# Predictive Modeling and Analysis 

Business Analytics, $1^{\text {st }}$ edition James R. Evans

- Logic-Driven Modeling
- Data-Driven Modeling
- Analyzing Uncertainty and Model Assumptions
- Model Analysis Using Risk Solver Platform


## Logic-Driven Modeling

- Predictive modeling is the heart and soul of business decisions.
- Building decision models is more of an art than a science.
- Creating good decision models requires:
- solid understanding of business functional areas
- knowledge of business practice and research
- logical skills
- It is best to start simple and enrich models as necessary.

Copyright © 2013 Pearson
Education, Inc. publishing as
Prentice Hall

## Logic-Driven Modeling

## Example 8.1 The Economic Value of a Customer

- A restaurant customer dines 6 times a year and spends an average of $\$ 50$ per visit.
- The restaurant realizes a 40\% margin on the average bill for food and drinks.
- Annual gross profit on a customer = \$50(6)(0.40)

$$
=\$ 120
$$

- 30\% of customers do not return each year.
- Average lifetime of a customer $=1 / .3=3.33$ years
- Average gross profit for a customer $=\$ 120(3.33)$

$$
=\$ 400
$$

## Logic-Driven Modeling

## Example 8.1 (continued)

The Economic Value of a Customer

$$
V=\frac{R \times F \times M}{D}
$$

- $V=$ value of a loyal customer
- $R=$ revenue per purchase
- $F=$ purchase frequency (number visits per year)
- $M=$ gross profit margin
- $D=$ defection rate (proportion customers not returning each year)


## Logic-Driven Modeling

## Example 8.2 A Profit Model

- Develop a decision model for predicting profit in face of uncertain demand.

| $P=$ profit |
| :--- |
| $R=$ revenue |
| $C=$ cost |
| $p=$ unit price |
| $C=$ unit cost |
| $F=$ fixed cost |
| $S=$ quantity sold |
| $D=$ demand |
| $Q=$ quantity |
| produced |



## Logic-Driven Modeling

## Example 8.2 (continued) A Profit Model

- Cost = fixed cost + variable cost

$$
C=F+c Q
$$

- Revenue = price times quantity sold

$$
R=p S
$$

- Quantity sold = Minimum\{demand, quantity sold\}

$$
S=\min \{D, Q\}
$$

- Profit = Revenue - Cost

$$
P=p^{*} \min \{D, Q\}-(F+c Q)
$$

- $c=\$ 24$
- $F=\$ 400,000$
- $D=50,000$
- $Q=40,000$

Compute:

- $R=p^{*} \min \{D, Q\}$

$$
=40(40,000)=1,600,000
$$

- $C=F+c Q=1,360,000$
- $=400,000+24(40,000)$

- $P=R-C=1,600,000-1,360,000=\$ 240,000^{22}$

Logic-Driven Modeling
Example 8.2 (continued) A Profit Model

Copyright © 2013 Pearson
Education, Inc. publishing as
Prentice Hall



## Logic-Driven Modeling

## Example 8.3 New-Product Development

- Moore Pharmaceuticals needs to decide whether to conduct clinical trials and seek FDA approval for a newly developed drug.


## Estimated figures:

- R\&D cost = $\$ 700$ million
- Clinical trials cost = \$150 million
- Market size = 2 million people
- Market size growth = 3\% per year


## Logic-Driven Modeling

## Example 8.3 (continued) New-Product Development

Additional estimated figures

- Market share = 8\%
- Market share growth = 20\% per year (for 5 years)
- Revenue from a monthly prescription = \$130
- Variable cost for a monthly prescription = \$40
- Discount rate for net present value $=9 \%$

Moore Pharmaceuticals wants to determine net present value for the next 5 years and to determine how long it will take to recover fixed costs.

## Logic-Driven Modeling

## Example 8.3 (continued) New-Product Development



Figure 8.3b

## Logic-Driven Modeling

Example 8.3 (continued) New-Product Development


Copyright © 2013 Pearson
Education, Inc. publishing as
Prentice Hall

## Logic-Driven Modeling

## Single-Period Purchase Decisions

- One-time purchase decisions often must be made in the face of uncertain demand.

Newsvendor Problem:
How many newspapers to purchase each day?

- C = cost to purchase a newspaper
- $Q$ = number of newspapers the vendor purchases
- $D=$ number of newspapers demanded
- $R=$ revenue from selling a newspaper
- $S$ = salvage value of unsold newspapers
- Net profit $=R(\min \{Q, D\})+S(\max \{0, Q-D\})-C Q$


## Logic-Driven Modeling

## Example 8.4

A Single-Period Purchase Decision Model

- Net profit $=18(\min \{Q, D\})+9(\max \{0, Q-D\})-12 Q$

| 4 | A | B |
| :---: | :---: | :---: |
| 1 | Newsvendor Model |  |
| 2 |  |  |
| 3 | Data |  |
| 4 |  |  |
| 5 | Selling price | \$ 18.00 |
| 6 | Cost | \$ 12.00 |
| 7 | Discount price | \$ 9.00 |
| 8 |  |  |
| 9 | Model |  |
| 10 |  |  |
| 11 | Demand | 41 |
| 12 | Purchase Quantity | 44 |
| 13 |  |  |
| 14 | Quantity Sold | 41 |
| 15 | Surplus Quantity | 3 |
| 16 |  |  |
| 17 | Profit | \$ 237.00 |

Copyright © 2013 Pearson
Education, Inc. publishing as
Prentice Hall


Figure 8.4

## Logic-Driven Modeling

## Example 8.5 A Hotel Overbooking Model

- A popular resort hotel has 300 rooms.

The room rate is $\$ 120$ per night.

- Reservations can be cancelled by 6:00 p.m.
- Cost of overbooking is $\$ 100$ per occurrence.

Determine net revenue on the rooms.

- $Q=300, P=120, C=100$
- $D=$ Reservations - Cancellations
- Net revenue $=P(\min \{300, D\})-C(\max \{0, D-Q\})$

$$
=120(\min \{300, D\})-100(\max \{0, D-300\})
$$

## Logic-Driven Modeling

Example 8.5 (continued)

## A Hotel Overbooking Model

Net revenue $=120(\min \{300, D\})-100(\max \{0, D-300\})$


Copyright © 2013 Pearson
Education, Inc. publishing as
Prentice Hall


Figure 8.5

## Logic-Driven Modeling

## Example 8.6 A Retirement-Planning Model

- Start work at age 22, earning \$50,000 per year.
- Expect a salary increase of 3\% per year.
- Required to contribute 8\% to retirement.
- Employer contributes 35\% of that amount.
- Expect an annual return of 8\% on the portfolio.

Determine the value of the retirement account when the employee is 50 years old.

## Logic-Driven Modeling

Example 8.6 (continued) Retirement-Planning Model

- Salary = 1.03(previous year's salary)
- Employee contribution = 0.08(salary)
- Employer contribution = 0.35(employee contrib.)
- Value of account = 1.08(previous value) + employee contribution + employer contribution


Education, Inc. publishing as
Prentice Hall

Logic-Driven Modeling


Copyright © 2013 Pearson
Education, Inc. publishing as
Prentice Hall

## Data-Driven Modeling

## Example 8.7

## Modeling Retail Markdown Pricing Decisions

- In the spring, a department store introduces a new line of bathing suits that sells for \$70.
- The store purchases 1000 of these bathing suits.
- During the prime selling season, the store sells an average of 7 units per day at full price ( 40 days).
- On 10 sale days, the price is discounted $30 \%$ and sales increase to 32.2 units per day.
- Around July $4^{\text {th }}$, the price is marked down $70 \%$ to sell off remaining inventory.
- Determine total revenue from the bathing suits.


## Data-Driven Modeling

## Example 8.7 (continued)

 Modeling Retail Markdown Pricing DecisionsAssume a linear trend model between sales and price:
daily sales $=a-b$ (price)
$7=a-b(70)$
$32.2=a-b(49)$
Daily sales $=91-1.2$ (price)


## Data-Driven Modeling

## Example 8.7 (continued)

Revenue from full retail sales
= units sold * days * price
$=(7)^{*}(40)^{*}(70)$
= \$19,600
Revenue from sale weekends
$=(32.2) *(10) *(49)$
= \$15,778
Revenue from clearance sales
$=$ leftovers * price
$=(1000-7(40)-32.2(10))^{*}(21)$
= (398)(21)
$=\$ 8,358$


Copyright © 2013 Pearson
Education, Inc. publishing as

## Data-Driven Modeling

## Example 8.7 (continued)

Modeling Retail Markdown Pricing Decisions


Copyright © 2013 Pearson
Education, Inc. publishing as
Prentice Hall


## Data-Driven Modeling

## Modeling Relationships and Trends in Data

- Create charts to better understand data sets.
- For cross-sectional data, use a scatter chart.
- For time series data, use a line chart.
- Consider using mathematical functions to model relationships.


## Data-Driven Modeling

Excel Trendline tool
Click on a chart
Chart tools

- Layout
- Trendline

Choose a Trendline. Choose whether to display equation and $R$-squared.
$R$-squared values closer to 1 indicate better fit of the Trendline to the data.

.

## Data-Driven Modeling

## Example 8.8 Modeling a Price-Demand Function

 Linear demand function: Sales $=-9.5116($ price $)+20512$

## Data-Driven Modeling

## Example 8.9 Predicting Crude Oil Prices

- Line chart of historical crude oil prices


Figure 8.10

## Data-Driven Modeling

## Example 8.9 (continued) Predicting Crude Oil Prices

- Excel's Trendline tool is used to fit various functions to the data.
Logarithmic $\quad y=13 \ln (x)+39 \quad R^{2}=0.382$
Power $\quad y=45.96 x^{0.0169} \quad R^{2}=0.397$
Exponential $\quad y=50.5 \mathrm{e}^{0.021 x} \quad R^{2}=0.664$
Polynomial $2^{\circ} y=0.13 x^{2}-2.4 x+68 R^{2}=0.905$
Polynomial $3^{\circ} y=0.005 x^{3}-0.111 x^{2}$ $+0.648 x+59.5 \quad R^{2}=0.928$ *


## Data-Driven Modeling

## Example 8.9 (continued) Predicting Crude Oil Prices

- Third Order Polynomial Trendline fit to the data


Figure 8.11

Analyzing Uncertainty and Model Assumptions

## What-If Analysis

- Spreadsheet models allow you to easily evaluate what-if questions.
- How do changes in model inputs (that reflect key assumptions) affect model outputs?
- Systematic approaches to what-if analysis make the process easier and more useful.

Analyzing Uncertainty and Model Assumptions

## Data Tables

- Data Tables summarize the impact of one or two inputs on a specified output.


## - Excel data table types:

One-way data tables - for one input variable
Two-way data table - for two input variables
To construct a data table:

- Data
- What-If Analysis
- Data Table



## Analyzing Uncertainty and Model Assumptions

## Example 8.11

## A One-Way Data Table for Uncertain Demand

Create a column of demand values (column E).
Enter =C22 in cell F3 (to reference the output cell).
Highlight the range E3:F11.
Choose Data Table.
Enter B8 for Column input cell. (tells Excel that column E is demand values)



## Example 8.11 (continued)

## A One-Way Data Table for Uncertain Demand

The Data Table tool computes the profit values in column F (below \$240,000).


## Analyzing Uncertainty and Model Assumptions

## Example 8.12

## One-Way Data Tables with Multiple Outputs

- Create a second output, revenue.

Enter $=$ C15 in cell G3.
Highlight E3:G11. Choose Data Table Proceed as in the previous example. Excel computes the revenues values.


Copyright © 2013 Pearson
Education, Inc. publishing as
Prentice Hall

## Analyzing Uncertainty and Model Assumptions

## Example 8.13

## A Two-Way Data Table for the Profit Model

## - Evaluate the impact of both unit price and unit cost

Create a column of unit prices (F5:F15).
Create a row of unit costs (G4:J4).
Enter $=$ C22 in cell F4.
Select F4:J15.
Choose Data Table.


Figure 8.17a
Enter B6 for Row input cell. Enter B5 for Column input cell.

Analyzing Uncertainty and Model Assumptions
Example 8.13 (continued)
A Two-Way Data Table for the Profit Model

| 4 | A | B | C | D | E | F | G | H | 1 | J |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Profit Model |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  |
| 3 | Data |  |  |  |  |  | Unit Cost |  |  |  |
| 4 |  |  |  |  | Unit | \$240,000.00 | \$22.00 | \$23.00 | \$24.00 | \$25.00 |
| 5 | Unit Price | \$40.00 |  |  | Price | \$35.00 | \$120,000.00 | \$80,000.00 | \$40,000.00 | \$0.00 |
| 6 | Unit Cost | \$24.00 |  |  |  | \$36.00 | \$160,000.00 | \$120,000.00 | \$80,000.00 | \$40,000.00 |
| 7 | Fixed Cost | \$400,000.00 |  |  |  | \$37.00 | \$200,000.00 | \$160,000.00 | \$120,000.00 | \$80,000.00 |
| 8 | Demand | 50000 |  |  |  | \$38.00 | \$240,000.00 | \$200,000.00 | \$160,000.00 | \$120,000.00 |
| 9 |  |  |  |  |  | \$39.00 | \$280,000.00 | \$240,000.00 | \$200,000.00 | \$160,000.00 |
| 10 |  |  |  |  |  | \$40.00 | \$320,000.00 | \$280,000.00 | \$240,000.00 | \$200,000.00 |
| 11 | Model |  |  |  |  | \$41.00 | \$360,000.00 | \$320,000.00 | \$280,000.00 | \$240,000.00 |
| 12 |  |  |  |  |  | \$42.00 | \$400,000.00 | \$360,000.00 | \$320,000.00 | \$280,000.00 |
| 13 | Unit Price | \$40.00 |  |  |  | \$43.00 | \$440,000.00 | \$400,000.00 | \$360,000.00 | \$320,000.00 |
| 14 | Quantity Sold | 40000 |  |  |  | \$44.00 | \$480,000.00 | \$440,000.00 | \$400,000.00 | \$360,000.00 |
| 15 | Revenue |  | \$1,600,000.00 |  |  | \$45.00 | \$520,000.00 | \$480,000.00 | \$440,000.00 | \$400,000.00 |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 | Unit Cost | \$24.00 |  |  |  |  |  |  |  |  |
| 18 | Quantity Produced | 40000 |  |  |  |  |  |  |  |  |
| 19 | Variable Cost |  | \$960,000.00 |  |  |  |  |  |  |  |
| 20 | Fixed Cost |  | \$400,000.00 |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 | Profit |  | \$240,000.00 |  |  |  |  |  |  |  |

Analyzing Uncertainty and Model Assumptions

## Goal Seek

Goal Seek allows you to alter the data used in a formula in order to find out what the results will be.
Set cell contains the formula the result you're seeking.

- To value is the target value you want the formula to return.
By changing cell is the location of the input value that Excel can change to reach the target.

Analyzing Uncertainty and Model Assumptions
Example 8.15 Finding the Breakeven Point in the Outsourcing Model (using Goal Seek)

- Find the value of demand at which manufacturing cost equals purchased cost
- Set cell: B19
- To value: 0
- By changing cell: B12.


The breakeven volume is 1000 units.


Copyright © 2013 Pearson
Education, Inc. publishing as
Prentice Hall

## Model Analysis Using Risk Solver Platform

## Tornado Chart

- Shows the impact that variation in a model input has on some output while holding all other inputs constant.
- Shows which inputs are the least and most influential on the output.
- Helps you select the inputs that you would want to further analyze.


## Model Analysis Using Risk Solver Platform

## Example 8.17

## Creating a Tornado Chart in Risk Solver Platform

Profit Model
Select cell C22.
Parameters

Identify \begin{tabular}{|l|}

\hline | A 10\% change in unit price |
| :--- |
| (B5) |
| affects profit the most. |
| Next is unit cost (B6). | <br>

\hline
\end{tabular}



Copyright © 2013 Pearson
Education, Inc. publishing as
Prentice Hall

