

Chapter 8: Major Elements

"Wet-chems": gravimetric/volumetric

Element	Wt % Oxide	Atom %	
0		60.8	
Si	59.3	21.2	Abundance of the elements
AI	15.3	6.4	in the Earth's crust
Fe	7.5	2.2	in the Earth 5 crust
Ca	6.9	2.6	
Mg	4.5	2.4	
Na	2.8	1.9	
lajor e SiO ₂	lements: Al ₂ O ₃ Fo	usually eO* Mg	y greater than 1% O CaO Na ₂ O K ₂ O H ₂ O
lajor e SiO ₂ linor e TiO ₂ race el	lements: Al ₂ O ₃ For lements: MnO P ₂ O ements:	usually eO* Mg usually $D_5 CO_2$ usually	y greater than 1% O CaO Na ₂ O K ₂ O H ₂ O 0.1 - 1% < 0.1%

Wt	Wt. % Oxides to Atom % Conversion					
Oxide	Oxide Wt. % Mol Wt. Atom prop Atom %					
SiO ₂	49.20	60.09	0.82	12.25		
TiO ₂	1.84	95.90	0.02	0.29		
Al ₂ O ₃	15.74	101.96	0.31	4.62		
Fe ₂ O ₃	3.79	159.70	0.05	0.71		
FeO	7.13	71.85	0.10	1.48		
MnO	0.20	70.94	0.00	0.04		
MgO	6.73	40.31	0.17	2.50		
CaO	9.47	56.08	0.17	2.53		
Na ₂ O	2.91	61.98	0.09	1.40		
K₂O	1.10	94.20	0.02	0.35		
H₂O ⁺	0.95	18.02	0.11	1.58		
(O)			4.83	72.26		
Total	99.06		6.69	100.00		

rapie 0-5. Chemical analyses of some						
rep	Peridotite	Basalt	Andesite	Rhvolite	Phonolite	
SiO2	42.26	49.20	57.94	72.82	56.19	
TiO2	0.63	1.84	0.87	0.28	0.62	
AI2O3	4.23	15.74	17.02	13.27	19.04	
Fe2O3	3.61	3.79	3.27	1.48	2.79	
FeO	6.58	7.13	4.04	1.11	2.03	
MnO	0.41	0.20	0.14	0.06	0.17	
MgO	31.24	6.73	3.33	0.39	1.07	
CaO	5.05	9.47	6.79	1.14	2.72	
Na2O	0.49	2.91	3.48	3.55	7.79	
K2O	0.34	1.10	1.62	4.30	5.24	
H2O+	3.91	0.95	0.83	1.10	1.57	
Total	98.75	99.06	99.3	99.50	99.23	

CIPW Norm

- Mode is the volume % of minerals seen
- Norm is a calculated "idealized" mineralogy

Variation Diagrams

How do we display chemical data in a meaningful way?

Models c	of N able 8-5 hypot	Lagi . Chem hetical s	mat ical ana set of rel	ic E lyses (w ated vol	EVO	lutic ª		
Oxide	В	BA	Α	D	RD	R		
SiO ₂	50.2	54.3	60.1	64.9	66.2	71.5		
TiO ₂	1.1	0.8	0.7	0.6	0.5	0.3		
Al ₂ O ₃	14.9	15.7	16.1	16.4	15.3	14.1		
Fe ₂ O ₃ *	10.4	9.2	6.9	5.1	5.1	2.8		
MgO	7.4	3.7	2.8	1.7	0.9	0.5		
CaO	10.0	8.2	5.9	3.6	3.5	1.1		
Na ₂ O	2.6	3.2	3.8	3.6	3.9	3.4		
K ₂ O	1.0	2.1	2.5	2.5	3.1	4.1		
LOI	1.9	2.0	1.8	1.6	1.2	1.4		
Total	99.5	99.2	100.6	100.0	99.7	99.2		
B = bas	alt, BA =	basaltic	andesite	e, A = an	desite, D) = dacite		
RD = rh	RD = rhyo-dacite, R = rhyolite. Data from Ragland (1989)							

Instead of calculating a graphical solution it is much easier and more satisfactory to calculate a mathematical solution using least-squares analysis to solve simultaneous mixing equations (see Igpet)

Solve for W, X, Y and Z Where X, Y, and Z are weight fractions

Early on it was recognized that some chemical parameters were very useful in regard to distinguishing magmatic groups

- ✤ Total Alkalis (Na₂O + K₂O)
- ◆ Silica (SiO₂) and silica saturation
- ✤ Alumina (Al₂O₃)

A world-wide survey suggests that there may be some important differences between the three series						
Characteristic	Plate N	/ argin	Within Plate			
Series	Convergent	Divergent	Oceanic	Continenta		
Alkaline	yes		yes	yes		
Tholeiitic	yes	yes	yes	yes		
	ves					
Calc-alkaline				-		