
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 8: Main Memory

8.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 8: Memory Management

 Background
 Swapping
 Contiguous Memory Allocation
 Paging
 Structure of the Page Table
 Segmentation
 Example: The Intel Pentium

8.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To provide a detailed description of various ways of organizing memory hardware

 To discuss various memory-management techniques, including paging and segmentation

 To provide a detailed description of the Intel Pentium, which supports both pure segmentation and
segmentation with paging

8.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Program must be brought (from disk) into memory and placed within a process for it to be run

 Main memory and registers are only storage CPU can access directly

 Memory unit only sees a stream of addresses + read requests, or address + data and write requests

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

8.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Base and Limit Registers

 A pair of base and limit registers define the logical address space

8.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hardware Address Protection with Base and Limit Registers

8.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Address Binding

 Inconvenient to have first user process physical address always at 0000
 How can it not be?

 Further, addresses represented in different ways at different stages of a program’s life
 Source code addresses usually symbolic
 Compiled code addresses bind to relocatable addresses

 i.e. “14 bytes from beginning of this module”
 Linker or loader will bind relocatable addresses to absolute addresses

 i.e. 74014
 Each binding maps one address space to another

8.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses can happen at three different stages
 Compile time: If memory location known a priori, absolute code can be generated; must

recompile code if starting location changes
 Load time: Must generate relocatable code if memory location is not known at compile time
 Execution time: Binding delayed until run time if the process can be moved during its execution

from one memory segment to another
 Need hardware support for address maps (e.g., base and limit registers)

8.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multistep Processing of a User Program

8.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate physical address space is central to
proper memory management

 Logical address – generated by the CPU; also referred to as virtual address
 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time and load-time address-binding schemes;
logical (virtual) and physical addresses differ in execution-time address-binding scheme

 Logical address space is the set of all logical addresses generated by a program
 Physical address space is the set of all physical addresses generated by a program

8.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical address

 Many methods possible, covered in the rest of this chapter

 To start, consider simple scheme where the value in the relocation register is added to every address
generated by a user process at the time it is sent to memory

 Base register now called relocation register
 MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the real physical addresses
 Execution-time binding occurs when reference is made to location in memory
 Logical address bound to physical addresses

8.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic relocation using a
relocation register

8.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never loaded

 All routines kept on disk in relocatable load format

 Useful when large amounts of code are needed to handle infrequently occurring cases

 No special support from the operating system is required
 Implemented through program design
 OS can help by providing libraries to implement dynamic loading

8.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Linking

 Static linking – system libraries and program code combined by the loader into the binary program image
 Dynamic linking –linking postponed until execution time
 Small piece of code, stub, used to locate the appropriate memory-resident library routine
 Stub replaces itself with the address of the routine, and executes the routine
 Operating system checks if routine is in processes’ memory address

 If not in address space, add to address space
 Dynamic linking is particularly useful for libraries
 System also known as shared libraries
 Consider applicability to patching system libraries

 Versioning may be needed

8.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Swapping

 A process can be swapped temporarily out of memory to a backing store, and then brought back
into memory for continued execution

 Total physical memory space of processes can exceed physical memory
 Backing store – fast disk large enough to accommodate copies of all memory images for all

users; must provide direct access to these memory images
 Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-priority

process is swapped out so higher-priority process can be loaded and executed
 Major part of swap time is transfer time; total transfer time is directly proportional to the amount

of memory swapped
 System maintains a ready queue of ready-to-run processes which have memory images on disk
 Does the swapped out process need to swap back in to same physical addresses?
 Depends on address binding method

 Plus consider pending I/O to / from process memory space
 Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and Windows)

 Swapping normally disabled
 Started if more than threshold amount of memory allocated
 Disabled again once memory demand reduced below threshold

8.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schematic View of Swapping

8.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need to swap out a process and swap in target
process

 Context switch time can then be very high
 100MB process swapping to hard disk with transfer rate of 50MB/sec

 Plus disk latency of 8 ms
 Swap out time of 2008 ms
 Plus swap in of same sized process
 Total context switch swapping component time of 4016ms (> 4 seconds)

 Can reduce if reduce size of memory swapped – by knowing how much memory really being used
 System calls to inform OS of memory use via request memory and release memory

8.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Main memory usually into two partitions:
 Resident operating system, usually held in low memory with interrupt vector
 User processes then held in high memory
 Each process contained in single contiguous section of memory

 Relocation registers used to protect user processes from each other, and from changing operating-system
code and data

 Base register contains value of smallest physical address
 Limit register contains range of logical addresses – each logical address must be less than the limit

register
 MMU maps logical address dynamically
 Can then allow actions such as kernel code being transient and kernel changing size

8.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hardware Support for Relocation
and Limit Registers

8.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation (Cont.)

 Multiple-partition allocation
 Degree of multiprogramming limited by number of partitions
 Hole – block of available memory; holes of various size are scattered throughout memory
 When a process arrives, it is allocated memory from a hole large enough to accommodate it
 Process exiting frees its partition, adjacent free partitions combined
 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5
process 9

process 2

process 9

process 10

8.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless ordered by size
 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list
 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

8.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Fragmentation

 External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly larger than requested memory; this size
difference is memory internal to a partition, but not being used

 First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to fragmentation
 1/3 may be unusable -> 50-percent rule

8.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Fragmentation (Cont.)

 Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together in one large block
 Compaction is possible only if relocation is dynamic, and is done at execution time
 I/O problem

 Latch job in memory while it is involved in I/O
 Do I/O only into OS buffers

 Now consider that backing store has same fragmentation problems

8.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging

 Physical address space of a process can be noncontiguous; process is allocated physical memory
whenever the latter is available

 Divide physical memory into fixed-sized blocks called frames
 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and load program

 Set up a page table to translate logical to physical addresses

 Backing store likewise split into pages

 Still have Internal fragmentation

8.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Address Translation Scheme

 Address generated by CPU is divided into:
 Page number (p) – used as an index into a page table which contains base address of each page in

physical memory
 Page offset (d) – combined with base address to define the physical memory address that is sent to

the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

8.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Hardware

8.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Model of Logical and Physical Memory

8.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

8.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging (Cont.)

 Calculating internal fragmentation
 Page size = 2,048 bytes
 Process size = 72,766 bytes
 35 pages + 1,086 bytes
 Internal fragmentation of 2,048 - 1,086 = 962 bytes
 Worst case fragmentation = 1 frame – 1 byte
 On average fragmentation = 1 / 2 frame size
 So small frame sizes desirable?
 But each page table entry takes memory to track
 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB
 Process view and physical memory now very different
 By implementation process can only access its own memory

8.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free Frames

Before allocation After allocation

8.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the page table

 In this scheme every data/instruction access requires two memory accesses
 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely identifies each process
to provide address-space protection for that process

 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for faster access next time
 Replacement policies must be considered
 Some entries can be wired down for permanent fast access

8.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Associative Memory

 Associative memory – parallel search

 Address translation (p, d)
 If p is in associative register, get frame # out
 Otherwise get frame # from page table in memory

Page # Frame #

8.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Hardware With TLB

8.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Effective Access Time

 Associative Lookup = time unit
 Can be < 10% of memory access time

 Hit ratio =
 Hit ratio – percentage of times that a page number is found in the associative registers; ratio related to

number of associative registers

 Consider = 80%, = 20ns for TLB search, 100ns for memory access

 Effective Access Time (EAT)
EAT = (1 +) + (2 +)(1 –)

= 2 + –

 Consider = 80%, = 20ns for TLB search, 100ns for memory access
 EAT = 0.80 x 120 + 0.20 x 220 = 140ns

 Consider slower memory but better hit ratio -> = 98%, = 20ns for TLB search, 140ns for memory
access

 EAT = 0.98 x 160 + 0.02 x 300 = 162.8ns

8.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Protection

 Memory protection implemented by associating protection bit with each frame to indicate if read-only or
read-write access is allowed

 Can also add more bits to indicate page execute-only, and so on

 Valid-invalid bit attached to each entry in the page table:
 “valid” indicates that the associated page is in the process’ logical address space, and is thus a legal

page
 “invalid” indicates that the page is not in the process’ logical address space
 Or use PTLR

 Any violations result in a trap to the kernel

8.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid (v) or Invalid (i)
Bit In A Page Table

8.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Pages

 Shared code
 One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, window

systems)
 Similar to multiple threads sharing the same process space
 Also useful for interprocess communication if sharing of read-write pages is allowed

 Private code and data
 Each process keeps a separate copy of the code and data
 The pages for the private code and data can appear anywhere in the logical address space

8.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Pages Example

8.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Structure of the Page Table

 Memory structures for paging can get huge using straight-forward methods
 Consider a 32-bit logical address space as on modern computers
 Page size of 4 KB (212)
 Page table would have 1 million entries (232 / 212)

 If each entry is 4 bytes -> 4 MB of physical address space / memory for page table alone
 That amount of memory used to cost a lot
 Don’t want to allocate that contiguously in main memory

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

8.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

 We then page the page table

8.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Page-Table Scheme

8.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:
 a page number consisting of 22 bits
 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:
 a 12-bit page number
 a 10-bit page offset

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the displacement within the page of the inner page
table

 Known as forward-mapped page table

page number page offset

p1 p2 d

12 10 10

8.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Address-Translation Scheme

8.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

64-bit Logical Address Space

 Even two-level paging scheme not sufficient
 If page size is 4 KB (212)

 Then page table has 252 entries
 If two level scheme, inner page tables could be 210 4-byte entries
 Address would look like

 Outer page table has 242 entries or 244 bytes
 One solution is to add a 2nd outer page table
 But in the following example the 2nd outer page table is still 234 bytes in size

 And possibly 4 memory access to get to one physical memory location

outer page page offset

p1 p2 d

42 10 12

inner page

8.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Three-level Paging Scheme

8.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table
 This page table contains a chain of elements hashing to the same location

 Each element contains (1) the virtual page number (2) the value of the mapped page frame (3) a pointer to
the next element

 Virtual page numbers are compared in this chain searching for a match
 If a match is found, the corresponding physical frame is extracted

8.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hashed Page Table

8.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Inverted Page Table

 Rather than each process having a page table and keeping track of all possible logical pages, track all
physical pages

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real memory location, with information
about the process that owns that page

 Decreases memory needed to store each page table, but increases time needed to search the table
when a page reference occurs

 Use hash table to limit the search to one — or at most a few — page-table entries
 TLB can accelerate access

 But how to implement shared memory?
 One mapping of a virtual address to the shared physical address

8.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Inverted Page Table Architecture

8.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments
 A segment is a logical unit such as:

main program
procedure
function
method
object
local variables, global variables
common block
stack
symbol table
arrays

8.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User’s View of a Program

8.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation Architecture

 Logical address consists of a two tuple:
<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each table entry has:
 base – contains the starting physical address where the segments reside in memory
 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment table’s location in memory

 Segment-table length register (STLR) indicates number of segments used by a program;
 segment number s is legal if s < STLR

8.54 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation Architecture (Cont.)

 Protection
 With each entry in segment table associate:

 validation bit = 0 illegal segment
 read/write/execute privileges

 Protection bits associated with segments; code sharing occurs at segment level

 Since segments vary in length, memory allocation is a dynamic storage-allocation problem

 A segmentation example is shown in the following diagram

8.55 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation Hardware

8.56 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Segmentation

8.57 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example: The Intel Pentium

 Supports both segmentation and segmentation with paging
 Each segment can be 4 GB
 Up to 16 K segments per process
 Divided into two partitions

 First partition of up to 8 K segments are private to process (kept in local descriptor table LDT)
 Second partition of up to 8K segments shared among all processes (kept in global descriptor

table GDT)

 CPU generates logical address
 Given to segmentation unit

 Which produces linear addresses
 Linear address given to paging unit

 Which generates physical address in main memory
 Paging units form equivalent of MMU
 Pages sizes can be 4 KB or 4 MB

8.58 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical to Physical Address
Translation in Pentium

8.59 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Intel Pentium Segmentation

8.60 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pentium Paging Architecture

8.61 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linear Address in Linux

 Linux uses only 6 segments (kernel code, kernel data, user code, user data,
task-state segment (TSS), default LDT segment)

 Linux only uses two of four possible modes – kernel and user
 Uses a three-level paging strategy that works well for 32-bit and 64-bit systems
 Linear address broken into four parts:

 But the Pentium only supports 2-level paging?!

8.62 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Three-level Paging in Linux

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

End of Chapter 7

Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Chapter 9: Virtual Memory

9.2 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Chapter 9: Virtual Memory

 Background
 Demand Paging
 Copy-on-Write
 Page Replacement
 Allocation of Frames
 Thrashing
 Memory-Mapped Files
 Allocating Kernel Memory
 Other Considerations
 Operating-System Examples

9.3 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames

 To discuss the principle of the working-set model

9.4 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Background

 Code needs to be in memory to execute, but entire program rarely used
 Error code, unusual routines, large data structures

 Entire program code not needed at same time
 Consider ability to execute partially-loaded program

 Program no longer constrained by limits of physical memory
 Program and programs could be larger than physical memory

9.5 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Background

 Virtual memory – separation of user logical memory from physical memory
 Only part of the program needs to be in memory for execution
 Logical address space can therefore be much larger than physical address space
 Allows address spaces to be shared by several processes
 Allows for more efficient process creation
 More programs running concurrently
 Less I/O needed to load or swap processes

 Virtual memory can be implemented via:
 Demand paging
 Demand segmentation

9.6 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Virtual Memory That is
Larger Than Physical Memory

9.7 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Virtual-address Space

9.8 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Virtual Address Space

 Enables sparse address spaces with holes left for growth, dynamically linked libraries, etc
 System libraries shared via mapping into virtual address space
 Shared memory by mapping pages read-write into virtual address space
 Pages can be shared during fork(), speeding process creation

9.9 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Shared Library Using Virtual Memory

9.10 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Demand Paging

 Could bring entire process into memory at load time
 Or bring a page into memory only when it is needed

 Less I/O needed, no unnecessary I/O
 Less memory needed
 Faster response
 More users

 Page is needed reference to it
 invalid reference abort
 not-in-memory bring to memory

 Lazy swapper – never swaps a page into memory unless page will be needed
 Swapper that deals with pages is a pager

9.11 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Transfer of a Paged Memory to
Contiguous Disk Space

9.12 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Valid-Invalid Bit
 With each page table entry a valid–invalid bit is associated

(v in-memory – memory resident, i not-in-memory)
 Initially valid–invalid bit is set to i on all entries
 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry
 is I page fault

v
v
v

v

i

i
i

….

Frame # valid-invalid bit

page table

9.13 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Page Table When Some Pages
Are Not in Main Memory

9.14 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Page Fault

 If there is a reference to a page, first reference to that page will trap to operating system:
 page fault
1. Operating system looks at another table to decide:

 Invalid reference abort
 Just not in memory

2. Get empty frame
3. Swap page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

9.15 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Aspects of Demand Paging

 Extreme case – start process with no pages in memory
 OS sets instruction pointer to first instruction of process, non-memory-resident -> page fault
 And for every other process pages on first access
 Pure demand paging

 Actually, a given instruction could access multiple pages -> multiple page faults
 Pain decreased because of locality of reference

 Hardware support needed for demand paging
 Page table with valid / invalid bit
 Secondary memory (swap device with swap space)
 Instruction restart

9.16 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Instruction Restart

 Consider an instruction that could access several different locations
 block move

 auto increment/decrement location
 Restart the whole operation?

 What if source and destination overlap? – Two possible solutions

9.17 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Steps in Handling a Page Fault

9.18 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Performance of Demand Paging

 Stages in Demand Paging
1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the location of the page on the disk
5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now in memory
11. Wait for the CPU to be allocated to this process again
12. Restore the user registers, process state, and new page table, and then resume the interrupted

instruction

9.19 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Performance of Demand Paging (Cont.)

 Page Fault Rate 0 p 1
 if p = 0 no page faults
 if p = 1, every reference is a fault

 Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
 + swap page out
 + swap page in
 + restart overhead

)

9.20 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Demand Paging Example

 Memory access time = 200 nanoseconds
 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds)
 = (1 – p x 200 + p x 8,000,000

 = 200 + p x 7,999,800
 If one access out of 1,000 causes a page fault, then
 EAT = 8.2 microseconds.
 This is a slowdown by a factor of 40!!
 If want performance degradation < 10 percent

 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

 p < .0000025
 < one page fault in every 400,000 memory accesses

9.21 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Demand Paging Optimizations

 Copy entire process image to swap space at process load time
 Then page in and out of swap space
 Used in older BSD Unix

 Demand page in from program binary on disk, but discard rather than paging out when freeing frame
 Used in Solaris and current BSD

9.22 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Copy-on-Write

 Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory
 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are copied
 In general, free pages are allocated from a pool of zero-fill-on-demand pages

 Why zero-out a page before allocating it?
 vfork() variation on fork() system call has parent suspend and child using copy-on-write address

space of parent
 Designed to have child call exec()
 Very efficient

9.23 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Before Process 1 Modifies Page C

9.24 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

After Process 1 Modifies Page C

9.25 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

What Happens if There is no Free Frame?

 Used up by process pages
 Also in demand from the kernel, I/O buffers, etc
 How much to allocate to each?

 Page replacement – find some page in memory, but not really in use, page it out
 Algorithm – terminate? swap out? replace the page?
 Performance – want an algorithm which will result in minimum number of page faults

 Same page may be brought into memory several times

9.26 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written to disk

 Page replacement completes separation between logical memory and physical memory – large virtual
memory can be provided on a smaller physical memory

9.27 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Need For Page Replacement

9.28 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page replacement algorithm to select a victim frame

- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT

9.29 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Page Replacement

9.30 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Page and Frame Replacement Algorithms

 Frame-allocation algorithm determines
 How many frames to give each process
 Which frames to replace

 Page-replacement algorithm
 Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory references (reference string) and
computing the number of page faults on that string

 String is just page numbers, not full addresses
 Repeated access to the same page does not cause a page fault

 In all our examples, the reference string is
 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

9.31 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Graph of Page Faults Versus
The Number of Frames

9.32 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
 Adding more frames can cause more page faults!

 Belady’s Anomaly

 How to track ages of pages?
 Just use a FIFO queue

7

0

1

1

2

3

2

3

0

4 0 7

2 1 0

3 2 1

15 page faults

9.33 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

FIFO Page Replacement

9.34 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

FIFO Illustrating Belady’s Anomaly

9.35 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time
 9 is optimal for the example on the next slide

 How do you know this?
 Can’t read the future

 Used for measuring how well your algorithm performs

9.36 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Optimal Page Replacement

9.37 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future
 Replace page that has not been used in the most amount of time
 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT
 Generally good algorithm and frequently used
 But how to implement?

9.38 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

LRU Algorithm (Cont.)

 Counter implementation
 Every page entry has a counter; every time page is referenced through this entry, copy the clock into

the counter
 When a page needs to be changed, look at the counters to find smallest value

 Search through table needed
 Stack implementation

 Keep a stack of page numbers in a double link form:
 Page referenced:

 move it to the top
 requires 6 pointers to be changed

 But each update more expensive
 No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

9.39 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Use Of A Stack to Record The
Most Recent Page References

9.40 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

LRU Approximation Algorithms

 LRU needs special hardware and still slow
 Reference bit

 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace any with reference bit = 0 (if one exists)

 We do not know the order, however
 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit
 Clock replacement
 If page to be replaced has

 Reference bit = 0 -> replace it
 reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules

9.41 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.42 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Counting Algorithms

 Keep a counter of the number of references that have been made to each page
 Not common

 LFU Algorithm: replaces page with smallest count

 MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in
and has yet to be used

9.43 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Page-Buffering Algorithms

 Keep a pool of free frames, always
 Then frame available when needed, not found at fault time
 Read page into free frame and select victim to evict and add to free pool
 When convenient, evict victim

 Possibly, keep list of modified pages
 When backing store otherwise idle, write pages there and set to non-dirty

 Possibly, keep free frame contents intact and note what is in them
 If referenced again before reused, no need to load contents again from disk
 Generally useful to reduce penalty if wrong victim frame selected

9.44 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Applications and Page Replacement

 All of these algorithms have OS guessing about future page access
 Some applications have better knowledge – i.e. databases
 Memory intensive applications can cause double buffering

 OS keeps copy of page in memory as I/O buffer
 Application keeps page in memory for its own work

 Operating system can given direct access to the disk, getting out of the way of the applications
 Raw disk mode

 Bypasses buffering, locking, etc

9.45 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Allocation of Frames

 Each process needs minimum number of frames
 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle to

 Maximum of course is total frames in the system
 Two major allocation schemes

 fixed allocation
 priority allocation

 Many variations

9.46 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Fixed Allocation

 Equal allocation – For example, if there are 100 frames (after allocating frames for the OS) and 5
processes, give each process 20 frames

 Keep some as free frame buffer pool

 Proportional allocation – Allocate according to the size of process
 Dynamic as degree of multiprogramming, process sizes change

m
S
s

pa

m

sS

ps

i
ii

i

ii

 for allocation

frames of number total

 process of size

m 64
s1 10
s2 127

a1
10
137

64 5

a2
127
137

64 59

9.47 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Priority Allocation

 Use a proportional allocation scheme using priorities rather than size

 If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a process with lower priority number

9.48 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Global vs. Local Allocation

 Global replacement – process selects a replacement frame from the set of all frames; one process can
take a frame from another

 But then process execution time can vary greatly
 But greater throughput so more common

 Local replacement – each process selects from only its own set of allocated frames
 More consistent per-process performance
 But possibly underutilized memory

9.49 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Non-Uniform Memory Access

 So far all memory accessed equally
 Many systems are NUMA – speed of access to memory varies

 Consider system boards containing CPUs and memory, interconnected over a system bus
 Optimal performance comes from allocating memory “close to” the CPU on which the thread is scheduled

 And modifying the scheduler to schedule the thread on the same system board when possible
 Solved by Solaris by creating lgroups

 Structure to track CPU / Memory low latency groups
 Used my schedule and pager
 When possible schedule all threads of a process and allocate all memory for that process within the

lgroup

9.50 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Thrashing

 If a process does not have “enough” pages, the page-fault rate is very high
 Page fault to get page
 Replace existing frame
 But quickly need replaced frame back
 This leads to:

 Low CPU utilization
 Operating system thinking that it needs to increase the degree of multiprogramming
 Another process added to the system

 Thrashing a process is busy swapping pages in and out

9.51 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Thrashing (Cont.)

9.52 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Demand Paging and Thrashing

 Why does demand paging work?
Locality model

 Process migrates from one locality to another
 Localities may overlap

 Why does thrashing occur?
 size of locality > total memory size

 Limit effects by using local or priority page replacement

9.53 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Locality In A Memory-Reference Pattern

9.54 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Working-Set Model

 working-set window a fixed number of page references
Example: 10,000 instructions

 WSSi (working set of Process Pi) =
total number of pages referenced in the most recent (varies in time)

 if too small will not encompass entire locality
 if too large will encompass several localities
 if = will encompass entire program

 D = WSSi total demand frames
 Approximation of locality

 if D > m Thrashing

 Policy if D > m, then suspend or swap out one of the processes

9.55 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Working-set model

9.56 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example: = 10,000
 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of all reference bits to 0
 If one of the bits in memory = 1 page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time units

9.57 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Page-Fault Frequency

 More direct approach than WSS
 Establish “acceptable” page-fault frequency rate and use local replacement policy

 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

9.58 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Working Sets and Page Fault Rates

9.59 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block to
a page in memory

 A file is initially read using demand paging
 A page-sized portion of the file is read from the file system into a physical page
 Subsequent reads/writes to/from the file are treated as ordinary memory accesses

 Simplifies and speeds file access by driving file I/O through memory rather than read() and write()
system calls

 Also allows several processes to map the same file allowing the pages in memory to be shared
 But when does written data make it to disk?

 Periodically and / or at file close() time
 For example, when the pager scans for dirty pages

9.60 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Memory-Mapped File Technique for all I/O

 Some OSes uses memory mapped files for standard I/O
 Process can explicitly request memory mapping a file via mmap() system call

 Now file mapped into process address space
 For standard I/O (open(), read(), write(), close()), mmap anyway

 But map file into kernel address space
 Process still does read() and write()

 Copies data to and from kernel space and user space
 Uses efficient memory management subsystem

 Avoids needing separate subsystem
 COW can be used for read/write non-shared pages
 Memory mapped files can be used for shared memory (although again via separate system calls)

9.61 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Memory Mapped Files

9.62 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Memory-Mapped Shared Memory
in Windows

9.63 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Allocating Kernel Memory

 Treated differently from user memory

 Often allocated from a free-memory pool
 Kernel requests memory for structures of varying sizes
 Some kernel memory needs to be contiguous

 I.e. for device I/O

9.64 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Buddy System

 Allocates memory from fixed-size segment consisting of physically-contiguous pages
 Memory allocated using power-of-2 allocator

 Satisfies requests in units sized as power of 2
 Request rounded up to next highest power of 2
 When smaller allocation needed than is available, current chunk split into two buddies of next-lower

power of 2
 Continue until appropriate sized chunk available

 For example, assume 256KB chunk available, kernel requests 21KB
 Split into AL and Ar of 128KB each

 One further divided into BL and BR of 64KB
– One further into CL and CR of 32KB each – one used to satisfy request

 Advantage – quickly coalesce unused chunks into larger chunk
 Disadvantage - fragmentation

9.65 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Buddy System Allocator

9.66 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Slab Allocator

 Alternate strategy

 Slab is one or more physically contiguous pages

 Cache consists of one or more slabs

 Single cache for each unique kernel data structure
 Each cache filled with objects – instantiations of the data structure

 When cache created, filled with objects marked as free

 When structures stored, objects marked as used

 If slab is full of used objects, next object allocated from empty slab
 If no empty slabs, new slab allocated

 Benefits include no fragmentation, fast memory request satisfaction

9.67 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Slab Allocation

9.68 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Other Considerations -- Prepaging

 Prepaging
 To reduce the large number of page faults that occurs at process startup
 Prepage all or some of the pages a process will need, before they are referenced
 But if prepaged pages are unused, I/O and memory was wasted
 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α save pages faults > or < than the cost of prepaging
s * (1- α) unnecessary pages?

 α near zero prepaging loses

9.69 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Other Issues – Page Size

 Sometimes OS designers have a choice
 Especially if running on custom-built CPU

 Page size selection must take into consideration:
 Fragmentation
 Page table size
 Resolution
 I/O overhead
 Number of page faults
 Locality
 TLB size and effectiveness

 Always power of 2, usually in the range 212 (4,096 bytes) to 222 (4,194,304 bytes)
 On average, growing over time

9.70 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Other Issues – TLB Reach

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB
 Otherwise there is a high degree of page faults

 Increase the Page Size
 This may lead to an increase in fragmentation as not all applications require a large page size

 Provide Multiple Page Sizes
 This allows applications that require larger page sizes the opportunity to use them without an

increase in fragmentation

9.71 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Other Issues – Program Structure

 Program structure
 Int[128,128] data;
 Each row is stored in one page
 Program 1

 for (j = 0; j <128; j++)
 for (i = 0; i < 128; i++)
 data[i,j] = 0;

 128 x 128 = 16,384 page faults

 Program 2
 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)
 data[i,j] = 0;

128 page faults

9.72 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Other Issues – I/O interlock

 I/O Interlock – Pages must sometimes be locked into memory

 Consider I/O - Pages that are used for copying a file from a device must be locked from being selected for
eviction by a page replacement algorithm

9.73 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Reason Why Frames Used For
I/O Must Be In Memory

9.74 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Operating System Examples

 Windows XP

 Solaris

9.75 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Windows XP

 Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page

 Processes are assigned working set minimum and working set maximum

 Working set minimum is the minimum number of pages the process is guaranteed to have in memory

 A process may be assigned as many pages up to its working set maximum

 When the amount of free memory in the system falls below a threshold, automatic working set trimming
is performed to restore the amount of free memory

 Working set trimming removes pages from processes that have pages in excess of their working set
minimum

9.76 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Solaris

 Maintains a list of free pages to assign faulting processes

 Lotsfree – threshold parameter (amount of free memory) to begin paging

 Desfree – threshold parameter to increasing paging

 Minfree – threshold parameter to being swapping

 Paging is performed by pageout process

 Pageout scans pages using modified clock algorithm

 Scanrate is the rate at which pages are scanned. This ranges from slowscan to fastscan

 Pageout is called more frequently depending upon the amount of free memory available
 Priority paging gives priority to process code pages

9.77 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Solaris 2 Page Scanner

Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

End of Chapter 8

	Slide 1
	Chapter 8: Memory Management
	Objectives
	Background
	Base and Limit Registers
	Hardware Address Protection with Base and Limit Registers
	Address Binding
	Binding of Instructions and Data to Memory
	Multistep Processing of a User Program
	Logical vs. Physical Address Space
	Memory-Management Unit (MMU)
	Dynamic relocation using a relocation register
	Dynamic Loading
	Dynamic Linking
	Swapping
	Schematic View of Swapping
	Context Switch Time including Swapping
	Contiguous Allocation
	Hardware Support for Relocation and Limit Registers
	Contiguous Allocation (Cont.)
	Dynamic Storage-Allocation Problem
	Fragmentation
	Fragmentation (Cont.)
	Paging
	Address Translation Scheme
	Paging Hardware
	Paging Model of Logical and Physical Memory
	Paging Example
	Paging (Cont.)
	Free Frames
	Implementation of Page Table
	Associative Memory
	Paging Hardware With TLB
	Effective Access Time
	Memory Protection
	Valid (v) or Invalid (i) Bit In A Page Table
	Shared Pages
	Shared Pages Example
	Structure of the Page Table
	Hierarchical Page Tables
	Two-Level Page-Table Scheme
	Two-Level Paging Example
	Address-Translation Scheme
	64-bit Logical Address Space
	Three-level Paging Scheme
	Hashed Page Tables
	Hashed Page Table
	Inverted Page Table
	Inverted Page Table Architecture
	Segmentation
	User’s View of a Program
	Logical View of Segmentation
	Segmentation Architecture
	Segmentation Architecture (Cont.)
	Segmentation Hardware
	Example of Segmentation
	Example: The Intel Pentium
	Logical to Physical Address Translation in Pentium
	Intel Pentium Segmentation
	Pentium Paging Architecture
	Linear Address in Linux
	Three-level Paging in Linux
	Slide 63
	Slide 1 (1)
	Chapter 9: Virtual Memory
	Objectives (1)
	Background (1)
	Background (2)
	Virtual Memory That is Larger Than Physical Memory
	Virtual-address Space
	Virtual Address Space
	Shared Library Using Virtual Memory
	Demand Paging
	Transfer of a Paged Memory to Contiguous Disk Space
	Valid-Invalid Bit
	Page Table When Some Pages Are Not in Main Memory
	Page Fault
	Aspects of Demand Paging
	Instruction Restart
	Steps in Handling a Page Fault
	Performance of Demand Paging
	Performance of Demand Paging (Cont.)
	Demand Paging Example
	Demand Paging Optimizations
	Copy-on-Write
	Before Process 1 Modifies Page C
	After Process 1 Modifies Page C
	What Happens if There is no Free Frame?
	Page Replacement
	Need For Page Replacement
	Basic Page Replacement
	Page Replacement (1)
	Page and Frame Replacement Algorithms
	Graph of Page Faults Versus The Number of Frames
	First-In-First-Out (FIFO) Algorithm
	FIFO Page Replacement
	FIFO Illustrating Belady’s Anomaly
	Optimal Algorithm
	Optimal Page Replacement
	Least Recently Used (LRU) Algorithm
	LRU Algorithm (Cont.)
	Use Of A Stack to Record The Most Recent Page References
	LRU Approximation Algorithms
	Second-Chance (clock) Page-Replacement Algorithm
	Counting Algorithms
	Page-Buffering Algorithms
	Applications and Page Replacement
	Allocation of Frames
	Fixed Allocation
	Priority Allocation
	Global vs. Local Allocation
	Non-Uniform Memory Access
	Thrashing
	Thrashing (Cont.)
	Demand Paging and Thrashing
	Locality In A Memory-Reference Pattern
	Working-Set Model
	Working-set model
	Keeping Track of the Working Set
	Page-Fault Frequency
	Working Sets and Page Fault Rates
	Memory-Mapped Files
	Memory-Mapped File Technique for all I/O
	Memory Mapped Files
	Memory-Mapped Shared Memory in Windows
	Allocating Kernel Memory
	Buddy System
	Buddy System Allocator
	Slab Allocator
	Slab Allocation
	Other Considerations -- Prepaging
	Other Issues – Page Size
	Other Issues – TLB Reach
	Other Issues – Program Structure
	Other Issues – I/O interlock
	Reason Why Frames Used For I/O Must Be In Memory
	Operating System Examples
	Windows XP
	Solaris
	Solaris 2 Page Scanner
	Slide 78

