ D
0 if F is a Laplace transform, we need only consider the case where degree.P / < degree.Q/. To obtain

L�1.F /, we find the partial fraction expansion of F , obtain inverse transforms of the individual terms in

the expansion from the table of Laplace transforms, and use the linearity property of the inverse transform.

The next two examples illustrate this.

Example 8.2.4 Find the inverse Laplace transform of

F.s/ D 3s C 2

s2 � 3s C 2
: (8.2.1)

Solution (METHOD 1) Factoring the denominator in (8.2.1) yields

F.s/ D 3s C 2

.s � 1/.s � 2/
: (8.2.2)

The form for the partial fraction expansion is

3sC 2

.s � 1/.s � 2/
D A

s � 1
C B

s � 2
: (8.2.3)
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Multiplying this by .s � 1/.s � 2/ yields

3sC 2 D .s � 2/AC .s � 1/B:

Setting s D 2 yields B D 8 and setting s D 1 yields A D �5. Therefore

F.s/ D � 5

s � 1
C 8

s � 2

and

L�1.F / D �5L�1

�
1

s � 1

�
C 8L�1

�
1

s � 2

�
D �5et C 8e2t :

Solution (METHOD 2) We don’t really have to multiply (8.2.3) by .s � 1/.s � 2/ to compute A and B .

We can obtain A by simply ignoring the factor s � 1 in the denominator of (8.2.2) and setting s D 1

elsewhere; thus,

A D 3sC 2

s � 2

ˇ̌̌
ˇ
sD1

D 3 � 1C 2

1 � 2
D �5: (8.2.4)

Similarly, we can obtain B by ignoring the factor s � 2 in the denominator of (8.2.2) and setting s D 2

elsewhere; thus,

B D 3s C 2

s � 1

ˇ̌̌
ˇ
sD2

D 3 � 2C 2

2 � 1
D 8: (8.2.5)

To justify this, we observe that multiplying (8.2.3) by s � 1 yields

3s C 2

s � 2
D AC .s � 1/

B

s � 2
;

and setting s D 1 leads to (8.2.4). Similarly, multiplying (8.2.3) by s � 2 yields

3sC 2

s � 1
D .s � 2/

A

s � 2
C B

and setting s D 2 leads to (8.2.5). (It isn’t necesary to write the last two equations. We wrote them only

to justify the shortcut procedure indicated in (8.2.4) and (8.2.5).)

The shortcut employed in the second solution of Example 8.2.4 is Heaviside’s method. The next theo-

rem states this method formally. For a proof and an extension of this theorem, see Exercise 10.

Theorem 8.2.2 Suppose

F.s/ D P.s/

.s � s1/.s � s2/ � � � .s � sn/
; (8.2.6)

where s1, s2; . . . ; sn are distinct and P is a polynomial of degree less than n: Then

F.s/ D A1

s � s1

C A2

s � s2

C � � � C An

s � sn

;

where Ai can be computed from (8.2.6) by ignoring the factor s � si and setting s D si elsewhere.

Example 8.2.5 Find the inverse Laplace transform of

F.s/ D 6C .s C 1/.s2 � 5sC 11/

s.s � 1/.s � 2/.s C 1/
: (8.2.7)
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Solution The partial fraction expansion of (8.2.7) is of the form

F.s/ D A

s
C B

s � 1
C C

s � 2
C D

s C 1
: (8.2.8)

To find A, we ignore the factor s in the denominator of (8.2.7) and set s D 0 elsewhere. This yields

A D 6C .1/.11/

.�1/.�2/.1/
D 17

2
:

Similarly, the other coefficients are given by

B D 6C .2/.7/

.1/.�1/.2/
D �10;

C D 6C 3.5/

2.1/.3/
D 7

2
;

and

D D 6

.�1/.�2/.�3/
D �1:

Therefore

F.s/ D 17

2

1

s
� 10

s � 1
C 7

2

1

s � 2
� 1

s C 1

and

L�1.F / D 17

2
L�1

�
1

s

�
� 10L�1

�
1

s � 1

�
C 7

2
L�1

�
1

s � 2

�
�L�1

�
1

s C 1

�

D 17

2
� 10et C 7

2
e2t � e�t :

REMARK: We didn’t “multiply out” the numerator in (8.2.7) before computing the coefficients in (8.2.8),

since it wouldn’t simplify the computations.

Example 8.2.6 Find the inverse Laplace transform of

F.s/ D 8 � .s C 2/.4s C 10/

.s C 1/.s C 2/2
: (8.2.9)

Solution The form for the partial fraction expansion is

F.s/ D A

s C 1
C B

s C 2
C C

.s C 2/2
: (8.2.10)

Because of the repeated factor .s C 2/2 in (8.2.9), Heaviside’s method doesn’t work. Instead, we find a

common denominator in (8.2.10). This yields

F.s/ D A.s C 2/2 C B.s C 1/.s C 2/C C.s C 1/

.s C 1/.s C 2/2
: (8.2.11)

If (8.2.9) and (8.2.11) are to be equivalent, then

A.s C 2/2 C B.s C 1/.s C 2/C C.s C 1/ D 8 � .s C 2/.4s C 10/: (8.2.12)
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The two sides of this equation are polynomials of degree two. From a theorem of algebra, they will be

equal for all s if they are equal for any three distinct values of s. We may determine A, B and C by

choosing convenient values of s.

The left side of (8.2.12) suggests that we take s D �2 to obtain C D �8, and s D �1 to obtain A D 2.

We can now choose any third value of s to determine B . Taking s D 0 yields 4A C 2B C C D �12.

Since A D 2 and C D �8 this implies that B D �6. Therefore

F.s/ D 2

s C 1
� 6

s C 2
� 8

.s C 2/2

and

L�1.F / D 2L�1

�
1

s C 1

�
� 6L�1

�
1

s C 2

�
� 8L�1

�
1

.s C 2/2

�

D 2e�t � 6e�2t � 8te�2t :

Example 8.2.7 Find the inverse Laplace transform of

F.s/ D s2 � 5s C 7

.s C 2/3
:

Solution The form for the partial fraction expansion is

F.s/ D A

s C 2
C B

.s C 2/2
C C

.s C 2/3
:

The easiest way to obtain A, B , and C is to expand the numerator in powers of s C 2. This yields

s2 � 5s C 7 D Œ.s C 2/ � 2�2 � 5Œ.s C 2/� 2�C 7 D .s C 2/2 � 9.s C 2/C 21:

Therefore

F.s/ D .s C 2/2 � 9.s C 2/C 21

.s C 2/3

D 1

s C 2
� 9

.s C 2/2
C 21

.s C 2/3

and

L�1.F / D L�1

�
1

s C 2

�
� 9L�1

�
1

.s C 2/2

�
C 21

2
L�1

�
2

.s C 2/3

�

D e�2t

�
1 � 9t C 21

2
t2

�
:

Example 8.2.8 Find the inverse Laplace transform of

F.s/ D 1 � s.5C 3s/

s Œ.s C 1/2 C 1�
: (8.2.13)



Section 8.2 The Inverse Laplace Transform 411

Solution One form for the partial fraction expansion of F is

F.s/ D A

s
C Bs CC

.s C 1/2 C 1
: (8.2.14)

However, we see from the table of Laplace transforms that the inverse transform of the second fraction

on the right of (8.2.14) will be a linear combination of the inverse transforms

e�t cos t and e�t sin t

of
s C 1

.s C 1/2 C 1
and

1

.s C 1/2 C 1

respectively. Therefore, instead of (8.2.14) we write

F.s/ D A

s
C B.s C 1/C C

.s C 1/2 C 1
: (8.2.15)

Finding a common denominator yields

F.s/ D A
�
.s C 1/2 C 1

�C B.s C 1/s C Cs

s Œ.s C 1/2 C 1�
: (8.2.16)

If (8.2.13) and (8.2.16) are to be equivalent, then

A
�
.s C 1/2 C 1

�C B.s C 1/s C Cs D 1 � s.5C 3s/:

This is true for all s if it’s true for three distinct values of s. Choosing s D 0, �1, and 1 yields the system

2A D 1

A� C D 3

5AC 2B C C D �7:

Solving this system yields

A D 1

2
; B D �7

2
; C D �5

2
:

Hence, from (8.2.15),

F.s/ D 1

2s
� 7

2

s C 1

.s C 1/2 C 1
� 5

2

1

.s C 1/2 C 1
:

Therefore

L�1.F / D 1

2
L�1

�
1

s

�
� 7

2
L�1

�
sC 1

.s C 1/2 C 1

�
� 5

2
L�1

�
1

.s C 1/2 C 1

�

D 1

2
� 7

2
e�t cos t � 5

2
e�t sin t:

Example 8.2.9 Find the inverse Laplace transform of

F.s/ D 8C 3s

.s2 C 1/.s2 C 4/
: (8.2.17)
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Solution The form for the partial fraction expansion is

F.s/ D AC Bs

s2 C 1
C C CDs

s2 C 4
:

The coefficients A, B , C and D can be obtained by finding a common denominator and equating the

resulting numerator to the numerator in (8.2.17). However, since there’s no first power of s in the denom-

inator of (8.2.17), there’s an easier way: the expansion of

F1.s/ D 1

.s2 C 1/.s2 C 4/

can be obtained quickly by using Heaviside’s method to expand

1

.x C 1/.x C 4/
D 1

3

�
1

x C 1
� 1

x C 4

�

and then setting x D s2 to obtain

1

.s2 C 1/.s2 C 4/
D 1

3

�
1

s2 C 1
� 1

s2 C 4

�
:

Multiplying this by 8C 3s yields

F.s/ D 8C 3s

.s2 C 1/.s2 C 4/
D 1

3

�
8C 3s

s2 C 1
� 8C 3s

s2 C 4

�
:

Therefore

L�1.F / D 8

3
sin t C cos t � 4

3
sin 2t � cos 2t:

USING TECHNOLOGY

Some software packages that do symbolic algebra can find partial fraction expansions very easily. We

recommend that you use such a package if one is available to you, but only after you’ve done enough

partial fraction expansions on your own to master the technique.

8.2 Exercises

1. Use the table of Laplace transforms to find the inverse Laplace transform.

(a)
3

.s � 7/4
(b)

2s � 4

s2 � 4sC 13
(c)

1

s2 C 4sC 20

(d)
2

s2 C 9
(e)

s2 � 1

.s2 C 1/2
(f)

1

.s � 2/2 � 4

(g)
12s � 24

.s2 � 4sC 85/2
(h)

2

.s � 3/2 � 9
(i)

s2 � 4s C 3

.s2 � 4sC 5/2

2. Use Theorem 8.2.1 and the table of Laplace transforms to find the inverse Laplace transform.
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(a)
2sC 3

.s � 7/4
(b)

s2 � 1

.s � 2/6
(c)

s C 5

s2 C 6sC 18

(d)
2sC 1

s2 C 9
(e)

s

s2 C 2sC 1
(f)

s C 1

s2 � 9

(g)
s3 C 2s2 � s � 3

.s C 1/4
(h)

2sC 3

.s � 1/2 C 4
(i)

1

s
� s

s2 C 1

(j)
3s C 4

s2 � 1
(k)

3

s � 1
C 4sC 1

s2 C 9
(l)

3

.s C 2/2
� 2sC 6

s2 C 4

3. Use Heaviside’s method to find the inverse Laplace transform.

(a)
3 � .s C 1/.s � 2/

.s C 1/.s C 2/.s � 2/
(b)

7C .s C 4/.18 � 3s/

.s � 3/.s � 1/.s C 4/

(c)
2C .s � 2/.3 � 2s/

.s � 2/.s C 2/.s � 3/
(d)

3 � .s � 1/.s C 1/

.s C 4/.s � 2/.s � 1/

(e)
3C .s � 2/.10 � 2s � s2/

.s � 2/.s C 2/.s � 1/.s C 3/
(f)

3C .s � 3/.2s2 C s � 21/

.s � 3/.s � 1/.s C 4/.s � 2/

4. Find the inverse Laplace transform.

(a)
2C 3s

.s2 C 1/.s C 2/.s C 1/
(b)

3s2 C 2sC 1

.s2 C 1/.s2 C 2sC 2/

(c)
3s C 2

.s � 2/.s2 C 2sC 5/
(d)

3s2 C 2sC 1

.s � 1/2.s C 2/.s C 3/

(e)
2s2 C sC 3

.s � 1/2.s C 2/2
(f)

3s C 2

.s2 C 1/.s � 1/2

5. Use the method of Example 8.2.9 to find the inverse Laplace transform.

(a)
3s C 2

.s2 C 4/.s2 C 9/
(b)

�4s C 1

.s2 C 1/.s2 C 16/
(c)

5sC 3

.s2 C 1/.s2 C 4/

(d)
�s C 1

.4s2 C 1/.s2 C 1/
(e)

17s � 34

.s2 C 16/.16s2 C 1/
(f)

2s � 1

.4s2 C 1/.9s2 C 1/

6. Find the inverse Laplace transform.

(a)
17s � 15

.s2 � 2sC 5/.s2 C 2sC 10/
(b)

8sC 56

.s2 � 6sC 13/.s2 C 2sC 5/

(c)
s C 9

.s2 C 4s C 5/.s2 � 4sC 13/
(d)

3s � 2

.s2 � 4sC 5/.s2 � 6s C 13/

(e)
3s � 1

.s2 � 2sC 2/.s2 C 2s C 5/
(f)

20sC 40

.4s2 � 4sC 5/.4s2 C 4sC 5/

7. Find the inverse Laplace transform.

(a)
1

s.s2 C 1/
(b)

1

.s � 1/.s2 � 2sC 17/

(c)
3sC 2

.s � 2/.s2 C 2sC 10/
(d)

34� 17s

.2s � 1/.s2 � 2sC 5/

(e)
sC 2

.s � 3/.s2 C 2sC 5/
(f)

2s � 2

.s � 2/.s2 C 2sC 10/

8. Find the inverse Laplace transform.
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(a)
2sC 1

.s2 C 1/.s � 1/.s � 3/
(b)

s C 2

.s2 C 2s C 2/.s2 � 1/

(c)
2s � 1

.s2 � 2sC 2/.s C 1/.s � 2/
(d)

s � 6

.s2 � 1/.s2 C 4/

(e)
2s � 3

s.s � 2/.s2 � 2sC 5/
(f)

5s � 15

.s2 � 4s C 13/.s � 2/.s � 1/

9. Given that f .t/ $ F.s/, find the inverse Laplace transform of F.as � b/, where a > 0.

10. (a) If s1, s2, . . . , sn are distinct and P is a polynomial of degree less than n, then

P.s/

.s � s1/.s � s2/ � � � .s � sn/
D A1

s � s1

C A2

s � s2

C � � � C An

s � sn

:

Multiply through by s � si to show that Ai can be obtained by ignoring the factor s � si on

the left and setting s D si elsewhere.

(b) Suppose P and Q1 are polynomials such that degree.P / � degree.Q1/ and Q1.s1/ ¤ 0.

Show that the coefficient of 1=.s � s1/ in the partial fraction expansion of

F.s/ D P.s/

.s � s1/Q1.s/

is P.s1/=Q1.s1/.

(c) Explain how the results of (a) and (b) are related.

8.3 SOLUTION OF INITIAL VALUE PROBLEMS

Laplace Transforms of Derivatives

In the rest of this chapter we’ll use the Laplace transform to solve initial value problems for constant

coefficient second order equations. To do this, we must know how the Laplace transform of f 0 is related

to the Laplace transform of f . The next theorem answers this question.

Theorem 8.3.1 Suppose f is continuous on Œ0;1/ and of exponential order s0, and f 0 is piecewise

continuous on Œ0;1/: Then f and f 0 have Laplace transforms for s > s0; and

L.f 0/ D sL.f / � f .0/: (8.3.1)

Proof

We know from Theorem 8.1.6 that L.f / is defined for s > s0. We first consider the case where f 0 is

continuous on Œ0;1/. Integration by parts yieldsZ T

0

e�stf 0.t/ dt D e�st f .t/
ˇ̌̌T
0
C s

Z T

0

e�stf .t/ dt

D e�sT f .T / � f .0/C s

Z T

0

e�st f .t/ dt

(8.3.2)

for any T > 0. Since f is of exponential order s0, limT!1 e�sT f .T / D 0 and the last integral in (8.3.2)

converges as T !1 if s > s0. ThereforeZ 1

0

e�st f 0.t/ dt D �f .0/C s

Z 1

0

e�st f .t/ dt

D �f .0/C sL.f /;
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which proves (8.3.1). Now suppose T > 0 and f 0 is only piecewise continuous on Œ0; T �, with dis-

continuities at t1 < t2 < � � � < tn�1. For convenience, let t0 D 0 and tn D T . Integrating by parts

yields Z ti

ti�1

e�st f 0.t/ dt D e�st f .t/
ˇ̌̌ti
ti�1

C s

Z ti

ti�1

e�stf .t/ dt

D e�sti f .ti / � e�sti�1f .ti�1/C s

Z ti

ti�1

e�st f .t/ dt:

Summing both sides of this equation from i D 1 to n and noting that�
e�st1f .t1/ � e�st0f .t0/

�C �
e�st2f .t2/� e�st1f .t1/

�C � � � C �e�stN f .tN / � e�stN�1f .tN�1/
�

D e�stN f .tN /� e�st0f .t0/ D e�sT f .T / � f .0/

yields (8.3.2), so (8.3.1) follows as before.

Example 8.3.1 In Example 8.1.4 we saw that

L.cos !t/ D s

s2 C !2
:

Applying (8.3.1) with f .t/ D cos !t shows that

L.�! sin !t/ D s
s

s2 C !2
� 1 D � !2

s2 C !2
:

Therefore

L.sin !t/ D !

s2 C !2
;

which agrees with the corresponding result obtained in 8.1.4.

In Section 2.1 we showed that the solution of the initial value problem

y0 D ay; y.0/ D y0; (8.3.3)

is y D y0eat . We’ll now obtain this result by using the Laplace transform.

Let Y.s/ D L.y/ be the Laplace transform of the unknown solution of (8.3.3). Taking Laplace trans-

forms of both sides of (8.3.3) yields

L.y0/ D L.ay/;

which, by Theorem 8.3.1, can be rewritten as

sL.y/ � y.0/ D aL.y/;

or

sY.s/ � y0 D aY.s/:

Solving for Y.s/ yields

Y.s/ D y0

s � a
;

so

y D L�1.Y.s// D L�1
	 y0

s � a



D y0L�1

�
1

s � a

�
D y0eat ;

which agrees with the known result.

We need the next theorem to solve second order differential equations using the Laplace transform.
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Theorem 8.3.2 Suppose f and f 0 are continuous on Œ0;1/ and of exponential order s0; and that f 00 is

piecewise continuous on Œ0;1/: Then f , f 0, and f 00 have Laplace transforms for s > s0,

L.f 0/ D sL.f / � f .0/; (8.3.4)

and

L.f 00/ D s2L.f / � f 0.0/ � sf .0/: (8.3.5)

Proof Theorem 8.3.1 implies that L.f 0/ exists and satisfies (8.3.4) for s > s0. To prove that L.f 00/
exists and satisfies (8.3.5) for s > s0, we first apply Theorem 8.3.1 to g D f 0. Since g satisfies the

hypotheses of Theorem 8.3.1, we conclude that L.g0/ is defined and satisfies

L.g0/ D sL.g/ � g.0/

for s > s0. However, since g0 D f 00, this can be rewritten as

L.f 00/ D sL.f 0/� f 0.0/:

Substituting (8.3.4) into this yields (8.3.5).

Solving Second Order Equations with the Laplace Transform

We’ll now use the Laplace transform to solve initial value problems for second order equations.

Example 8.3.2 Use the Laplace transform to solve the initial value problem

y00 � 6y0 C 5y D 3e2t ; y.0/ D 2; y0.0/ D 3: (8.3.6)

Solution Taking Laplace transforms of both sides of the differential equation in (8.3.6) yields

L.y00 � 6y0 C 5y/ D L
�
3e2t

� D 3

s � 2
;

which we rewrite as

L.y00/ � 6L.y0/C 5L.y/ D 3

s � 2
: (8.3.7)

Now denote L.y/ D Y.s/. Theorem 8.3.2 and the initial conditions in (8.3.6) imply that

L.y0/ D sY.s/ � y.0/ D sY.s/ � 2

and

L.y00/ D s2Y.s/ � y0.0/ � sy.0/ D s2Y.s/� 3 � 2s:

Substituting from the last two equations into (8.3.7) yields

�
s2Y.s/� 3 � 2s

�� 6 .sY.s/ � 2/C 5Y.s/ D 3

s � 2
:

Therefore

.s2 � 6s C 5/Y.s/ D 3

s � 2
C .3C 2s/C 6.�2/; (8.3.8)

so

.s � 5/.s � 1/Y.s/ D 3C .s � 2/.2s � 9/

s � 2
;
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and

Y.s/ D 3C .s � 2/.2s � 9/

.s � 2/.s � 5/.s � 1/
:

Heaviside’s method yields the partial fraction expansion

Y.s/ D � 1

s � 2
C 1

2

1

s � 5
C 5

2

1

s � 1
;

and taking the inverse transform of this yields

y D �e2t C 1

2
e5t C 5

2
et

as the solution of (8.3.6).

It isn’t necessary to write all the steps that we used to obtain (8.3.8). To see how to avoid this, let’s

apply the method of Example 8.3.2 to the general initial value problem

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1: (8.3.9)

Taking Laplace transforms of both sides of the differential equation in (8.3.9) yields

aL.y00/C bL.y0/C cL.y/ D F.s/: (8.3.10)

Now let Y.s/ D L.y/. Theorem 8.3.2 and the initial conditions in (8.3.9) imply that

L.y0/ D sY.s/� k0 and L.y00/ D s2Y.s/ � k1 � k0s:

Substituting these into (8.3.10) yields

a
�
s2Y.s/ � k1 � k0s

�C b .sY.s/� k0/C cY.s/ D F.s/: (8.3.11)

The coefficient of Y.s/ on the left is the characteristic polynomial

p.s/ D as2 C bs C c

of the complementary equation for (8.3.9). Using this and moving the terms involving k0 and k1 to the

right side of (8.3.11) yields

p.s/Y.s/ D F.s/C a.k1 C k0s/C bk0: (8.3.12)

This equation corresponds to (8.3.8) of Example 8.3.2. Having established the form of this equation in

the general case, it is preferable to go directly from the initial value problem to this equation. You may

find it easier to remember (8.3.12) rewritten as

p.s/Y.s/ D F.s/C a
�
y0.0/C sy.0/

�C by.0/: (8.3.13)

Example 8.3.3 Use the Laplace transform to solve the initial value problem

2y00 C 3y0 C y D 8e�2t ; y.0/ D �4; y0.0/ D 2: (8.3.14)

Solution The characteristic polynomial is

p.s/ D 2s2 C 3s C 1 D .2s C 1/.s C 1/
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and

F.s/ D L.8e�2t / D 8

s C 2
;

so (8.3.13) becomes

.2s C 1/.s C 1/Y.s/ D 8

s C 2
C 2.2 � 4s/C 3.�4/:

Solving for Y.s/ yields

Y.s/ D 4 .1 � .s C 2/.s C 1//

.s C 1=2/.s C 1/.s C 2/
:

Heaviside’s method yields the partial fraction expansion

Y.s/ D 4

3

1

sC 1=2
� 8

s C 1
C 8

3

1

s C 2
;

so the solution of (8.3.14) is

y D L�1.Y.s// D 4

3
e�t=2 � 8e�t C 8

3
e�2t

(Figure 8.3.1).

1 2 3 4 5 6 7

−1
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−3

−4

 t

 y

Figure 8.3.1 y D 4

3
e�t=2 � 8e�t C 8

3
e�2t

1 2 3 4 5 6 7

1

−1

−2

−3

−4

.5

 t

 y

Figure 8.3.2 y D 1

2
� 7

2
e�t cos t � 5

2
e�t sin t

Example 8.3.4 Solve the initial value problem

y00 C 2y0 C 2y D 1; y.0/ D �3; y0.0/ D 1: (8.3.15)

Solution The characteristic polynomial is

p.s/ D s2 C 2sC 2 D .s C 1/2 C 1

and

F.s/ D L.1/ D 1

s
;
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so (8.3.13) becomes �
.s C 1/2 C 1

�
Y.s/ D 1

s
C 1 � .1 � 3s/C 2.�3/:

Solving for Y.s/ yields

Y.s/ D 1 � s.5C 3s/

s Œ.s C 1/2 C 1�
:

In Example 8.2.8 we found the inverse transform of this function to be

y D 1

2
� 7

2
e�t cos t � 5

2
e�t sin t

(Figure 8.3.2), which is therefore the solution of (8.3.15).

REMARK: In our examples we applied Theorems 8.3.1 and 8.3.2 without verifying that the unknown

function y satisfies their hypotheses. This is characteristic of the formal manipulative way in which the

Laplace transform is used to solve differential equations. Any doubts about the validity of the method for

solving a given equation can be resolved by verifying that the resulting function y is the solution of the

given problem.

8.3 Exercises

In Exercises 1–31 use the Laplace transform to solve the initial value problem.

1. y00 C 3y0C 2y D et ; y.0/ D 1; y0.0/ D �6

2. y00 � y0 � 6y D 2; y.0/ D 1; y0.0/ D 0

3. y00 C y0 � 2y D 2e3t; y.0/ D �1; y0.0/ D 4

4. y00 � 4y D 2e3t ; y.0/ D 1; y0.0/ D �1

5. y00 C y0 � 2y D e3t ; y.0/ D 1; y0.0/ D �1

6. y00 C 3y0C 2y D 6et ; y.0/ D 1; y0.0/ D �1

7. y00 C y D sin 2t; y.0/ D 0; y0.0/ D 1

8. y00 � 3y0 C 2y D 2e3t ; y.0/ D 1; y0.0/ D �1

9. y00 � 3y0 C 2y D e4t ; y.0/ D 1; y0.0/ D �2

10. y00 � 3y0 C 2y D e3t ; y.0/ D �1; y0.0/ D �4

11. y00 C 3y0C 2y D 2et; y.0/ D 0; y0.0/ D �1

12. y00 C y0 � 2y D �4; y.0/ D 2; y0.0/ D 3

13. y00 C 4y D 4; y.0/ D 0; y0.0/ D 1

14. y00 � y0 � 6y D 2; y.0/ D 1; y0.0/ D 0

15. y00 C 3y0C 2y D et ; y.0/ D 0; y0.0/ D 1

16. y00 � y D 1; y.0/ D 1; y0.0/ D 0

17. y00 C 4y D 3 sin t; y.0/ D 1; y0.0/ D �1

18. y00 C y0 D 2e3t; y.0/ D �1; y0.0/ D 4

19. y00 C y D 1; y.0/ D 2; y0.0/ D 0

20. y00 C y D t; y.0/ D 0; y0.0/ D 2
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21. y00 C y D t � 3 sin 2t; y.0/ D 1; y0.0/ D �3

22. y00 C 5y0C 6y D 2e�t ; y.0/ D 1; y0.0/ D 3

23. y00 C 2y0 C y D 6 sin t � 4 cos t; y.0/ D �1; y0.0/ D 1

24. y00 � 2y0 � 3y D 10 cos t; y.0/ D 2; y0.0/ D 7

25. y00 C y D 4 sin t C 6 cos t; y.0/ D �6; y0.0/ D 2

26. y00 C 4y D 8 sin 2t C 9 cos t; y.0/ D 1; y0.0/ D 0

27. y00 � 5y0 C 6y D 10et cos t; y.0/ D 2; y0.0/ D 1

28. y00 C 2y0 C 2y D 2t; y.0/ D 2; y0.0/ D �7

29. y00 � 2y0 C 2y D 5 sin t C 10 cos t; y.0/ D 1; y0.0/ D 2

30. y00 C 4y0 C 13y D 10e�t � 36et ; y.0/ D 0; y0.0/ D �16

31. y00 C 4y0 C 5y D e�t.cos t C 3 sin t/; y.0/ D 0; y0.0/ D 4

32. 2y00 � 3y0 � 2y D 4et ; y.0/ D 1; y0.0/ D �2

33. 6y00 � y0 � y D 3e2t ; y.0/ D 0; y0.0/ D 0

34. 2y00 C 2y0 C y D 2t; y.0/ D 1; y0.0/ D �1

35. 4y00 � 4y0 C 5y D 4 sin t � 4 cos t; y.0/ D 0; y0.0/ D 11=17

36. 4y00 C 4y0 C y D 3 sin t C cos t; y.0/ D 2; y0.0/ D �1

37. 9y00 C 6y0 C y D 3e3t ; y.0/ D 0; y0.0/ D �3

38. Suppose a; b, and c are constants and a ¤ 0. Let

y1 D L�1

�
as C b

as2 C bs C c

�
and y2 D L�1

�
a

as2 C bsC c

�
:

Show that

y1.0/ D 1; y01.0/ D 0 and y2.0/ D 0; y02.0/ D 1:

HINT: Use the Laplace transform to solve the initial value problems

ay00 C by0 C cy D 0; y.0/ D 1; y0.0/ D 0

ay00 C by0 C cy D 0; y.0/ D 0; y0.0/ D 1:

8.4 THE UNIT STEP FUNCTION

In the next section we’ll consider initial value problems

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1;

where a, b, and c are constants and f is piecewise continuous. In this section we’ll develop procedures

for using the table of Laplace transforms to find Laplace transforms of piecewise continuous functions,

and to find the piecewise continuous inverses of Laplace transforms.
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Example 8.4.1 Use the table of Laplace transforms to find the Laplace transform of

f .t/ D
(

2t C 1; 0 � t < 2;

3t; t � 2
(8.4.1)

(Figure 8.4.1).

Solution Since the formula for f changes at t D 2, we write

L.f / D
Z 1

0

e�st f .t/ dt

D
Z 2

0

e�st .2t C 1/ dt C
Z 1

2

e�st.3t/ dt:

(8.4.2)

To relate the first term to a Laplace transform, we add and subtractZ 1

2

e�st .2t C 1/ dt

in (8.4.2) to obtain

L.f / D
Z 1

0

e�st .2t C 1/ dt C
Z 1

2

e�st .3t � 2t � 1/ dt

D
Z 1

0

e�st .2t C 1/ dt C
Z 1

2

e�st .t � 1/ dt

D L.2t C 1/C
Z 1

2

e�st.t � 1/ dt:

(8.4.3)

To relate the last integral to a Laplace transform, we make the change of variable x D t � 2 and rewrite

the integral as Z 1

2

e�st .t � 1/ dt D
Z 1

0

e�s.xC2/.x C 1/ dx

D e�2s

Z 1

0

e�sx.x C 1/ dx:

Since the symbol used for the variable of integration has no effect on the value of a definite integral, we

can now replace x by the more standard t and writeZ 1

2

e�st .t � 1/ dt D e�2s

Z 1

0

e�st .t C 1/ dt D e�2sL.t C 1/:

This and (8.4.3) imply that

L.f / D L.2t C 1/C e�2sL.t C 1/:

Now we can use the table of Laplace transforms to find that

L.f / D 2

s2
C 1

s
C e�2s

�
1

s2
C 1

s

�
:
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Figure 8.4.1 The piecewise continuous function

(8.4.1)

1

 τ
 t

 y

Figure 8.4.2 y D u.t � �/

Laplace Transforms of Piecewise Continuous Functions

We’ll now develop the method of Example 8.4.1 into a systematic way to find the Laplace transform of a

piecewise continuous function. It is convenient to introduce the unit step function, defined as

u.t/ D
�

0; t < 0

1; t � 0:
(8.4.4)

Thus, u.t/ “steps” from the constant value 0 to the constant value 1 at t D 0. If we replace t by t � � in

(8.4.4), then

u.t � �/ D
�

0; t < �;

1; t � �
I

that is, the step now occurs at t D � (Figure 8.4.2).

The step function enables us to represent piecewise continuous functions conveniently. For example,

consider the function

f .t/ D
(

f0.t/; 0 � t < t1;

f1.t/; t � t1;
(8.4.5)

where we assume that f0 and f1 are defined on Œ0;1/, even though they equal f only on the indicated

intervals. This assumption enables us to rewrite (8.4.5) as

f .t/ D f0.t/ C u.t � t1/ .f1.t/ � f0.t// : (8.4.6)

To verify this, note that if t < t1 then u.t � t1/ D 0 and (8.4.6) becomes

f .t/ D f0.t/C .0/ .f1.t/ � f0.t// D f0.t/:

If t � t1 then u.t � t1/ D 1 and (8.4.6) becomes

f .t/ D f0.t/C .1/ .f1.t/ � f0.t// D f1.t/:

We need the next theorem to show how (8.4.6) can be used to find L.f /.
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Theorem 8.4.1 Let g be defined on Œ0;1/: Suppose � � 0 and L .g.t C �// exists for s > s0: Then

L .u.t � �/g.t// exists for s > s0, and

L.u.t � �/g.t// D e�s� L .g.t C �// :

Proof By definition,

L .u.t � �/g.t// D
Z 1

0

e�st u.t � �/g.t/ dt:

From this and the definition of u.t � �/,

L .u.t � �/g.t// D
Z �

0

e�st .0/ dt C
Z 1

�

e�st g.t/ dt:

The first integral on the right equals zero. Introducing the new variable of integration x D t � � in the

second integral yields

L .u.t � �/g.t// D
Z 1

0

e�s.xC�/g.x C �/ dx D e�s�

Z 1

0

e�sxg.x C �/ dx:

Changing the name of the variable of integration in the last integral from x to t yields

L .u.t � �/g.t// D e�s�

Z 1

0

e�st g.t C �/ dt D e�s� L.g.t C �//:

Example 8.4.2 Find

L
�
u.t � 1/.t2 C 1/

�
:

Solution Here � D 1 and g.t/ D t2 C 1, so

g.t C 1/ D .t C 1/2 C 1 D t2 C 2t C 2:

Since

L .g.t C 1// D 2

s3
C 2

s2
C 2

s
;

Theorem 8.4.1 implies that

L
�
u.t � 1/.t2 C 1/

� D e�s

�
2

s3
C 2

s2
C 2

s

�
:

Example 8.4.3 Use Theorem 8.4.1 to find the Laplace transform of the function

f .t/ D
(

2t C 1; 0 � t < 2;

3t; t � 2;

from Example 8.4.1.

Solution We first write f in the form (8.4.6) as

f .t/ D 2t C 1C u.t � 2/.t � 1/:
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Therefore

L.f / D L.2t C 1/C L .u.t � 2/.t � 1//

D L.2t C 1/C e�2sL.t C 1/ (from Theorem 8.4.1/

D 2

s2
C 1

s
C e�2s

�
1

s2
C 1

s

�
;

which is the result obtained in Example 8.4.1.

Formula (8.4.6) can be extended to more general piecewise continuous functions. For example, we can

write

f .t/ D

8̂<
:̂

f0.t/; 0 � t < t1;

f1.t/; t1 � t < t2;

f2.t/; t � t2;

as

f .t/ D f0.t/C u.t � t1/ .f1.t/ � f0.t// C u.t � t2/ .f2.t/ � f1.t//

if f0, f1, and f2 are all defined on Œ0;1/.

Example 8.4.4 Find the Laplace transform of

f .t/ D

8̂̂
<̂
ˆ̂̂:

1; 0 � t < 2;

�2t C 1; 2 � t < 3;

3t; 3 � t < 5;

t � 1; t � 5

(8.4.7)

(Figure 8.4.3).

Solution In terms of step functions,

f .t/ D 1C u.t � 2/.�2t C 1 � 1/C u.t � 3/.3t C 2t � 1/

Cu.t � 5/.t � 1 � 3t/;

or

f .t/ D 1 � 2u.t � 2/t C u.t � 3/.5t � 1/� u.t � 5/.2t C 1/:

Now Theorem 8.4.1 implies that

L.f / D L.1/� 2e�2sL.t C 2/C e�3sL .5.t C 3/� 1/� e�5sL .2.t C 5/C 1/

D L.1/� 2e�2sL.t C 2/C e�3sL.5t C 14/� e�5sL.2t C 11/

D 1

s
� 2e�2s

�
1

s2
C 2

s

�
C e�3s

�
5

s2
C 14

s

�
� e�5s

�
2

s2
C 11

s

�
:

The trigonometric identities

sin.AC B/ D sin A cos B C cos A sin B (8.4.8)

cos.AC B/ D cos A cos B � sin A sin B (8.4.9)

are useful in problems that involve shifting the arguments of trigonometric functions. We’ll use these

identities in the next example.
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Figure 8.4.3 The piecewise contnuous function (8.4.7)

Example 8.4.5 Find the Laplace transform of

f .t/ D

8̂̂̂
<
ˆ̂̂:

sin t; 0 � t <
�

2
;

cos t � 3 sin t;
�

2
� t < �;

3 cos t; t � �

(8.4.10)

(Figure 8.4.4).

Solution In terms of step functions,

f .t/ D sin t C u.t � �=2/.cos t � 4 sin t/C u.t � �/.2 cos t C 3 sin t/:

Now Theorem 8.4.1 implies that

L.f / D L.sin t/C e�
�
2 sL

�
cos

�
t C �

2

� � 4 sin
�
t C �

2

��
Ce��sL .2 cos.t C �/C 3 sin.t C �// :

(8.4.11)

Since

cos
	
t C �

2



� 4 sin

	
t C �

2



D � sin t � 4 cos t

and

2 cos.t C �/C 3 sin.t C �/ D �2 cos t � 3 sin t;

we see from (8.4.11) that

L.f / D L.sin t/� e��s=2L.sin t C 4 cos t/ � e��sL.2 cos t C 3 sin t/

D 1

s2 C 1
� e�

�
2 s

�
1C 4s

s2 C 1

�
� e��s

�
3C 2s

s2 C 1

�
:
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Figure 8.4.4 The piecewise continuous function (8.4.10)

The Second Shifting Theorem

Replacing g.t/ by g.t � �/ in Theorem 8.4.1 yields the next theorem.

Theorem 8.4.2 ŒSecond Shifting Theorem� If � � 0 and L.g/ exists for s > s0 then L .u.t � �/g.t � �//

exists for s > s0 and

L.u.t � �/g.t � �// D e�s� L.g.t//;

or, equivalently,

if g.t/ $ G.s/; then u.t � �/g.t � �/ $ e�s� G.s/: (8.4.12)

REMARK: Recall that the First Shifting Theorem (Theorem 8.1.3 states that multiplying a function by

eat corresponds to shifting the argument of its transform by a units. Theorem 8.4.2 states that multiplying

a Laplace transform by the exponential e��s corresponds to shifting the argument of the inverse transform

by � units.

Example 8.4.6 Use (8.4.12) to find

L�1

�
e�2s

s2

�
:

Solution To apply (8.4.12) we let � D 2 and G.s/ D 1=s2. Then g.t/ D t and (8.4.12) implies that

L�1

�
e�2s

s2

�
D u.t � 2/.t � 2/:
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Example 8.4.7 Find the inverse Laplace transform h of

H.s/ D 1

s2
� e�s

�
1

s2
C 2

s

�
C e�4s

�
4

s3
C 1

s

�
;

and find distinct formulas for h on appropriate intervals.

Solution Let

G0.s/ D 1

s2
; G1.s/ D 1

s2
C 2

s
; G2.s/ D 4

s3
C 1

s
:

Then

g0.t/ D t; g1.t/ D t C 2; g2.t/ D 2t2 C 1:

Hence, (8.4.12) and the linearity of L�1 imply that

h.t/ D L�1 .G0.s// � L�1 .e�sG1.s//C L�1
�
e�4sG2.s/

�
D t � u.t � 1/ Œ.t � 1/C 2�C u.t � 4/

�
2.t � 4/2 C 1

�
D t � u.t � 1/.t C 1/C u.t � 4/.2t2 � 16t C 33/;

which can also be written as

h.t/ D

8̂<
:̂

t; 0 � t < 1;

�1; 1 � t < 4;

2t2 � 16t C 32; t � 4:

Example 8.4.8 Find the inverse transform of

H.s/ D 2s

s2 C 4
� e�

�
2

s 3s C 1

s2 C 9
C e��s s C 1

s2 C 6s C 10
:

Solution Let

G0.s/ D 2s

s2 C 4
; G1.s/ D � .3s C 1/

s2 C 9
;

and

G2.s/ D s C 1

s2 C 6s C 10
D .s C 3/� 2

.s C 3/2 C 1
:

Then

g0.t/ D 2 cos 2t; g1.t/ D �3 cos 3t � 1

3
sin 3t;

and

g2.t/ D e�3t .cos t � 2 sin t/:

Therefore (8.4.12) and the linearity of L�1 imply that

h.t/ D 2 cos 2t � u.t � �=2/

�
3 cos 3.t � �=2/C 1

3
sin 3

	
t � �

2


�

Cu.t � �/e�3.t��/ Œcos.t � �/� 2 sin.t � �/� :



428 Chapter 8 Laplace Transforms

Using the trigonometric identities (8.4.8) and (8.4.9), we can rewrite this as

h.t/ D 2 cos 2t C u.t � �=2/
�
3 sin 3t � 1

3
cos 3t

�
�u.t � �/e�3.t��/.cos t � 2 sin t/

(8.4.13)

(Figure 8.4.5).

1 2 3 4 5 6

1

2

3

4

5

−1

−2

−3

−4

−5

−6

−7

 t

 y

Figure 8.4.5 The piecewise continouous function (8.4.13)

8.4 Exercises

In Exercises 1–6 find the Laplace transform by the method of Example 8.4.1. Then express the given

function f in terms of unit step functions as in Eqn. (8.4.6), and use Theorem 8.4.1 to find L.f /. Where

indicated by C/G , graph f .

1. f .t/ D
(

1; 0 � t < 4;

t; t � 4:

2. f .t/ D
(

t; 0 � t < 1;

1; t � 1:

3. C/G f .t/ D
(

2t � 1; 0 � t < 2;

t; t � 2:
4. C/G f .t/ D

(
1; 0 � t < 1;

t C 2; t � 1:

5. f .t/ D
(

t � 1; 0 � t < 2;

4; t � 2:
6. f .t/ D

(
t2; 0 � t < 1;

0; t � 1:
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In Exercises 7–18 express the given function f in terms of unit step functions and use Theorem 8.4.1 to

find L.f /. Where indicated by C/G , graph f .

7. f .t/ D
(

0; 0 � t < 2;

t2 C 3t; t � 2:

8. f .t/ D
(

t2 C 2; 0 � t < 1;

t; t � 1:

9. f .t/ D
(

tet ; 0 � t < 1;

et ; t � 1:
10. f .t/ D

(
e �t ; 0 � t < 1;

e�2t ; t � 1:

11. f .t/ D

8̂̂<
ˆ̂:

�t; 0 � t < 2;

t � 4; 2 � t < 3;

1; t � 3:

12. f .t/ D

8̂̂<
ˆ̂:

0; 0 � t < 1;

t; 1 � t < 2;

0; t � 2:

13. f .t/ D

8̂̂<
ˆ̂:

t; 0 � t < 1;

t2; 1 � t < 2;

0; t � 2:

14. f .t/ D

8̂̂<
ˆ̂:

t; 0 � t < 1;

2 � t; 1 � t < 2;

6; t > 2:

15. C/G f .t/ D

8̂̂̂
<
ˆ̂̂:

sin t; 0 � t <
�

2
;

2 sin t;
�

2
� t < �;

cos t; t � �:

16. C/G f .t/ D

8̂̂
<
ˆ̂:

2; 0 � t < 1;

�2t C 2; 1 � t < 3;

3t; t � 3:

17. C/G f .t/ D

8̂̂
<
ˆ̂:

3; 0 � t < 2;

3t C 2; 2 � t < 4;

4t; t � 4:

18. C/G f .t/ D
(

.t C 1/2; 0 � t < 1;

.t C 2/2; t � 1:

In Exercises 19–28 use Theorem 8.4.2 to express the inverse transforms in terms of step functions, and

then find distinct formulas the for inverse transforms on the appropriate intervals, as in Example 8.4.7.

Where indicated by C/G , graph the inverse transform.

19. H.s/ D e�2s

s � 2

20. H.s/ D e�s

s.s C 1/

21. C/G H.s/ D e�s

s3
C e�2s

s2

22. C/G H.s/ D
�

2

s
C 1

s2

�
C e�s

�
3

s
� 1

s2

�
C e�3s

�
1

s
C 1

s2

�
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23. H.s/ D
�

5

s
� 1

s2

�
C e�3s

�
6

s
C 7

s2

�
C 3e�6s

s3

24. H.s/ D e��s.1 � 2s/

s2 C 4s C 5

25. C/G H.s/ D
�

1

s
� s

s2 C 1

�
C e�

�
2 s

�
3s � 1

s2 C 1

�

26. H.s/ D e�2s

�
3.s � 3/

.s C 1/.s � 2/
� s C 1

.s � 1/.s � 2/

�

27. H.s/ D 1

s
C 1

s2
C e�s

�
3

s
C 2

s2

�
C e�3s

�
4

s
C 3

s2

�

28. H.s/ D 1

s
� 2

s3
C e�2s

�
3

s
� 1

s3

�
C e�4s

s2

29. Find L .u.t � �//.

30. Let ftmg1mD0 be a sequence of points such that t0 D 0, tmC1 > tm, and limm!1 tm D 1. For

each nonnegative integer m, let fm be continuous on Œtm;1/, and let f be defined on Œ0;1/ by

f .t/ D fm.t/; tm � t < tmC1 .m D 0; 1; : : : /:

Show that f is piecewise continuous on Œ0;1/ and that it has the step function representation

f .t/ D f0.t/C
1X

mD1

u.t � tm/ .fm.t/ � fm�1.t// ; 0 � t < 1:

How do we know that the series on the right converges for all t in Œ0;1/?

31. In addition to the assumptions of Exercise 30, assume that

jfm.t/j � Mes0t ; t � tm; m D 0; 1; : : : ; .A/

and that the series 1X
mD0

e��tm .B/

converges for some � > 0. Using the steps listed below, show that L.f / is defined for s > s0 and

L.f / D L.f0/C
1X

mD1

e�stmL.gm/ .C/

for s > s0 C �, where

gm.t/ D fm.t C tm/ � fm�1.t C tm/:

(a) Use (A) and Theorem 8.1.6 to show that

L.f / D
1X

mD0

Z tmC1

tm

e�st fm.t/ dt .D/

is defined for s > s0.
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(b) Show that (D) can be rewritten as

L.f / D
1X

mD0

 Z 1

tm

e�stfm.t/ dt �
Z 1

tmC1

e�st fm.t/ dt

!
: .E/

(c) Use (A), the assumed convergence of (B), and the comparison test to show that the series

1X
mD0

Z 1

tm

e�stfm.t/ dt and

1X
mD0

Z 1

tmC1

e�st fm.t/ dt

both converge (absolutely) if s > s0 C �.

(d) Show that (E) can be rewritten as

L.f / D L.f0/C
1X

mD1

Z 1

tm

e�st .fm.t/ � fm�1.t// dt

if s > s0 C �.

(e) Complete the proof of (C).

32. Suppose ftmg1mD0 and ffmg1mD0 satisfy the assumptions of Exercises 30 and 31, and there’s a

positive constant K such that tm � Km for m sufficiently large. Show that the series (B) of

Exercise 31 converges for any � > 0, and conclude from this that (C) of Exercise 31 holds for

s > s0.

In Exercises 33–36 find the step function representation of f and use the result of Exercise 32 to find

L.f /. HINT: You will need formulas related to the formula for the sum of a geometric series.

33. f .t/ D mC 1; m � t < mC 1 .m D 0; 1; 2; : : : /

34. f .t/ D .�1/m; m � t < mC 1 .m D 0; 1; 2; : : : /

35. f .t/ D .mC 1/2; m � t < mC 1 .m D 0; 1; 2; : : : /

36. f .t/ D .�1/mm; m � t < mC 1 .m D 0; 1; 2; : : : /

8.5 CONSTANT COEEFFICIENT EQUATIONS WITH PIECEWISE CONTINUOUS FORCING FUNC-

TIONS

We’ll now consider initial value problems of the form

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1; (8.5.1)

where a, b, and c are constants (a ¤ 0) and f is piecewise continuous on Œ0;1/. Problems of this

kind occur in situations where the input to a physical system undergoes instantaneous changes, as when

a switch is turned on or off or the forces acting on the system change abruptly.

It can be shown (Exercises 23 and 24) that the differential equation in (8.5.1) has no solutions on an

open interval that contains a jump discontinuity of f . Therefore we must define what we mean by a

solution of (8.5.1) on Œ0;1/ in the case where f has jump discontinuities. The next theorem motivates

our definition. We omit the proof.



432 Chapter 8 Laplace Transforms

Theorem 8.5.1 Suppose a; b, and c are constants .a ¤ 0/; and f is piecewise continuous on Œ0;1/:

with jump discontinuities at t1; . . . , tn; where

0 < t1 < � � � < tn:

Let k0 and k1 be arbitrary real numbers. Then there is a unique function y defined on Œ0;1/ with these

properties:

(a) y.0/ D k0 and y0.0/ D k1.

(b) y and y0 are continuous on Œ0;1/.

(c) y00 is defined on every open subinterval of Œ0;1/ that does not contain any of the points t1; . . . , tn,

and

ay00 C by0 C cy D f .t/

on every such subinterval.

(d) y00 has limits from the right and left at t1; . . . ; tn.

We define the function y of Theorem 8.5.1 to be the solution of the initial value problem (8.5.1).

We begin by considering initial value problems of the form

ay00 C by0 C cy D
(

f0.t/; 0 � t < t1;

f1.t/; t � t1;
y.0/ D k0; y0.0/ D k1; (8.5.2)

where the forcing function has a single jump discontinuity at t1.

We can solve (8.5.2) by the these steps:

Step 1. Find the solution y0 of the initial value problem

ay00 C by0 C cy D f0.t/; y.0/ D k0; y0.0/ D k1:

Step 2. Compute c0 D y0.t1/ and c1 D y00.t1/.

Step 3. Find the solution y1 of the initial value problem

ay00 C by0 C cy D f1.t/; y.t1/ D c0; y0.t1/ D c1:

Step 4. Obtain the solution y of (8.5.2) as

y D
(

y0.t/; 0 � t < t1

y1.t/; t � t1:

It is shown in Exercise 23 that y0 exists and is continuous at t1. The next example illustrates this

procedure.

Example 8.5.1 Solve the initial value problem

y00 C y D f .t/; y.0/ D 2; y0.0/ D �1; (8.5.3)

where

f .t/ D
8<
:

1; 0 � t <
�

2
;

�1; t � �

2
:
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1 2 3 4 5 6

1

2

−1

−2

 t

 y

Figure 8.5.1 Graph of (8.5.4)

Solution The initial value problem in Step 1 is

y00 C y D 1; y.0/ D 2; y0.0/ D �1:

We leave it to you to verify that its solution is

y0 D 1C cos t � sin t:

Doing Step 2 yields y0.�=2/ D 0 and y00.�=2/ D �1, so the second initial value problem is

y00 C y D �1; y
	�

2



D 0; y0

	�

2



D �1:

We leave it to you to verify that the solution of this problem is

y1 D �1C cos t C sin t:

Hence, the solution of (8.5.3) is

y D
8<
:

1C cos t � sin t; 0 � t <
�

2
;

�1C cos t C sin t; t � �

2

(8.5.4)

(Figure:8.5.1).

If f0 and f1 are defined on Œ0;1/, we can rewrite (8.5.2) as

ay00 C by0 C cy D f0.t/ C u.t � t1/ .f1.t/ � f0.t// ; y.0/ D k0; y0.0/ D k1;

and apply the method of Laplace transforms. We’ll now solve the problem considered in Example 8.5.1

by this method.
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Example 8.5.2 Use the Laplace transform to solve the initial value problem

y00 C y D f .t/; y.0/ D 2; y0.0/ D �1; (8.5.5)

where

f .t/ D
8<
:

1; 0 � t <
�

2
;

�1; t � �

2
:

Solution Here

f .t/ D 1 � 2u
	
t � �

2



;

so Theorem 8.4.1 (with g.t/ D 1) implies that

L.f / D 1 � 2e��s=2

s
:

Therefore, transforming (8.5.5) yields

.s2 C 1/Y.s/ D 1 � 2e��s=2

s
� 1C 2s;

so

Y.s/ D .1 � 2e��s=2/G.s/C 2s � 1

s2 C 1
; (8.5.6)

with

G.s/ D 1

s.s2 C 1/
:

The form for the partial fraction expansion of G is

1

s.s2 C 1/
D A

s
C Bs C C

s2 C 1
: (8.5.7)

Multiplying through by s.s2 C 1/ yields

A.s2 C 1/C .Bs C C/s D 1;

or

.AC B/s2 CCs C A D 1:

Equating coefficients of like powers of s on the two sides of this equation shows that A D 1, B D �A D
�1 and C D 0. Hence, from (8.5.7),

G.s/ D 1

s
� s

s2 C 1
:

Therefore

g.t/ D 1 � cos t:

From this, (8.5.6), and Theorem 8.4.2,

y D 1 � cos t � 2u
	
t � �

2


 	
1 � cos

	
t � �

2




C 2 cos t � sin t:

Simplifying this (recalling that cos.t � �=2/ D sin t/ yields

y D 1C cos t � sin t � 2u
	
t � �

2



.1 � sin t/;
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or

y D
8<
:

1C cos t � sin t; 0 � t <
�

2
;

�1C cos t C sin t; t � �

2
;

which is the result obtained in Example 8.5.1.

REMARK: It isn’t obvious that using the Laplace transform to solve (8.5.2) as we did in Example 8.5.2

yields a function y with the properties stated in Theorem 8.5.1; that is, such that y and y0 are continuous

on Œ0;1/ and y00 has limits from the right and left at t1. However, this is true if f0 and f1 are continuous

and of exponential order on Œ0;1/. A proof is sketched in Exercises 8.6.11–8.6.13.

Example 8.5.3 Solve the initial value problem

y00 � y D f .t/; y.0/ D �1; y0.0/ D 2; (8.5.8)

where

f .t/ D
�

t; 0 � t < 1;

1; t � 1:

Solution Here

f .t/ D t � u.t � 1/.t � 1/;

so

L.f / D L.t/ �L .u.t � 1/.t � 1//

D L.t/ � e�sL.t/ (from Theorem 8.4.1)

D 1

s2
� e�s

s2
:

Since transforming (8.5.8) yields

.s2 � 1/Y.s/ D L.f /C 2 � s;

we see that

Y.s/ D .1 � e�s/H.s/ C 2 � s

s2 � 1
; (8.5.9)

where

H.s/ D 1

s2.s2 � 1/
D 1

s2 � 1
� 1

s2
I

therefore

h.t/ D sinh t � t: (8.5.10)

Since

L�1

�
2 � s

s2 � 1

�
D 2 sinh t � cosh t;

we conclude from (8.5.9), (8.5.10), and Theorem 8.4.1 that

y D sinh t � t � u.t � 1/ .sinh.t � 1/ � t C 1/C 2 sinh t � cosh t;

or

y D 3 sinh t � cosh t � t � u.t � 1/ .sinh.t � 1/� t C 1/ (8.5.11)

We leave it to you to verify that y and y0 are continuous and y00 has limits from the right and left at t1 D 1.
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Example 8.5.4 Solve the initial value problem

y00 C y D f .t/; y.0/ D 0; y0.0/ D 0; (8.5.12)

where

f .t/ D

8̂̂̂
<
ˆ̂̂:

0; 0 � t <
�

4
;

cos 2t;
�

4
� t < �;

0; t � �:

Solution Here

f .t/ D u.t � �=4/ cos 2t � u.t � �/ cos 2t;

so

L.f / D L .u.t � �=4/ cos 2t/� L .u.t � �/ cos 2t/

D e��s=4L .cos 2.t C �=4// � e��sL .cos 2.t C �//

D �e��s=4L.sin 2t/ � e��sL.cos 2t/

D �2e��s=4

s2 C 4
� se��s

s2 C 4
:

Since transforming (8.5.12) yields

.s2 C 1/Y.s/ D L.f /;

we see that

Y.s/ D e��s=4H1.s/C e��sH2.s/; (8.5.13)

where

H1.s/ D � 2

.s2 C 1/.s2 C 4/
and H2.s/ D � s

.s2 C 1/.s2 C 4/
: (8.5.14)

To simplify the required partial fraction expansions, we first write

1

.x C 1/.x C 4/
D 1

3

�
1

x C 1
� 1

x C 4

�
:

Setting x D s2 and substituting the result in (8.5.14) yields

H1.s/ D �2

3

�
1

s2 C 1
� 1

s2 C 4

�
and H2.s/ D �1

3

�
s

s2 C 1
� s

s2 C 4

�
:

The inverse transforms are

h1.t/ D �2

3
sin t C 1

3
sin 2t and h2.t/ D �1

3
cos t C 1

3
cos 2t:

From (8.5.13) and Theorem 8.4.2,

y D u
	
t � �

4



h1

	
t � �

4



C u.t � �/h2.t � �/: (8.5.15)

Since

h1

	
t � �

4



D �2

3
sin
	
t � �

4



C 1

3
sin 2

	
t � �

4




D �
p

2

3
.sin t � cos t/ � 1

3
cos 2t
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Figure 8.5.2 Graph of (8.5.16)

and

h2.t � �/ D �1

3
cos.t � �/C 1

3
cos 2.t � �/

D 1

3
cos t C 1

3
cos 2t;

(8.5.15) can be rewritten as

y D �1

3
u
	
t � �

4


 	p
2.sin t � cos t/C cos 2t



C 1

3
u.t � �/.cos t C cos 2t/

or

y D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

0; 0 � t <
�

4
;

�
p

2

3
.sin t � cos t/ � 1

3
cos 2t;

�

4
� t < �;

�
p

2

3
sin t C 1Cp2

3
cos t; t � �:

(8.5.16)

We leave it to you to verify that y and y0 are continuous and y00 has limits from the right and left at

t1 D �=4 and t2 D � (Figure 8.5.2).

8.5 Exercises

In Exercises 1–20 use the Laplace transform to solve the initial value problem. Where indicated by

C/G , graph the solution.
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1. y00 C y D
(

3; 0 � t < �;

0; t � �;
y.0/ D 0; y0.0/ D 0

2. y00 C y D
�

3; 0 � t < 4;

I 2t � 5; t > 4;
y.0/ D 1; y0.0/ D 0

3. y00 � 2y0 D
(

4; 0 � t < 1;

6; t � 1;
y.0/ D �6; y0.0/ D 1

4. y00 � y D
(

e2t ; 0 � t < 2;

1; t � 2;
y.0/ D 3; y0.0/ D �1

5. y00 � 3y0 C 2y D

8̂̂
<
ˆ̂:

0; 0 � t < 1;

1; 1 � t < 2;

�1; t � 2;

y.0/ D �3; y0.0/ D 1

6. C/G y00 C 4y D
( j sin t j; 0 � t < 2�;

0; t � 2�;
y.0/ D �3; y0.0/ D 1

7. y00 � 5y0 C 4y D

8̂̂<
ˆ̂:

1; 0 � t < 1

�1; 1 � t < 2;

0; t � 2;

y.0/ D 3; y0.0/ D �5

8. y00 C 9y D

8̂<
:̂

cos t; 0 � t <
3�

2
;

sin t; t � 3�

2
;

y.0/ D 0; y0.0/ D 0

9. C/G y00 C 4y D
8<
:

t; 0 � t <
�

2
;

�; t � �

2
;

y.0/ D 0; y0.0/ D 0

10. y00 C y D
(

t; 0 � t < �;

�t; t � �;
y.0/ D 0; y0.0/ D 0

11. y00 � 3y0 C 2y D
�

0; 0 � t < 2;

2t � 4; t � 2;
; y.0/ D 0; y0.0/ D 0

12. y00 C y D
�

t; 0 � t < 2�;

�2t; t � 2�;
y.0/ D 1; y0.0/ D 2

13. C/G y00 C 3y0 C 2y D
�

1; 0 � t < 2;

�1; t � 2;
y.0/ D 0; y0.0/ D 0

14. y00 � 4y0 C 3y D
� �1; 0 � t < 1;

1; t � 1;
y.0/ D 0; y0.0/ D 0

15. y00 C 2y0 C y D
�

et ; 0 � t < 1;

et � 1; t � 1;
y.0/ D 3; y0.0/ D �1

16. y00 C 2y0 C y D
�

4et ; 0 � t < 1;

0; t � 1;
y.0/ D 0; y0.0/ D 0

17. y00 C 3y0C 2y D
�

e�t ; 0 � t < 1;

0; t � 1;
y.0/ D 1; y0.0/ D �1
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18. y00 � 4y0 C 4y D
�

e2t ; 0 � t < 2;

�e2t ; t � 2;
y.0/ D 0; y0.0/ D �1

19. C/G y00 D
8<
:

t2; 0 � t < 1;

�t; 1 � t < 2;

t C 1; t � 2;

y.0/ D 1; y0.0/ D 0

20. y00 C 2y0 C 2y D
8<
:

1; 0 � t < 2�;

t; 2� � t < 3�;

�1; t � 3�;

y.0/ D 2; y0.0/ D �1

21. Solve the initial value problem

y00 D f .t/; y.0/ D 0; y0.0/ D 0;

where

f .t/ D mC 1; m � t < mC 1; m D 0; 1; 2; : : : :

22. Solve the given initial value problem and find a formula that does not involve step functions and

represents y on each interval of continuity of f .

(a) y00 C y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D mC 1; m� � t < .mC 1/�; m D 0; 1; 2; : : : .

(b) y00 C y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D .m C 1/t; 2m� � t < 2.m C 1/�; m D 0; 1; 2; : : : HINT: You’ll need the

formula

1C 2C � � � Cm D m.m C 1/

2
:

(c) y00 C y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D .�1/m; m� � t < .mC 1/�; m D 0; 1; 2; : : : :

(d) y00 � y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D mC 1; m � t < .mC 1/; m D 0; 1; 2; : : : :

HINT: You will need the formula

1C r C � � � C rm D 1 � rmC1

1 � r
.r ¤ 1/:

(e) y00 C 2y0 C 2y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D .mC 1/.sin t C 2 cos t/; 2m� � t < 2.mC 1/�; m D 0; 1; 2; : : : :

(See the hint in (d).)

(f) y00 � 3y0 C 2y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D mC 1; m � t < mC 1; m D 0; 1; 2; : : : :

(See the hints in (b) and (d).)

23. (a) Let g be continuous on .˛; ˇ/ and differentiable on the .˛; t0/ and .t0; ˇ/. Suppose A D
limt!t0� g0.t/ and B D limt!t0C g0.t/ both exist. Use the mean value theorem to show that

lim
t!t0�

g.t/ � g.t0/

t � t0
D A and lim

t!t0C
g.t/ � g.t0/

t � t0
D B:

(b) Conclude from (a) that g0.t0/ exists and g0 is continuous at t0 if A D B .
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(c) Conclude from (a) that if g is differentiable on .˛; ˇ/ then g0 can’t have a jump discontinuity

on .˛; ˇ/.

24. (a) Let a, b, and c be constants, with a ¤ 0. Let f be piecewise continuous on an interval .˛; ˇ/,

with a single jump discontinuity at a point t0 in .˛; ˇ/. Suppose y and y0 are continuous on

.˛; ˇ/ and y00 on .˛; t0/ and .t0; ˇ/. Suppose also that

ay00 C by0 C cy D f .t/ .A/

on .˛; t0/ and .t0; ˇ/. Show that

y00.t0C/� y00.t0�/ D f .t0C/� f .t0�/

a
¤ 0:

(b) Use (a) and Exercise 23(c) to show that (A) does not have solutions on any interval .˛; ˇ/

that contains a jump discontinuity of f .

25. Suppose P0; P1, and P2 are continuous and P0 has no zeros on an open interval .a; b/, and that F

has a jump discontinuity at a point t0 in .a; b/. Show that the differential equation

P0.t/y00 C P1.t/y0 C P2.t/y D F.t/

has no solutions on .a; b/.HINT: Generalize the result of Exercise 24 and use Exercise 23.c/.

26. Let 0 D t0 < t1 < � � � < tn. Suppose fm is continuous on Œtm;1/ for m D 1; : : : ; n. Let

f .t/ D
�

fm.t/; tm � t < tmC1; m D 1; : : : ; n� 1;

fn.t/; t � tn:

Show that the solution of

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1;

as defined following Theorem 8.5.1, is given by

y D

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

´0.t/; 0 � t < t1;

´0.t/C ´1.t/; t1 � t < t2;
:::

´0 C � � � C ´n�1.t/; tn�1 � t < tn;

´0 C � � � C ´n.t/; t � tn;

where ´0 is the solution of

a´00 C b´0 C c´ D f0.t/; ´.0/ D k0; ´0.0/ D k1

and ´m is the solution of

a´00 C b´0 C c´ D fm.t/ � fm�1.t/; ´.tm/ D 0; ´0.tm/ D 0

for m D 1; : : : ; n.

8.6 CONVOLUTION
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In this section we consider the problem of finding the inverse Laplace transform of a product H.s/ D
F.s/G.s/, where F and G are the Laplace transforms of known functions f and g. To motivate our

interest in this problem, consider the initial value problem

ay00 C by0 C cy D f .t/; y.0/ D 0; y0.0/ D 0:

Taking Laplace transforms yields

.as2 C bs C c/Y.s/ D F.s/;

so

Y.s/ D F.s/G.s/; (8.6.1)

where

G.s/ D 1

as2 C bs C c
:

Until now wen’t been interested in the factorization indicated in (8.6.1), since we dealt only with differ-

ential equations with specific forcing functions. Hence, we could simply do the indicated multiplication

in (8.6.1) and use the table of Laplace transforms to find y D L�1.Y /. However, this isn’t possible if we

want a formula for y in terms of f , which may be unspecified.

To motivate the formula for L�1.F G/, consider the initial value problem

y0 � ay D f .t/; y.0/ D 0; (8.6.2)

which we first solve without using the Laplace transform. The solution of the differential equation in

(8.6.2) is of the form y D ueat where

u0 D e�atf .t/:

Integrating this from 0 to t and imposing the initial condition u.0/ D y.0/ D 0 yields

u D
Z t

0

e�a�f .�/ d�:

Therefore

y.t/ D eat

Z t

0

e�a�f .�/ d� D
Z t

0

ea.t��/f .�/ d�: (8.6.3)

Now we’ll use the Laplace transform to solve (8.6.2) and compare the result to (8.6.3). Taking Laplace

transforms in (8.6.2) yields

.s � a/Y.s/ D F.s/;

so

Y.s/ D F.s/
1

s � a
;

which implies that

y.t/ D L�1

�
F.s/

1

s � a

�
: (8.6.4)

If we now let g.t/ D eat , so that

G.s/ D 1

s � a
;

then (8.6.3) and (8.6.4) can be written as

y.t/ D
Z t

0

f .�/g.t � �/ d�
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and

y D L�1.F G/;

respectively. Therefore

L�1.F G/ D
Z t

0

f .�/g.t � �/ d� (8.6.5)

in this case.

This motivates the next definition.

Definition 8.6.1 The convolution f � g of two functions f and g is defined by

.f � g/.t/ D
Z t

0

f .�/g.t � �/ d�:

It can be shown (Exercise 6) that f � g D g � f ; that is,Z t

0

f .t � �/g.�/ d� D
Z t

0

f .�/g.t � �/ d�:

Eqn. (8.6.5) shows that L�1.F G/ D f � g in the special case where g.t/ D eat . This next theorem

states that this is true in general.

Theorem 8.6.2 ŒThe Convolution Theorem� If L.f / D F and L.g/ D G; then

L.f � g/ D F G:

A complete proof of the convolution theorem is beyond the scope of this book. However, we’ll assume

that f � g has a Laplace transform and verify the conclusion of the theorem in a purely computational

way. By the definition of the Laplace transform,

L.f � g/ D
Z 1

0

e�st .f � g/.t/ dt D
Z 1

0

e�st

Z t

0

f .�/g.t � �/ d� dt:

This iterated integral equals a double integral over the region shown in Figure 8.6.1. Reversing the order

of integration yields

L.f � g/ D
Z 1

0

f .�/

Z 1

�

e�stg.t � �/ dt d�: (8.6.6)

However, the substitution x D t � � shows thatZ 1

�

e�st g.t � �/ dt D
Z 1

0

e�s.xC�/g.x/ dx

D e�s�

Z 1

0

e�sxg.x/ dx D e�s� G.s/:

Substituting this into (8.6.6) and noting that G.s/ is independent of � yields

L.f � g/ D
Z 1

0

e�s� f .�/G.s/ d�

D G.s/

Z 1

0

e�st f .�/ d� D F.s/G.s/:
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 t = τ

 t

 τ

Figure 8.6.1

Example 8.6.1 Let

f .t/ D eat and g.t/ D ebt .a ¤ b/:

Verify that L.f � g/ D L.f /L.g/, as implied by the convolution theorem.

Solution We first compute

.f � g/.t/ D
Z t

0

ea�eb.t��/ d� D ebt

Z t

0

e.a�b/�d�

D ebt e.a�b/�

a � b

ˇ̌̌
ˇ
t

0

D ebt
�
e.a�b/t � 1

�
a � b

D eat � ebt

a � b
:

Since

eat $ 1

s � a
and ebt $ 1

s � b
;

it follows that

L.f � g/ D 1

a � b

�
1

s � a
� 1

s � b

�

D 1

.s � a/.s � b/

D L.eat/L.ebt / D L.f /L.g/:
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A Formula for the Solution of an Initial Value Problem

The convolution theorem provides a formula for the solution of an initial value problem for a linear

constant coefficient second order equation with an unspecified. The next three examples illustrate this.

Example 8.6.2 Find a formula for the solution of the initial value problem

y00 � 2y0 C y D f .t/; y.0/ D k0; y0.0/ D k1: (8.6.7)

Solution Taking Laplace transforms in (8.6.7) yields

.s2 � 2s C 1/Y.s/ D F.s/C .k1 C k0s/ � 2k0:

Therefore

Y.s/ D 1

.s � 1/2
F.s/ C k1 C k0s � 2k0

.s � 1/2

D 1

.s � 1/2
F.s/ C k0

s � 1
C k1 � k0

.s � 1/2
:

From the table of Laplace transforms,

L�1

�
k0

s � 1
C k1 � k0

.s � 1/2

�
D et .k0 C .k1 � k0/t/ :

Since
1

.s � 1/2
$ tet and F.s/ $ f .t/;

the convolution theorem implies that

L�1

�
1

.s � 1/2
F.s/

�
D
Z t

0

�e�f .t � �/ d�:

Therefore the solution of (8.6.7) is

y.t/ D et .k0 C .k1 � k0/t/ C
Z t

0

�e�f .t � �/ d�:

Example 8.6.3 Find a formula for the solution of the initial value problem

y00 C 4y D f .t/; y.0/ D k0; y0.0/ D k1: (8.6.8)

Solution Taking Laplace transforms in (8.6.8) yields

.s2 C 4/Y.s/ D F.s/C k1 C k0s:

Therefore

Y.s/ D 1

.s2 C 4/
F.s/C k1 C k0s

s2 C 4
:

From the table of Laplace transforms,

L�1

�
k1 C k0s

s2 C 4

�
D k0 cos 2t C k1

2
sin 2t:
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Since
1

.s2 C 4/
$ 1

2
sin 2t and F.s/ $ f .t/;

the convolution theorem implies that

L�1

�
1

.s2 C 4/
F.s/

�
D 1

2

Z t

0

f .t � �/ sin 2� d�:

Therefore the solution of (8.6.8) is

y.t/ D k0 cos 2t C k1

2
sin 2t C 1

2

Z t

0

f .t � �/ sin 2� d�:

Example 8.6.4 Find a formula for the solution of the initial value problem

y00 C 2y0 C 2y D f .t/; y.0/ D k0; y0.0/ D k1: (8.6.9)

Solution Taking Laplace transforms in (8.6.9) yields

.s2 C 2sC 2/Y.s/ D F.s/C k1 C k0s C 2k0:

Therefore

Y.s/ D 1

.s C 1/2 C 1
F.s/C k1 C k0sC 2k0

.s C 1/2 C 1

D 1

.s C 1/2 C 1
F.s/C .k1 C k0/C k0.s C 1/

.s C 1/2 C 1
:

From the table of Laplace transforms,

L�1

�
.k1 C k0/C k0.s C 1/

.s C 1/2 C 1

�
D e�t ..k1 C k0/ sin t C k0 cos t/ :

Since
1

.s C 1/2 C 1
$ e�t sin t and F.s/ $ f .t/;

the convolution theorem implies that

L�1

�
1

.s C 1/2 C 1
F.s/

�
D
Z t

0

f .t � �/e�� sin � d�:

Therefore the solution of (8.6.9) is

y.t/ D e�t ..k1 C k0/ sin t C k0 cos t/C
Z t

0

f .t � �/e�� sin � d�: (8.6.10)

Evaluating Convolution Integrals

We’ll say that an integral of the form
R t

0 u.�/v.t � �/ d� is a convolution integral. The convolution

theorem provides a convenient way to evaluate convolution integrals.
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Example 8.6.5 Evaluate the convolution integral

h.t/ D
Z t

0

.t � �/5�7d�:

Solution We could evaluate this integral by expanding .t � �/5 in powers of � and then integrating.

However, the convolution theorem provides an easier way. The integral is the convolution of f .t/ D t5

and g.t/ D t7. Since

t5 $ 5Š

s6
and t7 $ 7Š

s8
;

the convolution theorem implies that

h.t/ $ 5Š7Š

s14
D 5Š7Š

13Š

13Š

s14
;

where we have written the second equality because

13Š

s14
$ t13:

Hence,

h.t/ D 5Š7Š

13Š
t13:

Example 8.6.6 Use the convolution theorem and a partial fraction expansion to evaluate the convolution

integral

h.t/ D
Z t

0

sin a.t � �/ cos b� d� .jaj ¤ jbj/:

Solution Since

sin at $ a

s2 C a2
and cos bt $ s

s2 C b2
;

the convolution theorem implies that

H.s/ D a

s2 C a2

s

s2 C b2
:

Expanding this in a partial fraction expansion yields

H.s/ D a

b2 � a2

�
s

s2 C a2
� s

s2 C b2

�
:

Therefore

h.t/ D a

b2 � a2
.cos at � cos bt/ :

Volterra Integral Equations

An equation of the form

y.t/ D f .t/C
Z t

0

k.t � �/y.�/ d� (8.6.11)
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is a Volterra integral equation. Here f and k are given functions and y is unknown. Since the integral

on the right is a convolution integral, the convolution theorem provides a convenient formula for solving

(8.6.11). Taking Laplace transforms in (8.6.11) yields

Y.s/ D F.s/CK.s/Y.s/;

and solving this for Y.s/ yields

Y.s/ D F.s/

1 �K.s/
:

We then obtain the solution of (8.6.11) as y D L�1.Y /.

Example 8.6.7 Solve the integral equation

y.t/ D 1C 2

Z t

0

e�2.t��/y.�/ d�: (8.6.12)

Solution Taking Laplace transforms in (8.6.12) yields

Y.s/ D 1

s
C 2

s C 2
Y.s/;

and solving this for Y.s/ yields

Y.s/ D 1

s
C 2

s2
:

Hence,

y.t/ D 1C 2t:

Transfer Functions

The next theorem presents a formula for the solution of the general initial value problem

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1;

where we assume for simplicity that f is continuous on Œ0;1/ and that L.f / exists. In Exercises 11–14

it’s shown that the formula is valid under much weaker conditions on f .

Theorem 8.6.3 Suppose f is continuous on Œ0;1/ and has a Laplace transform: Then the solution of

the initial value problem

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1; (8.6.13)

is

y.t/ D k0y1.t/C k1y2.t/ C
Z t

0

w.�/f .t � �/ d�; (8.6.14)

where y1 and y2 satisfy

ay001 C by01 C cy1 D 0; y1.0/ D 1; y01.0/ D 0; (8.6.15)

and

ay002 C by02 C cy2 D 0; y2.0/ D 0; y02.0/ D 1; (8.6.16)

and

w.t/ D 1

a
y2.t/: (8.6.17)
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Proof Taking Laplace transforms in (8.6.13) yields

p.s/Y.s/ D F.s/C a.k1 C k0s/C bk0;

where

p.s/ D as2 C bsC c:

Hence,

Y.s/ D W.s/F.s/ C V.s/ (8.6.18)

with

W.s/ D 1

p.s/
(8.6.19)

and

V.s/ D a.k1 C k0s/C bk0

p.s/
: (8.6.20)

Taking Laplace transforms in (8.6.15) and (8.6.16) shows that

p.s/Y1.s/ D asC b and p.s/Y2.s/ D a:

Therefore

Y1.s/ D as C b

p.s/

and

Y2.s/ D a

p.s/
: (8.6.21)

Hence, (8.6.20) can be rewritten as

V.s/ D k0Y1.s/C k1Y2.s/:

Substituting this into (8.6.18) yields

Y.s/ D k0Y1.s/C k1Y2.s/C 1

a
Y2.s/F.s/:

Taking inverse transforms and invoking the convolution theorem yields (8.6.14). Finally, (8.6.19) and

(8.6.21) imply (8.6.17).

It is useful to note from (8.6.14) that y is of the form

y D v C h;

where

v.t/ D k0y1.t/C k1y2.t/

depends on the initial conditions and is independent of the forcing function, while

h.t/ D
Z t

0

w.�/f .t � �/ d�

depends on the forcing function and is independent of the initial conditions. If the zeros of the character-

istic polynomial

p.s/ D as2 C bs C c
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of the complementary equation have negative real parts, then y1 and y2 both approach zero as t ! 1,

so limt!1 v.t/ D 0 for any choice of initial conditions. Moreover, the value of h.t/ is essentially

independent of the values of f .t � �/ for large � , since lim�!1 w.�/ D 0. In this case we say that v and

h are transient and steady state components, respectively, of the solution y of (8.6.13). These definitions

apply to the initial value problem of Example 8.6.4, where the zeros of

p.s/ D s2 C 2sC 2 D .s C 1/2 C 1

are �1˙ i . From (8.6.10), we see that the solution of the general initial value problem of Example 8.6.4

is y D v C h, where

v.t/ D e�t ..k1 C k0/ sin t C k0 cos t/

is the transient component of the solution and

h.t/ D
Z t

0

f .t � �/e�� sin � d�

is the steady state component. The definitions don’t apply to the initial value problems considered in

Examples 8.6.2 and 8.6.3, since the zeros of the characteristic polynomials in these two examples don’t

have negative real parts.

In physical applications where the input f and the output y of a device are related by (8.6.13), the

zeros of the characteristic polynomial usually do have negative real parts. Then W D L.w/ is called the

transfer function of the device. Since

H.s/ D W.s/F.s/;

we see that

W.s/ D H.s/

F.s/

is the ratio of the transform of the steady state output to the transform of the input.

Because of the form of

h.t/ D
Z t

0

w.�/f .t � �/ d�;

w is sometimes called the weighting function of the device, since it assigns weights to past values of the

input f . It is also called the impulse response of the device, for reasons discussed in the next section.

Formula (8.6.14) is given in more detail in Exercises 8–10 for the three possible cases where the zeros

of p.s/ are real and distinct, real and repeated, or complex conjugates, respectively.

8.6 Exercises

1. Express the inverse transform as an integral.

(a)
1

s2.s2 C 4/
(b)

s

.s C 2/.s2 C 9/

(c)
s

.s2 C 4/.s2 C 9/
(d)

s

.s2 C 1/2

(e)
1

s.s � a/
(f)

1

.s C 1/.s2 C 2s C 2/

(g)
1

.s C 1/2.s2 C 4sC 5/
(h)

1

.s � 1/3.s C 2/2
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(i)
s � 1

s2.s2 � 2s C 2/
(j)

s.s C 3/

.s2 C 4/.s2 C 6sC 10/

(k)
1

.s � 3/5s6
(l)

1

.s � 1/3.s2 C 4/

(m)
1

s2.s � 2/3
(n)

1

s7.s � 2/6

2. Find the Laplace transform.

(a)

Z t

0

sin a� cos b.t � �/ d� (b)

Z t

0

e� sin a.t � �/ d�

(c)

Z t

0

sinh a� cosh a.t � �/ d� (d)

Z t

0

�.t � �/ sin !� cos !.t � �/ d�

(e) et

Z t

0

sin !� cos !.t � �/ d� (f) et

Z t

0

�2.t � �/e� d�

(g) e�t

Z t

0

e��� cos !.t � �/ d� (h) et

Z t

0

e2� sinh.t � �/ d�

(i)

Z t

0

�e2� sin 2.t � �/ d� (j)

Z t

0

.t � �/3e� d�

(k)

Z t

0

�6e�.t��/ sin 3.t � �/ d� (l)

Z t

0

�2.t � �/3 d�

(m)

Z t

0

.t � �/7e�� sin 2� d� (n)

Z t

0

.t � �/4 sin 2� d�

3. Find a formula for the solution of the initial value problem.

(a) y00 C 3y0 C y D f .t/; y.0/ D 0; y0.0/ D 0

(b) y00 C 4y D f .t/; y.0/ D 0; y0.0/ D 0

(c) y00 C 2y0 C y D f .t/; y.0/ D 0; y0.0/ D 0

(d) y00 C k2y D f .t/; y.0/ D 1; y0.0/ D �1

(e) y00 C 6y0 C 9y D f .t/; y.0/ D 0; y0.0/ D �2

(f) y00 � 4y D f .t/; y.0/ D 0; y0.0/ D 3

(g) y00 � 5y0C 6y D f .t/; y.0/ D 1; y0.0/ D 3

(h) y00 C !2y D f .t/; y.0/ D k0; y0.0/ D k1

4. Solve the integral equation.

(a) y.t/ D t �
Z t

0

.t � �/y.�/ d�

(b) y.t/ D sin t � 2

Z t

0

cos.t � �/y.�/ d�

(c) y.t/ D 1C 2

Z t

0

y.�/ cos.t � �/ d� (d) y.t/ D t C
Z t

0

y.�/e�.t��/ d�

(e) y0.t/ D t C
Z t

0

y.�/ cos.t � �/ d�; y.0/ D 4
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(f) y.t/ D cos t � sin t C
Z t

0

y.�/ sin.t � �/ d�

5. Use the convolution theorem to evaluate the integral.

(a)

Z t

0

.t � �/7�8 d� (b)

Z t

0

.t � �/13�7 d�

(c)

Z t

0

.t � �/6�7 d� (d)

Z t

0

e�� sin.t � �/ d�

(e)

Z t

0

sin � cos 2.t � �/ d�

6. Show that Z t

0

f .t � �/g.�/ d� D
Z t

0

f .�/g.t � �/ d�

by introducing the new variable of integration x D t � � in the first integral.

7. Use the convolution theorem to show that if f .t/ $ F.s/ thenZ t

0

f .�/ d� $ F.s/

s
:

8. Show that if p.s/ D as2 C bsC c has distinct real zeros r1 and r2 then the solution of

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1

is

y.t/ D k0

r2er1t � r1er2t

r2 � r1

C k1

er2t � er1t

r2 � r1

C 1

a.r2 � r1/

Z t

0

.er2� � er1� /f .t � �/ d�:

9. Show that if p.s/ D as2 C bsC c has a repeated real zero r1 then the solution of

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1

is

y.t/ D k0.1 � r1t/er1t C k1ter1t C 1

a

Z t

0

�er1� f .t � �/ d�:

10. Show that if p.s/ D as2 C bsC c has complex conjugate zeros �˙ i! then the solution of

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1

is

y.t/ D e�t

�
k0.cos !t � �

!
sin !t/C k1

!
sin !t

�

C 1

a!

Z t

0

e�tf .t � �/ sin !� d�:
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11. Let

w D L�1

�
1

as2 C bs C c

�
;

where a; b, and c are constants and a ¤ 0.

(a) Show that w is the solution of

aw00C bw0C cw D 0; w.0/ D 0; w0.0/ D 1

a
:

(b) Let f be continuous on Œ0;1/ and define

h.t/ D
Z t

0

w.t � �/f .�/ d�:

Use Leibniz’s rule for differentiating an integral with respect to a parameter to show that h is

the solution of

ah00C bh0 C ch D f; h.0/ D 0; h0.0/ D 0:

(c) Show that the function y in Eqn. (8.6.14) is the solution of Eqn. (8.6.13) provided that f is

continuous on Œ0;1/; thus, it’s not necessary to assume that f has a Laplace transform.

12. Consider the initial value problem

ay00 C by0 C cy D f .t/; y.0/ D 0; y0.0/ D 0; .A/

where a; b, and c are constants, a ¤ 0, and

f .t/ D
(

f0.t/; 0 � t < t1;

f1.t/; t � t1:

Assume that f0 is continuous and of exponential order on Œ0;1/ and f1 is continuous and of

exponential order on Œt1;1/. Let

p.s/ D as2 C bsC c:

(a) Show that the Laplace transform of the solution of (A) is

Y.s/ D F0.s/C e�st1G.s/

p.s/

where g.t/ D f1.t C t1/� f0.t C t1/.

(b) Let w be as in Exercise 11. Use Theorem 8.4.2 and the convolution theorem to show that the

solution of (A) is

y.t/ D
Z t

0

w.t � �/f0.�/ d� C u.t � t1/

Z t�t1

0

w.t � t1 � �/g.�/ d�

for t > 0.

(c) Henceforth, assume only that f0 is continuous on Œ0;1/ and f1 is continuous on Œt1;1/.

Use Exercise 11 (a) and (b) to show that

y0.t/ D
Z t

0

w0.t � �/f0.�/ d� C u.t � t1/

Z t�t1

0

w0.t � t1 � �/g.�/ d�
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for t > 0, and

y00.t/ D f .t/

a
C
Z t

0

w00.t � �/f0.�/ d� C u.t � t1/

Z t�t1

0

w00.t � t1 � �/g.�/ d�

for 0 < t < t1 and t > t1. Also, show y satisfies the differential equation in (A) on.0; t1/

and .t1;1/.

(d) Show that y and y0 are continuous on Œ0;1/.

13. Suppose

f .t/ D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

f0.t/; 0 � t < t1;

f1.t/; t1 � t < t2;
:::

fk�1.t/; tk�1 � t < tk;

fk.t/; t � tk;

where fm is continuous on Œtm;1/ for m D 0; : : : ; k (let t0 D 0), and define

gm.t/ D fm.t C tm/ � fm�1.t C tm/; m D 1; : : : ; k:

Extend the results of Exercise 12 to show that the solution of

ay00 C by0 C cy D f .t/; y.0/ D 0; y0.0/ D 0

is

y.t/ D
Z t

0

w.t � �/f0.�/ d� C
kX

mD1

u.t � tm/

Z t�tm

0

w.t � tm � �/gm.�/ d�:

14. Let ftmg1mD0 be a sequence of points such that t0 D 0, tmC1 > tm, and limm!1 tm D 1. For

each nonegative integer m let fm be continuous on Œtm;1/, and let f be defined on Œ0;1/ by

f .t/ D fm.t/; tm � t < tmC1 m D 0; 1; 2 : : : :

Let

gm.t/ D fm.t C tm/ � fm�1.t C tm/; m D 1; : : : ; k:

Extend the results of Exercise 13 to show that the solution of

ay00 C by0 C cy D f .t/; y.0/ D 0; y0.0/ D 0

is

y.t/ D
Z t

0

w.t � �/f0.�/ d� C
1X

mD1

u.t � tm/

Z t�tm

0

w.t � tm � �/gm.�/ d�:

HINT: See Exercise30.

8.7 CONSTANT COEFFICIENT EQUATIONS WITH IMPULSES

So far in this chapter, we’ve considered initial value problems for the constant coefficient equation

ay00 C by0 C cy D f .t/;
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where f is continuous or piecewise continuous on Œ0;1/. In this section we consider initial value prob-

lems where f represents a force that’s very large for a short time and zero otherwise. We say that such

forces are impulsive. Impulsive forces occur, for example, when two objects collide. Since it isn’t feasible

to represent such forces as continuous or piecewise continuous functions, we must construct a different

mathematical model to deal with them.

If f is an integrable function and f .t/ D 0 for t outside of the interval Œt0; t0 C h�, then
R t0Ch

t0
f .t/ dt

is called the total impulse of f . We’re interested in the idealized situation where h is so small that the

total impulse can be assumed to be applied instantaneously at t D t0. We say in this case that f is an

impulse function. In particular, we denote by ı.t � t0/ the impulse function with total impulse equal to

one, applied at t D t0. (The impulse function ı.t/ obtained by setting t0 D 0 is the Dirac ı function.) It

must be understood, however, that ı.t � t0/ isn’t a function in the standard sense, since our “definition”

implies that ı.t � t0/ D 0 if t ¤ t0, whileZ t0

t0

ı.t � t0/ dt D 1:

From calculus we know that no function can have these properties; nevertheless, there’s a branch of

mathematics known as the theory of distributions where the definition can be made rigorous. Since the

theory of distributions is beyond the scope of this book, we’ll take an intuitive approach to impulse

functions.

Our first task is to define what we mean by the solution of the initial value problem

ay00 C by0 C cy D ı.t � t0/; y.0/ D 0; y0.0/ D 0;

where t0 is a fixed nonnegative number. The next theorem will motivate our definition.

Theorem 8.7.1 Suppose t0 � 0: For each positive number h; let yh be the solution of the initial value

problem

ay00h C by0h C cyh D fh.t/; yh.0/ D 0; y0h.0/ D 0; (8.7.1)

where

fh.t/ D

8̂̂<
ˆ̂:

0; 0 � t < t0;

1=h; t0 � t < t0 C h;

0; t � t0 C h;

(8.7.2)

so fh has unit total impulse equal to the area of the shaded rectangle in Figure 8.7.1. Then

lim
h!0C

yh.t/ D u.t � t0/w.t � t0/; (8.7.3)

where

w D L�1

�
1

as2 C bs C c

�
:

Proof Taking Laplace transforms in (8.7.1) yields

.as2 C bsC c/Yh.s/ D Fh.s/;

so

Yh.s/ D Fh.s/

as2 C bsC c
:

The convolution theorem implies that

yh.t/ D
Z t

0

w.t � �/fh.�/ d�:
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 1/h

 t
0

 t
0
+h

 t

 y

Figure 8.7.1 y D fh.t/

Therefore, (8.7.2) implies that

yh.t/ D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

0; 0 � t < t0;

1

h

Z t

t0

w.t � �/ d� ; t0 � t � t0 C h;

1

h

Z t0Ch

t0

w.t � �/ d�; t > t0 C h:

(8.7.4)

Since yh.t/ D 0 for all h if 0 � t � t0, it follows that

lim
h!0C

yh.t/ D 0 if 0 � t � t0: (8.7.5)

We’ll now show that

lim
h!0C

yh.t/ D w.t � t0/ if t > t0: (8.7.6)

Suppose t is fixed and t > t0. From (8.7.4),

yh.t/ D 1

h

Z t0Ch

t0

w.t � �/d� if h < t � t0: (8.7.7)

Since
1

h

Z t0Ch

t0

d� D 1; (8.7.8)

we can write

w.t � t0/ D 1

h
w.t � t0/

Z t0Ch

t0

d� D 1

h

Z t0Ch

t0

w.t � t0/ d�:
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From this and (8.7.7),

yh.t/ �w.t � t0/ D 1

h

Z t0Ch

t0

.w.t � �/ �w.t � t0// d�:

Therefore

jyh.t/ �w.t � t0/j � 1

h

Z t0Ch

t0

jw.t � �/ �w.t � t0/j d�: (8.7.9)

Now let Mh be the maximum value of jw.t � �/ � w.t � t0/j as � varies over the interval Œt0; t0 C h�.

(Remember that t and t0 are fixed.) Then (8.7.8) and (8.7.9) imply that

jyh.t/ �w.t � t0/j � 1

h
Mh

Z t0Ch

t0

d� D Mh: (8.7.10)

But limh!0C Mh D 0, since w is continuous. Therefore (8.7.10) implies (8.7.6). This and (8.7.5) imply

(8.7.3).

Theorem 8.7.1 motivates the next definition.

Definition 8.7.2 If t0 > 0, then the solution of the initial value problem

ay00 C by0 C cy D ı.t � t0/; y.0/ D 0; y0.0/ D 0; (8.7.11)

is defined to be

y D u.t � t0/w.t � t0/;

where

w D L�1

�
1

as2 C bs C c

�
:

In physical applications where the input f and the output y of a device are related by the differential

equation

ay00 C by0 C cy D f .t/;

w is called the impulse response of the device. Note that w is the solution of the initial value problem

aw00C bw0C cw D 0; w.0/ D 0; w0.0/ D 1=a; (8.7.12)

as can be seen by using the Laplace transform to solve this problem. (Verify.) On the other hand, we can

solve (8.7.12) by the methods of Section 5.2 and show that w is defined on .�1;1/ by

w D er2t � er1t

a.r2 � r1/
; w D 1

a
ter1t ; or w D 1

a!
e�t sin !t; (8.7.13)

depending upon whether the polynomial p.r/ D ar2CbrCc has distinct real zeros r1 and r2, a repeated

zero r1, or complex conjugate zeros �˙ i!. (In most physical applications, the zeros of the characteristic

polynomial have negative real parts, so limt!1 w.t/ D 0.) This means that y D u.t � t0/w.t � t0/ is

defined on .�1;1/ and has the following properties:

y.t/ D 0; t < t0;

ay00 C by0 C cy D 0 on .�1; t0/ and .t0;1/;

and

y0�.t0/ D 0; y0C.t0/ D 1=a (8.7.14)
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 t
0

 y

 t

Figure 8.7.2 An illustration of Theorem 8.7.1

(remember that y0�.t0/ and y0C.t0/ are derivatives from the right and left, respectively) and y0.t0/ does not

exist. Thus, even though we defined y D u.t � t0/w.t � t0/ to be the solution of (8.7.11), this function

doesn’t satisfy the differential equation in (8.7.11) at t0, since it isn’t differentiable there; in fact (8.7.14)

indicates that an impulse causes a jump discontinuity in velocity. (To see that this is reasonable, think of

what happens when you hit a ball with a bat.) This means that the initial value problem (8.7.11) doesn’t

make sense if t0 D 0, since y0.0/ doesn’t exist in this case. However y D u.t/w.t/ can be defined to be

the solution of the modified initial value problem

ay00 C by0 C cy D ı.t/; y.0/ D 0; y0�.0/ D 0;

where the condition on the derivative at t D 0 has been replaced by a condition on the derivative from the

left.

Figure 8.7.2 illustrates Theorem 8.7.1 for the case where the impulse response w is the first expression

in (8.7.13) and r1 and r2 are distinct and both negative. The solid curve in the figure is the graph of w.

The dashed curves are solutions of (8.7.1) for various values of h. As h decreases the graph of yh moves

to the left toward the graph of w.

Example 8.7.1 Find the solution of the initial value problem

y00 � 2y0 C y D ı.t � t0/; y.0/ D 0; y0.0/ D 0; (8.7.15)

where t0 > 0. Then interpret the solution for the case where t0 D 0.

Solution Here

w D L�1

�
1

s2 � 2sC 1

�
D L�1

�
1

.s � 1/2

�
D te�t ;
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Figure 8.7.3 y D u.t � t0/.t � t0/e�.t�t0/

so Definition 8.7.2 yields

y D u.t � t0/.t � t0/e�.t�t0/

as the solution of (8.7.15) if t0 > 0. If t0 D 0, then (8.7.15) doesn’t have a solution; however, y D
u.t/te�t (which we would usually write simply as y D te�t ) is the solution of the modified initial value

problem

y00 � 2y0 C y D ı.t/; y.0/ D 0; y0�.0/ D 0:

The graph of y D u.t � t0/.t � t0/e�.t�t0/ is shown in Figure 8.7.3

Definition 8.7.2 and the principle of superposition motivate the next definition.

Definition 8.7.3 Suppose ˛ is a nonzero constant and f is piecewise continuous on Œ0;1/. If t0 > 0,

then the solution of the initial value problem

ay00 C by0 C cy D f .t/C ˛ı.t � t0/; y.0/ D k0; y0.0/ D k1

is defined to be

y.t/ D Oy.t/ C ˛u.t � t0/w.t � t0/;

where Oy is the solution of

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1:

This definition also applies if t0 D 0, provided that the initial condition y0.0/ D k1 is replaced by

y0�.0/ D k1.

Example 8.7.2 Solve the initial value problem

y00 C 6y0 C 5y D 3e�2t C 2ı.t � 1/; y.0/ D �3; y0.0/ D 2: (8.7.16)
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Solution We leave it to you to show that the solution of

y00 C 6y0 C 5y D 3e�2t ; y.0/ D �3; y0.0/ D 2

is

Oy D �e�2t C 1

2
e�5t � 5

2
e�t :

Since

w.t/ D L�1

�
1

s2 C 6s C 5

�
D L�1

�
1

.s C 1/.s C 5/

�

D 1

4
L�1

�
1

s C 1
� 1

s C 5

�
D e�t � e�5t

4
;

the solution of (8.7.16) is

y D �e�2t C 1

2
e�5t � 5

2
e�t C u.t � 1/

e�.t�1/ � e�5.t�1/

2
(8.7.17)

(Figure 8.7.4) .

 t

 y

1 2 3 4

−1

−2

−3

 t = 1
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Figure 8.7.5 Graph of (8.7.19)

Definition 8.7.3 can be extended in the obvious way to cover the case where the forcing function

contains more than one impulse.

Example 8.7.3 Solve the initial value problem

y00 C y D 1C 2ı.t � �/� 3ı.t � 2�/; y.0/ D �1; y0.0/ D 2: (8.7.18)

Solution We leave it to you to show that

Oy D 1 � 2 cos t C 2 sin t

is the solution of

y00 C y D 1; y.0/ D �1; y0.0/ D 2:

Since

w D L�1

�
1

s2 C 1

�
D sin t;
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the solution of (8.7.18) is

y D 1 � 2 cos t C 2 sin t C 2u.t � �/ sin.t � �/� 3u.t � 2�/ sin.t � 2�/

D 1 � 2 cos t C 2 sin t � 2u.t � �/ sin t � 3u.t � 2�/ sin t;

or

y D

8̂<
:̂

1 � 2 cos t C 2 sin t; 0 � t < �;

1 � 2 cos t; � � t < 2�;

1 � 2 cos t � 3 sin t; t � 2�

(8.7.19)

(Figure 8.7.5).
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8.7 Exercises

In Exercises 1–20 solve the initial value problem. Where indicated by C/G , graph the solution.

1. y00 C 3y0C 2y D 6e2t C 2ı.t � 1/; y.0/ D 2; y0.0/ D �6

2. C/G y00 C y0 � 2y D �10e�t C 5ı.t � 1/; y.0/ D 7; y0.0/ D �9

3. y00 � 4y D 2e�t C 5ı.t � 1/; y.0/ D �1; y0.0/ D 2

4. C/G y00 C y D sin 3t C 2ı.t � �=2/; y.0/ D 1; y0.0/ D �1

5. y00 C 4y D 4C ı.t � 3�/; y.0/ D 0; y0.0/ D 1

6. y00 � y D 8C 2ı.t � 2/; y.0/ D �1; y0.0/ D 1

7. y00 C y0 D et C 3ı.t � 6/; y.0/ D �1; y0.0/ D 4

8. y00 C 4y D 8e2t C ı.t � �=2/; y.0/ D 8; y0.0/ D 0

9. C/G y00 C 3y0 C 2y D 1C ı.t � 1/; y.0/ D 1; y0.0/ D �1

10. y00 C 2y0 C y D et C 2ı.t � 2/; y.0/ D �1; y0.0/ D 2

11. C/G y00 C 4y D sin t C ı.t � �=2/; y.0/ D 0; y0.0/ D 2

12. y00 C 2y0 C 2y D ı.t � �/� 3ı.t � 2�/; y.0/ D �1; y0.0/ D 2

13. y00 C 4y0 C 13y D ı.t � �=6/C 2ı.t � �=3/; y.0/ D 1; y0.0/ D 2

14. 2y00 � 3y0 � 2y D 1C ı.t � 2/; y.0/ D �1; y0.0/ D 2

15. 4y00 � 4y0 C 5y D 4 sin t � 4 cos t C ı.t � �=2/ � ı.t � �/; y.0/ D 1; y0.0/ D 1

16. y00 C y D cos 2t C 2ı.t � �=2/� 3ı.t � �/; y.0/ D 0; y0.0/ D �1

17. C/G y00 � y D 4e�t � 5ı.t � 1/C 3ı.t � 2/; y.0/ D 0; y0.0/ D 0

18. y00 C 2y0 C y D et � ı.t � 1/C 2ı.t � 2/; y.0/ D 0; y0.0/ D �1

19. y00 C y D f .t/C ı.t � 2�/; y.0/ D 0; y0.0/ D 1, and

f .t/ D
(

sin 2t; 0 � t < �;

0; t � �:

20. y00 C 4y D f .t/C ı.t � �/� 3ı.t � 3�=2/; y.0/ D 1; y0.0/ D �1, and

f .t/ D
(

1; 0 � t < �=2;

2; t � �=2

21. y00 C y D ı.t/; y.0/ D 1; y0�.0/ D �2

22. y00 � 4y D 3ı.t/; y.0/ D �1; y0�.0/ D 7

23. y00 C 3y0C 2y D �5ı.t/; y.0/ D 0; y0�.0/ D 0

24. y00 C 4y0 C 4y D �ı.t/; y.0/ D 1; y0�.0/ D 5

25. 4y00 C 4y0 C y D 3ı.t/; y.0/ D 1; y0�.0/ D �6

In Exercises 26-28, solve the initial value problem

ay00h C by0h C cyh D

8̂̂<
ˆ̂:

0; 0 � t < t0;

1=h; t0 � t < t0 C h;

0; t � t0 C h;

yh.0/ D 0; y0h.0/ D 0;
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where t0 > 0 and h > 0. Then find

w D L�1

�
1

as2 C bs C c

�

and verify Theorem 8.7.1 by graphing w and yh on the same axes, for small positive values of h.

26. L y00 C 2y0 C 2y D fh.t/; y.0/ D 0; y0.0/ D 0

27. L y00 C 2y0 C y D fh.t/; y.0/ D 0; y0.0/ D 0

28. L y00 C 3y0C 2y D fh.t/; y.0/ D 0; y0.0/ D 0

29. Recall from Section 6.2 that the displacement of an object of mass m in a spring–mass system in

free damped oscillation is

my00 C cy0 C ky D 0; y.0/ D y0; y0.0/ D v0;

and that y can be written as

y D Re�ct=2m cos.!1t � �/

if the motion is underdamped. Suppose y.�/ D 0. Find the impulse that would have to be applied

to the object at t D � to put it in equilibrium.

30. Solve the initial value problem. Find a formula that does not involve step functions and represents

y on each subinterval of Œ0;1/ on which the forcing function is zero.

(a) y00 � y D
1X

kD1

ı.t � k/; y.0/ D 0; y0.0/ D 1

(b) y00 C y D
1X

kD1

ı.t � 2k�/; y.0/ D 0; y0.0/ D 1

(c) y00 � 3y0 C 2y D
1X

kD1

ı.t � k/; y.0/ D 0; y0.0/ D 1

(d) y00 C y D
1X

kD1

ı.t � k�/; y.0/ D 0; y0.0/ D 0
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8.8 A BRIEF TABLE OF LAPLACE TRANSFORMS

f .t/ F.s/

1
1

s
.s > 0/

tn
nŠ

snC1
.s > 0/

(n D integer > 0)

tp ; p > �1
�.p C 1/

s.pC1/
.s > 0/

eat
1

s � a
.s > a/

tneat
nŠ

.s � a/nC1
.s > 0/

(n D integer > 0)

cos !t
s

s2 C !2
.s > 0/

sin !t
!

s2 C !2
.s > 0/

e�t cos !t
s � �

.s � �/2 C !2
.s > �/

e�t sin !t
!

.s � �/2 C !2
.s > �/

cosh bt
s

s2 � b2
.s > jbj/

sinh bt
b

s2 � b2
.s > jbj/

t cos !t
s2 � !2

.s2 C !2/2
.s > 0/
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t sin !t
2!s

.s2 C !2/2
.s > 0/

sin !t � !t cos !t
2!3

.s2 C !2/2
.s > 0/

!t � sin !t
!3

s2.s2 C !2/2
.s > 0/

1

t
sin !t arctan

	!

s



.s > 0/

eatf .t/ F.s � a/

tkf .t/ .�1/kF .k/.s/

f .!t/
1

!
F
	 s

!



; ! > 0

u.t � �/
e��s

s
.s > 0/

u.t � �/f .t � �/ .� > 0/ e��sF.s/

Z t

o

f .�/g.t � �/ d� F.s/ �G.s/

ı.t � a/ e�as .s > 0/


