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Chapter 8:  Main Memory
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Chapter 8:  Memory Management

 Background
 Swapping 
 Contiguous Memory Allocation
 Paging
 Structure of the Page Table
 Segmentation
 Example: The Intel Pentium
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Objectives

 To provide a detailed description of various ways of organizing memory hardware

 To discuss various memory-management techniques, including paging and segmentation

 To provide a detailed description of the Intel Pentium, which supports both pure segmentation and 
segmentation with paging
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Background

 Program must be brought (from disk)  into memory and placed within a process for it to be run

 Main memory and registers are only storage CPU can access directly

 Memory unit only sees a stream of addresses + read requests, or address + data and write requests

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation
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Base and Limit Registers

 A pair of base and limit registers define the logical address space
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Hardware Address Protection with Base and Limit Registers
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Address Binding

 Inconvenient to have first user process physical address always at 0000 
 How can it not be?

 Further, addresses represented in different ways at different stages of a program’s life
 Source code addresses usually symbolic
 Compiled code addresses bind to relocatable addresses

 i.e. “14 bytes from beginning of this module”
 Linker or loader will bind relocatable addresses to absolute addresses

 i.e. 74014
 Each binding maps one address space to another
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Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses can happen at three different stages
 Compile time:  If memory location known a priori, absolute code can be generated; must 

recompile code if starting location changes
 Load time:  Must generate relocatable code if memory location is not known at compile time
 Execution time:  Binding delayed until run time if the process can be moved during its execution 

from one memory segment to another
 Need hardware support for address maps (e.g., base and limit registers)
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Multistep Processing of a User Program 
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Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate physical address space is central to 
proper memory management

 Logical address – generated by the CPU; also referred to as virtual address
 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time and load-time address-binding schemes; 
logical (virtual) and physical addresses differ in execution-time address-binding scheme

 Logical address space is the set of all logical addresses generated by a program
 Physical address space is the set of all physical addresses generated by a program
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Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical address

 Many methods possible, covered in the rest of this chapter

 To start, consider simple scheme where the value in the relocation register is added to every address 
generated by a user process at the time it is sent to memory

 Base register now called relocation register
 MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the real physical addresses
 Execution-time binding occurs when reference is made to location in memory
 Logical address bound to physical addresses
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Dynamic relocation using a 
relocation register
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Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never loaded

 All routines kept on disk in relocatable load format

 Useful when large amounts of code are needed to handle infrequently occurring cases

 No special support from the operating system is required
 Implemented through program design
 OS can help by providing libraries to implement dynamic loading



8.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Linking

 Static linking – system libraries and program code combined by the loader into the binary program image
 Dynamic linking –linking postponed until execution time
 Small piece of code, stub, used to locate the appropriate memory-resident library routine
 Stub replaces itself with the address of the routine, and executes the routine
 Operating system checks if routine is in processes’ memory address

 If not in address space, add to address space
 Dynamic linking is particularly useful for libraries
 System also known as shared libraries
 Consider applicability to patching system libraries

 Versioning may be needed



8.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Swapping

 A process can be swapped temporarily out of memory to a backing store, and then brought back 
into memory for continued execution

 Total physical memory space of processes can exceed physical memory
 Backing store – fast disk large enough to accommodate copies of all memory images for all 

users; must provide direct access to these memory images
 Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-priority 

process is swapped out so higher-priority process can be loaded and executed
 Major part of swap time is transfer time; total transfer time is directly proportional to the amount 

of memory swapped
 System maintains a ready queue of ready-to-run processes which have memory images on disk
 Does the swapped out process need to swap back in to same physical addresses?
 Depends on address binding method

 Plus consider pending I/O to / from process memory space
 Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and Windows)

 Swapping normally disabled
 Started if more than threshold amount of memory allocated
 Disabled again once memory demand reduced below threshold
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Schematic View of Swapping
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Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need to swap out a process and swap in target 
process

 Context switch time can then be very high
 100MB process swapping to hard disk with transfer rate of 50MB/sec

 Plus disk latency of 8 ms
 Swap out time of 2008 ms
 Plus swap in of same sized process
 Total context switch swapping component time of 4016ms (> 4 seconds)

 Can reduce if reduce size of memory swapped – by knowing how much memory really being used
 System calls to inform OS of memory use via request memory and release memory
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Contiguous Allocation

 Main memory usually into two partitions:
 Resident operating system, usually held in low memory with interrupt vector
 User processes then held in high memory
 Each process contained in single contiguous section of memory

 Relocation registers used to protect user processes from each other, and from changing operating-system 
code and data

 Base register contains value of smallest physical address
 Limit register contains range of logical addresses – each logical address must be less than the limit 

register 
 MMU maps logical address dynamically
 Can then allow actions such as kernel code being transient and kernel changing size
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Hardware Support for Relocation 
and Limit Registers
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Contiguous Allocation (Cont.)

 Multiple-partition allocation
 Degree of multiprogramming limited by number of partitions
 Hole – block of available memory; holes of various size are scattered throughout memory
 When a process arrives, it is allocated memory from a hole large enough to accommodate it
 Process exiting frees its partition, adjacent free partitions combined
 Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5
process 9

process 2

process 9

process 10
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Dynamic Storage-Allocation Problem

 First-fit:  Allocate the first hole that is big enough

 Best-fit:  Allocate the smallest hole that is big enough; must search entire list, unless ordered by size  
 Produces the smallest leftover hole

 Worst-fit:  Allocate the largest hole; must also search entire list  
 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage utilization
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Fragmentation

 External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly larger than requested memory; this size 
difference is memory internal to a partition, but not being used

 First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to fragmentation
 1/3 may be unusable -> 50-percent rule
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Fragmentation (Cont.)

 Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together in one large block
 Compaction is possible only if relocation is dynamic, and is done at execution time
 I/O problem

 Latch job in memory while it is involved in I/O
 Do I/O only into OS buffers

 Now consider that backing store has same fragmentation problems
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Paging

 Physical  address space of a process can be noncontiguous; process is allocated physical memory 
whenever the latter is available

 Divide physical memory into fixed-sized blocks called frames
 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and load program

 Set up a page table to translate logical to physical addresses

 Backing store likewise split into pages

 Still have Internal fragmentation
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Address Translation Scheme

 Address generated by CPU is divided into:
 Page number (p) – used as an index into a page table which contains base address of each page in 

physical memory
 Page offset (d) – combined with base address to define the physical memory address that is sent to 

the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m - n n
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Paging Hardware
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Paging Model of Logical and Physical Memory
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Paging Example

n=2 and m=4   32-byte memory and 4-byte pages
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Paging (Cont.)

 Calculating internal fragmentation
 Page size = 2,048 bytes
 Process size = 72,766 bytes
 35 pages + 1,086 bytes
 Internal fragmentation of 2,048 - 1,086 = 962 bytes
 Worst case fragmentation = 1 frame – 1 byte
 On average fragmentation = 1 / 2 frame size
 So small frame sizes desirable?
 But each page table entry takes memory to track
 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB
 Process view and physical memory now very different
 By implementation process can only access its own memory
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Free Frames

Before allocation After allocation
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Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the page table

 In this scheme every data/instruction access requires two memory accesses
 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of a special fast-lookup hardware cache called 
associative memory or translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely identifies each process 
to provide address-space protection for that process

 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for faster access next time
 Replacement policies must be considered
 Some entries can be wired down for permanent fast access
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Associative Memory

 Associative memory – parallel search 

 Address translation (p, d)
 If p is in associative register, get frame # out
 Otherwise get frame # from page table in memory

Page # Frame #
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Paging Hardware With TLB
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Effective Access Time

 Associative Lookup =  time unit
 Can be < 10% of memory access time

 Hit ratio = 
 Hit ratio – percentage of times that a page number is found in the associative registers; ratio related to 

number of associative registers

 Consider  = 80%,  = 20ns for TLB search, 100ns for memory access

 Effective Access Time (EAT)
EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

  Consider  = 80%,  = 20ns for TLB search, 100ns for memory access
 EAT = 0.80 x 120 + 0.20 x 220 = 140ns

 Consider slower memory but better hit ratio ->   = 98%,  = 20ns for TLB search, 140ns for memory 
access

 EAT = 0.98 x 160 + 0.02 x 300 = 162.8ns
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Memory Protection

 Memory protection implemented by associating protection bit with each frame to indicate if read-only or 
read-write access is allowed

 Can also add more bits to indicate page execute-only, and so on

 Valid-invalid bit attached to each entry in the page table:
 “valid” indicates that the associated page is in the process’ logical address space, and is thus a legal 

page
 “invalid” indicates that the page is not in the process’ logical address space
 Or use PTLR

 Any violations result in a trap to the kernel
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Valid (v) or Invalid (i) 
Bit In A Page Table
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Shared Pages

 Shared code
 One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, window 

systems)
 Similar to multiple threads sharing the same process space
 Also useful for interprocess communication if sharing of read-write pages is allowed

 Private code and data 
 Each process keeps a separate copy of the code and data
 The pages for the private code and data can appear anywhere in the logical address space
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Shared Pages Example
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Structure of the Page Table

 Memory structures for paging can get huge using straight-forward methods
 Consider a 32-bit logical address space as on modern computers
 Page size of 4 KB (212)
 Page table would have 1 million entries (232 / 212)

 If each entry is 4 bytes -> 4 MB of physical address space / memory for page table alone
 That amount of memory used to cost a lot
 Don’t want to allocate that contiguously in main memory

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables
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Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

 We then page the page table
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Two-Level Page-Table Scheme
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Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:
 a page number consisting of 22 bits
 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:
 a 12-bit page number 
 a 10-bit page offset

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the displacement within the page of the inner page 
table

 Known as forward-mapped page table

page number page offset

p1 p2 d

12 10 10
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Address-Translation Scheme
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64-bit Logical Address Space

 Even two-level paging scheme not sufficient
 If page size is 4 KB (212)

 Then page table has 252 entries
 If two level scheme, inner page tables could be 210 4-byte entries
 Address would look like

 Outer page table has 242 entries or 244 bytes
 One solution is to add a 2nd outer page table
 But in the following example the 2nd outer page table is still 234 bytes in size

 And possibly 4 memory access to get to one physical memory location

outer page page offset

p1 p2 d

42 10 12

inner page
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Three-level Paging Scheme
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Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table
 This page table contains a chain of elements hashing to the same location

 Each element contains (1) the virtual page number (2) the value of the mapped page frame (3) a pointer to 
the next element

 Virtual page numbers are compared in this chain searching for a match
 If a match is found, the corresponding physical frame is extracted
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Hashed Page Table
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Inverted Page Table

 Rather than each process having a page table and keeping track of all possible logical pages, track all 
physical pages

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real memory location, with information 
about the process that owns that page

 Decreases memory needed to store each page table, but increases time needed to search the table 
when a page reference occurs

 Use hash table to limit the search to one — or at most a few — page-table entries
 TLB can accelerate access

 But how to implement shared memory?
 One mapping of a virtual address to the shared physical address
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Inverted Page Table Architecture
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Segmentation

 Memory-management scheme that supports user view of memory 

 A program is a collection of segments
 A segment is a logical unit such as:

main program
procedure 
function
method
object
local variables, global variables
common block
stack
symbol table
arrays
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User’s View of a Program
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Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space
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Segmentation Architecture 

 Logical address consists of a two tuple:
<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each table entry has:
 base – contains the starting physical address where the segments reside in memory
 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment table’s location in memory

 Segment-table length register (STLR) indicates number of segments used by a program;
                  segment number s is legal if s < STLR
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Segmentation Architecture (Cont.)

 Protection
 With each entry in segment table associate:

 validation bit = 0  illegal segment
 read/write/execute privileges

 Protection bits associated with segments; code sharing occurs at segment level

 Since segments vary in length, memory allocation is a dynamic storage-allocation problem

 A segmentation example is shown in the following diagram
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Segmentation Hardware
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Example of Segmentation
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Example: The Intel Pentium

 Supports both segmentation and segmentation with paging
 Each segment can be 4 GB
 Up to 16 K segments per process
 Divided into two partitions

 First partition of up to 8 K segments are private to process (kept in local descriptor table LDT)
 Second partition of up to 8K segments shared among all processes (kept in global descriptor 

table GDT)

 CPU generates logical address
 Given to segmentation unit

 Which produces linear addresses 
 Linear address given to paging unit

 Which generates physical address in main memory
 Paging units form equivalent of MMU
 Pages sizes can be 4 KB or 4 MB
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Logical to Physical Address 
Translation in Pentium
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Intel Pentium Segmentation
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Pentium Paging Architecture
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Linear Address in Linux

 Linux uses only 6 segments (kernel code, kernel data, user code, user data, 
task-state segment (TSS), default LDT segment)

 Linux only uses two of four possible modes – kernel and user
 Uses a three-level paging strategy that works well for 32-bit and 64-bit systems
 Linear address broken into four parts:

 But the Pentium only supports 2-level paging?!
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Three-level Paging in Linux
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End of Chapter 7
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Chapter 9:  Virtual Memory



9.2 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Chapter 9:  Virtual Memory

 Background
 Demand Paging
 Copy-on-Write
 Page Replacement
 Allocation of Frames 
 Thrashing
 Memory-Mapped Files
 Allocating Kernel Memory
 Other Considerations
 Operating-System Examples
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Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames

 To discuss the principle of the working-set model
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Background

 Code needs to be in memory to execute, but entire program rarely used
 Error code, unusual routines, large data structures

 Entire program code not needed at same time
 Consider ability to execute partially-loaded program

 Program no longer constrained by limits of physical memory
 Program and programs could be larger than physical memory
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Background

 Virtual memory – separation of user logical memory from physical memory
 Only part of the program needs to be in memory for execution
 Logical address space can therefore be much larger than physical address space
 Allows address spaces to be shared by several processes
 Allows for more efficient process creation
 More programs running concurrently
 Less I/O needed to load or swap processes

 Virtual memory can be implemented via:
 Demand paging 
 Demand segmentation
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Virtual Memory That is 
Larger Than Physical Memory
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Virtual-address Space
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Virtual Address Space

 Enables sparse address spaces with holes left for growth, dynamically linked libraries, etc
 System libraries shared via mapping into virtual address space
 Shared memory by mapping pages read-write into virtual address space
 Pages can be shared during fork(), speeding process creation
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Shared Library Using Virtual Memory
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Demand Paging

 Could bring entire process into memory at load time
 Or bring a page into memory only when it is needed

 Less I/O needed, no unnecessary I/O
 Less memory needed 
 Faster response
 More users

 Page is needed  reference to it
 invalid reference  abort
 not-in-memory  bring to memory

 Lazy swapper – never swaps a page into memory unless page will be needed
 Swapper that deals with pages is a pager
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Transfer of a Paged Memory to 
Contiguous Disk Space
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Valid-Invalid Bit
 With each page table entry a valid–invalid bit is associated

(v  in-memory – memory resident, i  not-in-memory)
 Initially valid–invalid bit is set to i on all entries
 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry
      is I  page fault

v
v
v

v

i

i
i

….

Frame # valid-invalid bit

page table
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Page Table When Some Pages 
Are Not in Main Memory
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Page Fault

 If there is a reference to a page, first reference to that page will trap to operating system:
              page fault
1. Operating system looks at another table to decide:

 Invalid reference  abort
 Just not in memory

2. Get empty frame
3. Swap page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault
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Aspects of Demand Paging

 Extreme case – start process with no pages in memory
 OS sets instruction pointer to first instruction of process, non-memory-resident -> page fault
 And for every other process pages on first access
 Pure demand paging

 Actually, a given instruction could access multiple pages -> multiple page faults
 Pain decreased because of locality of reference

 Hardware support needed for demand paging
 Page table with valid / invalid bit
 Secondary memory (swap device with swap space)
 Instruction restart
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Instruction Restart

 Consider an instruction that could access several different locations
 block move

 auto increment/decrement location
 Restart the whole operation?

 What if source and destination overlap? – Two possible solutions
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Steps in Handling a Page Fault
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Performance of Demand Paging

 Stages in Demand Paging
1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the location of the page on the disk
5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now in memory
11. Wait for the CPU to be allocated to this process again
12. Restore the user registers, process state, and new page table, and then resume the interrupted 

instruction



9.19 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Performance of Demand Paging (Cont.)

 Page Fault Rate 0  p  1
 if p = 0 no page faults 
 if p = 1, every reference is a fault

 Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
           + swap page out
           + swap page in
           + restart overhead

                                                     )
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Demand Paging Example

 Memory access time = 200 nanoseconds
 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds) 
        = (1 – p  x 200 + p x 8,000,000 

              = 200 + p x 7,999,800
 If one access out of 1,000 causes a page fault, then
         EAT = 8.2 microseconds. 
      This is a slowdown by a factor of 40!!
 If want performance degradation < 10 percent

 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

 p < .0000025
 < one page fault in every 400,000 memory accesses
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Demand Paging Optimizations

 Copy entire process image to swap space at process load time
 Then page in and out of swap space
 Used in older BSD Unix

 Demand page in from program binary on disk, but discard rather than paging out when freeing frame
 Used in Solaris and current BSD
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Copy-on-Write

 Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory
 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are copied
 In general, free pages are allocated from a pool of zero-fill-on-demand pages

 Why zero-out a page before allocating it?
 vfork() variation on fork() system call has parent suspend and child using copy-on-write address 

space of parent
 Designed to have child call exec()
 Very efficient
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Before Process 1 Modifies Page C
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After Process 1 Modifies Page C
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What Happens if There is no Free Frame?

 Used up by process pages
 Also in demand from the kernel, I/O buffers, etc
 How much to allocate to each?

 Page replacement – find some page in memory, but not really in use, page it out
 Algorithm – terminate? swap out? replace the page?
 Performance – want an algorithm which will result in minimum number of page faults

 Same page may be brought into memory several times
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Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written to disk

 Page replacement completes separation between logical memory and physical memory – large virtual 
memory can be provided on a smaller physical memory
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Need For Page Replacement
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Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
   -  If there is a free frame, use it
   -  If there is no free frame, use a page replacement algorithm to select a victim frame

- Write victim frame to disk if dirty

3. Bring  the desired page into the (newly) free frame; update the page and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT
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Page Replacement
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Page and Frame Replacement Algorithms

 Frame-allocation algorithm determines 
 How many frames to give each process
 Which frames to replace

 Page-replacement algorithm
 Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory references (reference string) and 
computing the number of page faults on that string

 String is just page numbers, not full addresses
 Repeated access to the same page does not cause a page fault

 In all our examples, the reference string is 
               7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
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Graph of Page Faults Versus 
The Number of Frames
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First-In-First-Out (FIFO) Algorithm

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
 Adding more frames can cause more page faults!

 Belady’s Anomaly

 How to track ages of pages? 
 Just use a FIFO queue

7

0

1

1

2

3

2

3

0

4   0   7

2   1   0

3   2   1

15 page faults



9.33 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

FIFO Page Replacement
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FIFO Illustrating Belady’s Anomaly
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Optimal Algorithm

 Replace page that will not be used for longest period of time
 9 is optimal for the example on the next slide

 How do you know this?
 Can’t read the future

 Used for measuring how well your algorithm performs
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Optimal Page Replacement
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Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future
 Replace page that has not been used in the most amount of time
 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT
 Generally good algorithm and frequently used
 But how to implement?
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LRU Algorithm (Cont.)

 Counter implementation
 Every page entry has a counter; every time page is referenced through this entry, copy the clock into 

the counter
 When a page needs to be changed, look at the counters to find smallest value

 Search through table needed
 Stack implementation

 Keep a stack of page numbers in a double link form:
 Page referenced:

 move it to the top
 requires 6 pointers to be changed

 But each update more expensive
 No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly
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Use Of A Stack to Record The 
Most Recent Page References
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LRU Approximation Algorithms

 LRU needs special hardware and still slow
 Reference bit

 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace any with reference bit = 0 (if one exists)

 We do not know the order, however
 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit
 Clock replacement
 If page to be replaced has 

 Reference bit = 0 -> replace it
 reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules
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Second-Chance (clock) Page-Replacement Algorithm
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Counting Algorithms

 Keep a counter of the number of references that have been made to each page
 Not common

 LFU Algorithm:  replaces page with smallest count

 MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in 
and has yet to be used
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Page-Buffering Algorithms

 Keep a pool of free frames, always
 Then frame available when needed, not found at fault time
 Read page into free frame and select victim to evict and add to free pool
 When convenient, evict victim

 Possibly, keep list of modified pages
 When backing store otherwise idle, write pages there and set to non-dirty

 Possibly, keep free frame contents intact and note what is in them
 If referenced again before reused, no need to load contents again from disk
 Generally useful to reduce penalty if wrong victim frame selected  
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Applications and Page Replacement

 All of these algorithms have OS guessing about future page access
 Some applications have better knowledge – i.e. databases
 Memory intensive applications can cause double buffering

 OS keeps copy of page in memory as I/O buffer
 Application keeps page in memory for its own work

 Operating system can given direct access to the disk, getting out of the way of the applications
 Raw disk mode

 Bypasses buffering, locking, etc



9.45 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Allocation of Frames

 Each process needs minimum number of frames
 Example:  IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle to

 Maximum of course is total frames in the system
 Two major allocation schemes

 fixed allocation
 priority allocation

 Many variations
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Fixed Allocation

 Equal allocation – For example, if there are 100 frames (after allocating frames for the OS) and 5 
processes, give each process 20 frames

 Keep some as free frame buffer pool

 Proportional allocation – Allocate according to the size of process
 Dynamic as degree of multiprogramming, process sizes change

m
S
s
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m

sS

ps

i
ii

i

ii









 for allocation 

frames of number total 

 process of size 



m 64
s1 10
s2 127

a1 
10
137

64 5

a2 
127
137

64 59
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Priority Allocation

 Use a proportional allocation scheme using priorities rather than size

 If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a process with lower priority number
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Global vs. Local Allocation

 Global replacement – process selects a replacement frame from the set of all frames; one process can 
take a frame from another

 But then process execution time can vary greatly
 But greater throughput so more common

 Local replacement – each process selects from only its own set of allocated frames
 More consistent per-process performance
 But possibly underutilized memory
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Non-Uniform Memory Access

 So far all memory accessed equally
 Many systems are NUMA – speed of access to memory varies

 Consider system boards containing CPUs and memory, interconnected over a system bus
 Optimal performance comes from allocating memory “close to” the CPU on which the thread is scheduled

 And modifying the scheduler to schedule the thread on the same system board when possible
 Solved by Solaris by creating lgroups 

 Structure to track CPU / Memory low latency groups
 Used my schedule and pager
 When possible schedule all threads of a process and allocate all memory for that process within the 

lgroup
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Thrashing

 If a process does not have “enough” pages, the page-fault rate is very high
 Page fault to get page
 Replace existing frame
 But quickly need replaced frame back
 This leads to:

 Low CPU utilization
 Operating system thinking that it needs to increase the degree of multiprogramming
 Another process added to the system

 Thrashing  a process is busy swapping pages in and out
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Thrashing (Cont.)
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Demand Paging and Thrashing 

 Why does demand paging work?
Locality model

 Process migrates from one locality to another
 Localities may overlap

 Why does thrashing occur?
 size of locality > total memory size

 Limit effects by using local or priority page replacement
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Locality In A Memory-Reference Pattern
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Working-Set Model

   working-set window  a fixed number of page references 
Example:  10,000 instructions

 WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in time)

 if  too small will not encompass entire locality
 if  too large will encompass several localities
 if  =   will encompass entire program

 D =  WSSi  total demand frames 
 Approximation of locality

 if D > m  Thrashing

 Policy if D > m, then suspend or swap out one of the processes
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Working-set model
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Keeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example:  = 10,000
 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of all reference bits to 0
 If one of the bits in memory = 1  page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time units
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Page-Fault Frequency

 More direct approach than WSS
 Establish “acceptable” page-fault frequency rate and use local replacement policy

 If actual rate too low, process loses frame
 If actual rate too high, process gains frame
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Working Sets and Page Fault Rates
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Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block to 
a page in memory

 A file is initially read using demand paging
 A page-sized portion of the file is read from the file system into a physical page
 Subsequent reads/writes to/from the file are treated as ordinary memory accesses

 Simplifies and speeds file access by driving file I/O through memory rather than read() and write() 
system calls

 Also allows several processes to map the same file allowing the pages in memory to be shared
 But when does written data make it to disk?

 Periodically and / or at file close() time
 For example, when the pager scans for dirty pages
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Memory-Mapped File Technique for all I/O

 Some OSes  uses memory mapped files for standard I/O
 Process can explicitly request memory mapping a file via mmap() system call

 Now file mapped into process address space
 For standard I/O (open(), read(), write(), close()), mmap anyway

 But map file into kernel address space
 Process still does read() and write()

 Copies data to and from kernel space and user space
 Uses efficient memory management subsystem

 Avoids needing separate subsystem
 COW can be used for read/write non-shared pages
 Memory mapped files can be  used for shared memory (although again via separate system calls)
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Memory Mapped Files
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Memory-Mapped Shared Memory 
in Windows
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Allocating Kernel Memory

 Treated differently from user memory

 Often allocated from a free-memory pool
 Kernel requests memory for structures of varying sizes
 Some kernel memory needs to be contiguous

 I.e. for device I/O
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Buddy System

 Allocates memory from fixed-size segment consisting of physically-contiguous pages
 Memory allocated using power-of-2 allocator

 Satisfies requests in units sized as power of 2
 Request rounded up to next highest power of 2
 When smaller allocation needed than is available, current chunk split into two buddies of next-lower 

power of 2
 Continue until appropriate sized chunk available

 For example, assume 256KB chunk available, kernel requests 21KB
 Split into AL and Ar of 128KB each

 One further divided into BL and BR of 64KB
– One further into CL and CR of 32KB each – one used to satisfy request

 Advantage – quickly coalesce unused chunks into larger chunk
 Disadvantage - fragmentation
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Buddy System Allocator
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Slab Allocator

 Alternate strategy

 Slab is one or more physically contiguous pages

 Cache consists of one or more slabs

 Single cache for each unique kernel data structure
 Each cache filled with objects – instantiations of the data structure

 When cache created, filled with objects marked as free

 When structures stored, objects marked as used

 If slab is full of used objects, next object allocated from empty slab
 If no empty slabs, new slab allocated

 Benefits include no fragmentation, fast memory request satisfaction
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Slab Allocation
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Other Considerations -- Prepaging

 Prepaging 
 To reduce the large number of page faults that occurs at process startup
 Prepage all or some of the pages a process will need, before they are referenced
 But if prepaged pages are unused, I/O and memory was wasted
 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α  save pages faults > or < than the cost of prepaging 
s * (1- α) unnecessary pages?  

 α near zero  prepaging loses 
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Other Issues – Page Size

 Sometimes OS designers have a choice
 Especially if running on custom-built CPU

 Page size selection must take into consideration:
 Fragmentation
 Page table size 
 Resolution
 I/O overhead
 Number of page faults
 Locality
 TLB size and effectiveness

 Always power of 2, usually in the range 212 (4,096 bytes) to 222 (4,194,304 bytes)
 On average, growing over time
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Other Issues – TLB Reach 

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB
 Otherwise there is a high degree of page faults

 Increase the Page Size
 This may lead to an increase in fragmentation as not all applications require a large page size

 Provide Multiple Page Sizes
 This allows applications that require larger page sizes the opportunity to use them without an 

increase in fragmentation
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Other Issues – Program Structure

 Program structure
 Int[128,128] data;
 Each row is stored in one page 
 Program 1 

                for (j = 0; j <128; j++)
                  for (i = 0; i < 128; i++)
                        data[i,j] = 0;

     128 x 128 = 16,384 page faults 

 Program 2 
             for (i = 0; i < 128; i++)

               for (j = 0; j < 128; j++)
                     data[i,j] = 0;

128 page faults
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Other Issues – I/O interlock

 I/O Interlock – Pages must sometimes be locked into memory

 Consider I/O - Pages that are used for copying a file from a device must be locked from being selected for 
eviction by a page replacement algorithm
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Reason Why Frames Used For 
I/O Must Be In Memory
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Operating System Examples

 Windows XP

 Solaris 
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Windows XP

 Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page

 Processes are assigned working set minimum and working set maximum

 Working set minimum is the minimum number of pages the process is guaranteed to have in memory

 A process may be assigned as many pages up to its working set maximum

 When the amount of free memory in the system falls below a threshold, automatic working set trimming 
is performed to restore the amount of free memory

 Working set trimming removes pages from processes that have pages in excess of their working set 
minimum
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Solaris 

 Maintains a list of free pages to assign faulting processes

 Lotsfree – threshold parameter (amount of free memory) to begin paging

 Desfree – threshold parameter to increasing paging

 Minfree – threshold parameter to being swapping

 Paging is performed by pageout process

 Pageout scans pages using modified clock algorithm

 Scanrate is the rate at which pages are scanned. This ranges from slowscan to fastscan

 Pageout is called more frequently depending upon the amount of free memory available
 Priority paging gives priority to process code pages



9.77 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Solaris 2 Page Scanner
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End of Chapter 8
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