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Chapter 8:  Memory Management
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 Contiguous Memory Allocation
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 Structure of the Page Table
 Segmentation
 Example: The Intel Pentium
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Objectives

 To provide a detailed description of various ways of organizing memory hardware

 To discuss various memory-management techniques, including paging and segmentation

 To provide a detailed description of the Intel Pentium, which supports both pure segmentation and 
segmentation with paging
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Background

 Program must be brought (from disk)  into memory and placed within a process for it to be run

 Main memory and registers are only storage CPU can access directly

 Memory unit only sees a stream of addresses + read requests, or address + data and write requests

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation
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Base and Limit Registers

 A pair of base and limit registers define the logical address space
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Hardware Address Protection with Base and Limit Registers
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Address Binding

 Inconvenient to have first user process physical address always at 0000 
 How can it not be?

 Further, addresses represented in different ways at different stages of a program’s life
 Source code addresses usually symbolic
 Compiled code addresses bind to relocatable addresses

 i.e. “14 bytes from beginning of this module”
 Linker or loader will bind relocatable addresses to absolute addresses

 i.e. 74014
 Each binding maps one address space to another
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Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses can happen at three different stages
 Compile time:  If memory location known a priori, absolute code can be generated; must 

recompile code if starting location changes
 Load time:  Must generate relocatable code if memory location is not known at compile time
 Execution time:  Binding delayed until run time if the process can be moved during its execution 

from one memory segment to another
 Need hardware support for address maps (e.g., base and limit registers)



8.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multistep Processing of a User Program 
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Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate physical address space is central to 
proper memory management

 Logical address – generated by the CPU; also referred to as virtual address
 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time and load-time address-binding schemes; 
logical (virtual) and physical addresses differ in execution-time address-binding scheme

 Logical address space is the set of all logical addresses generated by a program
 Physical address space is the set of all physical addresses generated by a program
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Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical address

 Many methods possible, covered in the rest of this chapter

 To start, consider simple scheme where the value in the relocation register is added to every address 
generated by a user process at the time it is sent to memory

 Base register now called relocation register
 MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the real physical addresses
 Execution-time binding occurs when reference is made to location in memory
 Logical address bound to physical addresses
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Dynamic relocation using a 
relocation register
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Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never loaded

 All routines kept on disk in relocatable load format

 Useful when large amounts of code are needed to handle infrequently occurring cases

 No special support from the operating system is required
 Implemented through program design
 OS can help by providing libraries to implement dynamic loading
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Dynamic Linking

 Static linking – system libraries and program code combined by the loader into the binary program image
 Dynamic linking –linking postponed until execution time
 Small piece of code, stub, used to locate the appropriate memory-resident library routine
 Stub replaces itself with the address of the routine, and executes the routine
 Operating system checks if routine is in processes’ memory address

 If not in address space, add to address space
 Dynamic linking is particularly useful for libraries
 System also known as shared libraries
 Consider applicability to patching system libraries

 Versioning may be needed
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Swapping

 A process can be swapped temporarily out of memory to a backing store, and then brought back 
into memory for continued execution

 Total physical memory space of processes can exceed physical memory
 Backing store – fast disk large enough to accommodate copies of all memory images for all 

users; must provide direct access to these memory images
 Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-priority 

process is swapped out so higher-priority process can be loaded and executed
 Major part of swap time is transfer time; total transfer time is directly proportional to the amount 

of memory swapped
 System maintains a ready queue of ready-to-run processes which have memory images on disk
 Does the swapped out process need to swap back in to same physical addresses?
 Depends on address binding method

 Plus consider pending I/O to / from process memory space
 Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and Windows)

 Swapping normally disabled
 Started if more than threshold amount of memory allocated
 Disabled again once memory demand reduced below threshold
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Schematic View of Swapping
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Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need to swap out a process and swap in target 
process

 Context switch time can then be very high
 100MB process swapping to hard disk with transfer rate of 50MB/sec

 Plus disk latency of 8 ms
 Swap out time of 2008 ms
 Plus swap in of same sized process
 Total context switch swapping component time of 4016ms (> 4 seconds)

 Can reduce if reduce size of memory swapped – by knowing how much memory really being used
 System calls to inform OS of memory use via request memory and release memory
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Contiguous Allocation

 Main memory usually into two partitions:
 Resident operating system, usually held in low memory with interrupt vector
 User processes then held in high memory
 Each process contained in single contiguous section of memory

 Relocation registers used to protect user processes from each other, and from changing operating-system 
code and data

 Base register contains value of smallest physical address
 Limit register contains range of logical addresses – each logical address must be less than the limit 

register 
 MMU maps logical address dynamically
 Can then allow actions such as kernel code being transient and kernel changing size
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Hardware Support for Relocation 
and Limit Registers
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Contiguous Allocation (Cont.)

 Multiple-partition allocation
 Degree of multiprogramming limited by number of partitions
 Hole – block of available memory; holes of various size are scattered throughout memory
 When a process arrives, it is allocated memory from a hole large enough to accommodate it
 Process exiting frees its partition, adjacent free partitions combined
 Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2
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process 5
process 9

process 2

process 9
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Dynamic Storage-Allocation Problem

 First-fit:  Allocate the first hole that is big enough

 Best-fit:  Allocate the smallest hole that is big enough; must search entire list, unless ordered by size  
 Produces the smallest leftover hole

 Worst-fit:  Allocate the largest hole; must also search entire list  
 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage utilization
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Fragmentation

 External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly larger than requested memory; this size 
difference is memory internal to a partition, but not being used

 First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to fragmentation
 1/3 may be unusable -> 50-percent rule
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Fragmentation (Cont.)

 Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together in one large block
 Compaction is possible only if relocation is dynamic, and is done at execution time
 I/O problem

 Latch job in memory while it is involved in I/O
 Do I/O only into OS buffers

 Now consider that backing store has same fragmentation problems
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Paging

 Physical  address space of a process can be noncontiguous; process is allocated physical memory 
whenever the latter is available

 Divide physical memory into fixed-sized blocks called frames
 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and load program

 Set up a page table to translate logical to physical addresses

 Backing store likewise split into pages

 Still have Internal fragmentation
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Address Translation Scheme

 Address generated by CPU is divided into:
 Page number (p) – used as an index into a page table which contains base address of each page in 

physical memory
 Page offset (d) – combined with base address to define the physical memory address that is sent to 

the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m - n n
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Paging Hardware
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Paging Model of Logical and Physical Memory
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Paging Example

n=2 and m=4   32-byte memory and 4-byte pages
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Paging (Cont.)

 Calculating internal fragmentation
 Page size = 2,048 bytes
 Process size = 72,766 bytes
 35 pages + 1,086 bytes
 Internal fragmentation of 2,048 - 1,086 = 962 bytes
 Worst case fragmentation = 1 frame – 1 byte
 On average fragmentation = 1 / 2 frame size
 So small frame sizes desirable?
 But each page table entry takes memory to track
 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB
 Process view and physical memory now very different
 By implementation process can only access its own memory
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Free Frames

Before allocation After allocation
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Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the page table

 In this scheme every data/instruction access requires two memory accesses
 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of a special fast-lookup hardware cache called 
associative memory or translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely identifies each process 
to provide address-space protection for that process

 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for faster access next time
 Replacement policies must be considered
 Some entries can be wired down for permanent fast access
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Associative Memory

 Associative memory – parallel search 

 Address translation (p, d)
 If p is in associative register, get frame # out
 Otherwise get frame # from page table in memory

Page # Frame #
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Paging Hardware With TLB
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Effective Access Time

 Associative Lookup =  time unit
 Can be < 10% of memory access time

 Hit ratio = 
 Hit ratio – percentage of times that a page number is found in the associative registers; ratio related to 

number of associative registers

 Consider  = 80%,  = 20ns for TLB search, 100ns for memory access

 Effective Access Time (EAT)
EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

  Consider  = 80%,  = 20ns for TLB search, 100ns for memory access
 EAT = 0.80 x 120 + 0.20 x 220 = 140ns

 Consider slower memory but better hit ratio ->   = 98%,  = 20ns for TLB search, 140ns for memory 
access

 EAT = 0.98 x 160 + 0.02 x 300 = 162.8ns
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Memory Protection

 Memory protection implemented by associating protection bit with each frame to indicate if read-only or 
read-write access is allowed

 Can also add more bits to indicate page execute-only, and so on

 Valid-invalid bit attached to each entry in the page table:
 “valid” indicates that the associated page is in the process’ logical address space, and is thus a legal 

page
 “invalid” indicates that the page is not in the process’ logical address space
 Or use PTLR

 Any violations result in a trap to the kernel



8.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid (v) or Invalid (i) 
Bit In A Page Table
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Shared Pages

 Shared code
 One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, window 

systems)
 Similar to multiple threads sharing the same process space
 Also useful for interprocess communication if sharing of read-write pages is allowed

 Private code and data 
 Each process keeps a separate copy of the code and data
 The pages for the private code and data can appear anywhere in the logical address space
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Shared Pages Example
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Structure of the Page Table

 Memory structures for paging can get huge using straight-forward methods
 Consider a 32-bit logical address space as on modern computers
 Page size of 4 KB (212)
 Page table would have 1 million entries (232 / 212)

 If each entry is 4 bytes -> 4 MB of physical address space / memory for page table alone
 That amount of memory used to cost a lot
 Don’t want to allocate that contiguously in main memory

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables



8.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

 We then page the page table
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Two-Level Page-Table Scheme
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Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:
 a page number consisting of 22 bits
 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:
 a 12-bit page number 
 a 10-bit page offset

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the displacement within the page of the inner page 
table

 Known as forward-mapped page table

page number page offset

p1 p2 d

12 10 10
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Address-Translation Scheme
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64-bit Logical Address Space

 Even two-level paging scheme not sufficient
 If page size is 4 KB (212)

 Then page table has 252 entries
 If two level scheme, inner page tables could be 210 4-byte entries
 Address would look like

 Outer page table has 242 entries or 244 bytes
 One solution is to add a 2nd outer page table
 But in the following example the 2nd outer page table is still 234 bytes in size

 And possibly 4 memory access to get to one physical memory location

outer page page offset

p1 p2 d

42 10 12

inner page
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Three-level Paging Scheme
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Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table
 This page table contains a chain of elements hashing to the same location

 Each element contains (1) the virtual page number (2) the value of the mapped page frame (3) a pointer to 
the next element

 Virtual page numbers are compared in this chain searching for a match
 If a match is found, the corresponding physical frame is extracted
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Hashed Page Table
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Inverted Page Table

 Rather than each process having a page table and keeping track of all possible logical pages, track all 
physical pages

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real memory location, with information 
about the process that owns that page

 Decreases memory needed to store each page table, but increases time needed to search the table 
when a page reference occurs

 Use hash table to limit the search to one — or at most a few — page-table entries
 TLB can accelerate access

 But how to implement shared memory?
 One mapping of a virtual address to the shared physical address
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Inverted Page Table Architecture
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Segmentation

 Memory-management scheme that supports user view of memory 

 A program is a collection of segments
 A segment is a logical unit such as:

main program
procedure 
function
method
object
local variables, global variables
common block
stack
symbol table
arrays
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User’s View of a Program
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Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space
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Segmentation Architecture 

 Logical address consists of a two tuple:
<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each table entry has:
 base – contains the starting physical address where the segments reside in memory
 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment table’s location in memory

 Segment-table length register (STLR) indicates number of segments used by a program;
                  segment number s is legal if s < STLR
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Segmentation Architecture (Cont.)

 Protection
 With each entry in segment table associate:

 validation bit = 0  illegal segment
 read/write/execute privileges

 Protection bits associated with segments; code sharing occurs at segment level

 Since segments vary in length, memory allocation is a dynamic storage-allocation problem

 A segmentation example is shown in the following diagram
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Segmentation Hardware
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Example of Segmentation
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Example: The Intel Pentium

 Supports both segmentation and segmentation with paging
 Each segment can be 4 GB
 Up to 16 K segments per process
 Divided into two partitions

 First partition of up to 8 K segments are private to process (kept in local descriptor table LDT)
 Second partition of up to 8K segments shared among all processes (kept in global descriptor 

table GDT)

 CPU generates logical address
 Given to segmentation unit

 Which produces linear addresses 
 Linear address given to paging unit

 Which generates physical address in main memory
 Paging units form equivalent of MMU
 Pages sizes can be 4 KB or 4 MB
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Logical to Physical Address 
Translation in Pentium
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Intel Pentium Segmentation
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Pentium Paging Architecture
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Linear Address in Linux

 Linux uses only 6 segments (kernel code, kernel data, user code, user data, 
task-state segment (TSS), default LDT segment)

 Linux only uses two of four possible modes – kernel and user
 Uses a three-level paging strategy that works well for 32-bit and 64-bit systems
 Linear address broken into four parts:

 But the Pentium only supports 2-level paging?!
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Three-level Paging in Linux
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End of Chapter 7
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Chapter 9:  Virtual Memory
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Chapter 9:  Virtual Memory

 Background
 Demand Paging
 Copy-on-Write
 Page Replacement
 Allocation of Frames 
 Thrashing
 Memory-Mapped Files
 Allocating Kernel Memory
 Other Considerations
 Operating-System Examples
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Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames

 To discuss the principle of the working-set model
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Background

 Code needs to be in memory to execute, but entire program rarely used
 Error code, unusual routines, large data structures

 Entire program code not needed at same time
 Consider ability to execute partially-loaded program

 Program no longer constrained by limits of physical memory
 Program and programs could be larger than physical memory
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Background

 Virtual memory – separation of user logical memory from physical memory
 Only part of the program needs to be in memory for execution
 Logical address space can therefore be much larger than physical address space
 Allows address spaces to be shared by several processes
 Allows for more efficient process creation
 More programs running concurrently
 Less I/O needed to load or swap processes

 Virtual memory can be implemented via:
 Demand paging 
 Demand segmentation
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Virtual Memory That is 
Larger Than Physical Memory
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Virtual-address Space
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Virtual Address Space

 Enables sparse address spaces with holes left for growth, dynamically linked libraries, etc
 System libraries shared via mapping into virtual address space
 Shared memory by mapping pages read-write into virtual address space
 Pages can be shared during fork(), speeding process creation
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Shared Library Using Virtual Memory
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Demand Paging

 Could bring entire process into memory at load time
 Or bring a page into memory only when it is needed

 Less I/O needed, no unnecessary I/O
 Less memory needed 
 Faster response
 More users

 Page is needed  reference to it
 invalid reference  abort
 not-in-memory  bring to memory

 Lazy swapper – never swaps a page into memory unless page will be needed
 Swapper that deals with pages is a pager
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Transfer of a Paged Memory to 
Contiguous Disk Space
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Valid-Invalid Bit
 With each page table entry a valid–invalid bit is associated

(v  in-memory – memory resident, i  not-in-memory)
 Initially valid–invalid bit is set to i on all entries
 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry
      is I  page fault

v
v
v

v

i

i
i

….

Frame # valid-invalid bit

page table
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Page Table When Some Pages 
Are Not in Main Memory
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Page Fault

 If there is a reference to a page, first reference to that page will trap to operating system:
              page fault
1. Operating system looks at another table to decide:

 Invalid reference  abort
 Just not in memory

2. Get empty frame
3. Swap page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault
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Aspects of Demand Paging

 Extreme case – start process with no pages in memory
 OS sets instruction pointer to first instruction of process, non-memory-resident -> page fault
 And for every other process pages on first access
 Pure demand paging

 Actually, a given instruction could access multiple pages -> multiple page faults
 Pain decreased because of locality of reference

 Hardware support needed for demand paging
 Page table with valid / invalid bit
 Secondary memory (swap device with swap space)
 Instruction restart
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Instruction Restart

 Consider an instruction that could access several different locations
 block move

 auto increment/decrement location
 Restart the whole operation?

 What if source and destination overlap? – Two possible solutions
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Steps in Handling a Page Fault
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Performance of Demand Paging

 Stages in Demand Paging
1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the location of the page on the disk
5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now in memory
11. Wait for the CPU to be allocated to this process again
12. Restore the user registers, process state, and new page table, and then resume the interrupted 

instruction
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Performance of Demand Paging (Cont.)

 Page Fault Rate 0  p  1
 if p = 0 no page faults 
 if p = 1, every reference is a fault

 Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
           + swap page out
           + swap page in
           + restart overhead

                                                     )
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Demand Paging Example

 Memory access time = 200 nanoseconds
 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds) 
        = (1 – p  x 200 + p x 8,000,000 

              = 200 + p x 7,999,800
 If one access out of 1,000 causes a page fault, then
         EAT = 8.2 microseconds. 
      This is a slowdown by a factor of 40!!
 If want performance degradation < 10 percent

 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

 p < .0000025
 < one page fault in every 400,000 memory accesses
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Demand Paging Optimizations

 Copy entire process image to swap space at process load time
 Then page in and out of swap space
 Used in older BSD Unix

 Demand page in from program binary on disk, but discard rather than paging out when freeing frame
 Used in Solaris and current BSD
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Copy-on-Write

 Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory
 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are copied
 In general, free pages are allocated from a pool of zero-fill-on-demand pages

 Why zero-out a page before allocating it?
 vfork() variation on fork() system call has parent suspend and child using copy-on-write address 

space of parent
 Designed to have child call exec()
 Very efficient



9.23 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Before Process 1 Modifies Page C
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After Process 1 Modifies Page C
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What Happens if There is no Free Frame?

 Used up by process pages
 Also in demand from the kernel, I/O buffers, etc
 How much to allocate to each?

 Page replacement – find some page in memory, but not really in use, page it out
 Algorithm – terminate? swap out? replace the page?
 Performance – want an algorithm which will result in minimum number of page faults

 Same page may be brought into memory several times
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Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written to disk

 Page replacement completes separation between logical memory and physical memory – large virtual 
memory can be provided on a smaller physical memory
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Need For Page Replacement
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Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
   -  If there is a free frame, use it
   -  If there is no free frame, use a page replacement algorithm to select a victim frame

- Write victim frame to disk if dirty

3. Bring  the desired page into the (newly) free frame; update the page and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT



9.29 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Page Replacement
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Page and Frame Replacement Algorithms

 Frame-allocation algorithm determines 
 How many frames to give each process
 Which frames to replace

 Page-replacement algorithm
 Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory references (reference string) and 
computing the number of page faults on that string

 String is just page numbers, not full addresses
 Repeated access to the same page does not cause a page fault

 In all our examples, the reference string is 
               7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
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Graph of Page Faults Versus 
The Number of Frames
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First-In-First-Out (FIFO) Algorithm

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
 Adding more frames can cause more page faults!

 Belady’s Anomaly

 How to track ages of pages? 
 Just use a FIFO queue
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4   0   7

2   1   0
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15 page faults
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FIFO Page Replacement
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FIFO Illustrating Belady’s Anomaly
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Optimal Algorithm

 Replace page that will not be used for longest period of time
 9 is optimal for the example on the next slide

 How do you know this?
 Can’t read the future

 Used for measuring how well your algorithm performs
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Optimal Page Replacement
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Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future
 Replace page that has not been used in the most amount of time
 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT
 Generally good algorithm and frequently used
 But how to implement?
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LRU Algorithm (Cont.)

 Counter implementation
 Every page entry has a counter; every time page is referenced through this entry, copy the clock into 

the counter
 When a page needs to be changed, look at the counters to find smallest value

 Search through table needed
 Stack implementation

 Keep a stack of page numbers in a double link form:
 Page referenced:

 move it to the top
 requires 6 pointers to be changed

 But each update more expensive
 No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly
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Use Of A Stack to Record The 
Most Recent Page References
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LRU Approximation Algorithms

 LRU needs special hardware and still slow
 Reference bit

 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace any with reference bit = 0 (if one exists)

 We do not know the order, however
 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit
 Clock replacement
 If page to be replaced has 

 Reference bit = 0 -> replace it
 reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules
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Second-Chance (clock) Page-Replacement Algorithm
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Counting Algorithms

 Keep a counter of the number of references that have been made to each page
 Not common

 LFU Algorithm:  replaces page with smallest count

 MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in 
and has yet to be used
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Page-Buffering Algorithms

 Keep a pool of free frames, always
 Then frame available when needed, not found at fault time
 Read page into free frame and select victim to evict and add to free pool
 When convenient, evict victim

 Possibly, keep list of modified pages
 When backing store otherwise idle, write pages there and set to non-dirty

 Possibly, keep free frame contents intact and note what is in them
 If referenced again before reused, no need to load contents again from disk
 Generally useful to reduce penalty if wrong victim frame selected  
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Applications and Page Replacement

 All of these algorithms have OS guessing about future page access
 Some applications have better knowledge – i.e. databases
 Memory intensive applications can cause double buffering

 OS keeps copy of page in memory as I/O buffer
 Application keeps page in memory for its own work

 Operating system can given direct access to the disk, getting out of the way of the applications
 Raw disk mode

 Bypasses buffering, locking, etc
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Allocation of Frames

 Each process needs minimum number of frames
 Example:  IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle to

 Maximum of course is total frames in the system
 Two major allocation schemes

 fixed allocation
 priority allocation

 Many variations
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Fixed Allocation

 Equal allocation – For example, if there are 100 frames (after allocating frames for the OS) and 5 
processes, give each process 20 frames

 Keep some as free frame buffer pool

 Proportional allocation – Allocate according to the size of process
 Dynamic as degree of multiprogramming, process sizes change
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Priority Allocation

 Use a proportional allocation scheme using priorities rather than size

 If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a process with lower priority number
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Global vs. Local Allocation

 Global replacement – process selects a replacement frame from the set of all frames; one process can 
take a frame from another

 But then process execution time can vary greatly
 But greater throughput so more common

 Local replacement – each process selects from only its own set of allocated frames
 More consistent per-process performance
 But possibly underutilized memory
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Non-Uniform Memory Access

 So far all memory accessed equally
 Many systems are NUMA – speed of access to memory varies

 Consider system boards containing CPUs and memory, interconnected over a system bus
 Optimal performance comes from allocating memory “close to” the CPU on which the thread is scheduled

 And modifying the scheduler to schedule the thread on the same system board when possible
 Solved by Solaris by creating lgroups 

 Structure to track CPU / Memory low latency groups
 Used my schedule and pager
 When possible schedule all threads of a process and allocate all memory for that process within the 

lgroup
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Thrashing

 If a process does not have “enough” pages, the page-fault rate is very high
 Page fault to get page
 Replace existing frame
 But quickly need replaced frame back
 This leads to:

 Low CPU utilization
 Operating system thinking that it needs to increase the degree of multiprogramming
 Another process added to the system

 Thrashing  a process is busy swapping pages in and out
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Thrashing (Cont.)
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Demand Paging and Thrashing 

 Why does demand paging work?
Locality model

 Process migrates from one locality to another
 Localities may overlap

 Why does thrashing occur?
 size of locality > total memory size

 Limit effects by using local or priority page replacement
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Locality In A Memory-Reference Pattern
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Working-Set Model

   working-set window  a fixed number of page references 
Example:  10,000 instructions

 WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in time)

 if  too small will not encompass entire locality
 if  too large will encompass several localities
 if  =   will encompass entire program

 D =  WSSi  total demand frames 
 Approximation of locality

 if D > m  Thrashing

 Policy if D > m, then suspend or swap out one of the processes
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Working-set model
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Keeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example:  = 10,000
 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of all reference bits to 0
 If one of the bits in memory = 1  page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time units



9.57 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Page-Fault Frequency

 More direct approach than WSS
 Establish “acceptable” page-fault frequency rate and use local replacement policy

 If actual rate too low, process loses frame
 If actual rate too high, process gains frame
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Working Sets and Page Fault Rates
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Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block to 
a page in memory

 A file is initially read using demand paging
 A page-sized portion of the file is read from the file system into a physical page
 Subsequent reads/writes to/from the file are treated as ordinary memory accesses

 Simplifies and speeds file access by driving file I/O through memory rather than read() and write() 
system calls

 Also allows several processes to map the same file allowing the pages in memory to be shared
 But when does written data make it to disk?

 Periodically and / or at file close() time
 For example, when the pager scans for dirty pages
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Memory-Mapped File Technique for all I/O

 Some OSes  uses memory mapped files for standard I/O
 Process can explicitly request memory mapping a file via mmap() system call

 Now file mapped into process address space
 For standard I/O (open(), read(), write(), close()), mmap anyway

 But map file into kernel address space
 Process still does read() and write()

 Copies data to and from kernel space and user space
 Uses efficient memory management subsystem

 Avoids needing separate subsystem
 COW can be used for read/write non-shared pages
 Memory mapped files can be  used for shared memory (although again via separate system calls)
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Memory Mapped Files
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Memory-Mapped Shared Memory 
in Windows
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Allocating Kernel Memory

 Treated differently from user memory

 Often allocated from a free-memory pool
 Kernel requests memory for structures of varying sizes
 Some kernel memory needs to be contiguous

 I.e. for device I/O
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Buddy System

 Allocates memory from fixed-size segment consisting of physically-contiguous pages
 Memory allocated using power-of-2 allocator

 Satisfies requests in units sized as power of 2
 Request rounded up to next highest power of 2
 When smaller allocation needed than is available, current chunk split into two buddies of next-lower 

power of 2
 Continue until appropriate sized chunk available

 For example, assume 256KB chunk available, kernel requests 21KB
 Split into AL and Ar of 128KB each

 One further divided into BL and BR of 64KB
– One further into CL and CR of 32KB each – one used to satisfy request

 Advantage – quickly coalesce unused chunks into larger chunk
 Disadvantage - fragmentation
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Buddy System Allocator
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Slab Allocator

 Alternate strategy

 Slab is one or more physically contiguous pages

 Cache consists of one or more slabs

 Single cache for each unique kernel data structure
 Each cache filled with objects – instantiations of the data structure

 When cache created, filled with objects marked as free

 When structures stored, objects marked as used

 If slab is full of used objects, next object allocated from empty slab
 If no empty slabs, new slab allocated

 Benefits include no fragmentation, fast memory request satisfaction
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Slab Allocation
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Other Considerations -- Prepaging

 Prepaging 
 To reduce the large number of page faults that occurs at process startup
 Prepage all or some of the pages a process will need, before they are referenced
 But if prepaged pages are unused, I/O and memory was wasted
 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α  save pages faults > or < than the cost of prepaging 
s * (1- α) unnecessary pages?  

 α near zero  prepaging loses 
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Other Issues – Page Size

 Sometimes OS designers have a choice
 Especially if running on custom-built CPU

 Page size selection must take into consideration:
 Fragmentation
 Page table size 
 Resolution
 I/O overhead
 Number of page faults
 Locality
 TLB size and effectiveness

 Always power of 2, usually in the range 212 (4,096 bytes) to 222 (4,194,304 bytes)
 On average, growing over time
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Other Issues – TLB Reach 

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB
 Otherwise there is a high degree of page faults

 Increase the Page Size
 This may lead to an increase in fragmentation as not all applications require a large page size

 Provide Multiple Page Sizes
 This allows applications that require larger page sizes the opportunity to use them without an 

increase in fragmentation
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Other Issues – Program Structure

 Program structure
 Int[128,128] data;
 Each row is stored in one page 
 Program 1 

                for (j = 0; j <128; j++)
                  for (i = 0; i < 128; i++)
                        data[i,j] = 0;

     128 x 128 = 16,384 page faults 

 Program 2 
             for (i = 0; i < 128; i++)

               for (j = 0; j < 128; j++)
                     data[i,j] = 0;

128 page faults
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Other Issues – I/O interlock

 I/O Interlock – Pages must sometimes be locked into memory

 Consider I/O - Pages that are used for copying a file from a device must be locked from being selected for 
eviction by a page replacement algorithm
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Reason Why Frames Used For 
I/O Must Be In Memory
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Operating System Examples

 Windows XP

 Solaris 
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Windows XP

 Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page

 Processes are assigned working set minimum and working set maximum

 Working set minimum is the minimum number of pages the process is guaranteed to have in memory

 A process may be assigned as many pages up to its working set maximum

 When the amount of free memory in the system falls below a threshold, automatic working set trimming 
is performed to restore the amount of free memory

 Working set trimming removes pages from processes that have pages in excess of their working set 
minimum
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Solaris 

 Maintains a list of free pages to assign faulting processes

 Lotsfree – threshold parameter (amount of free memory) to begin paging

 Desfree – threshold parameter to increasing paging

 Minfree – threshold parameter to being swapping

 Paging is performed by pageout process

 Pageout scans pages using modified clock algorithm

 Scanrate is the rate at which pages are scanned. This ranges from slowscan to fastscan

 Pageout is called more frequently depending upon the amount of free memory available
 Priority paging gives priority to process code pages



9.77 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Solaris 2 Page Scanner
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End of Chapter 8
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