

Global Warming

- Scientists have measured an average $0.6^{\circ} \mathrm{C}$ rise in atmospheric temperature since 1860 .
- During the same period atmospheric CO_{2} levels have risen 25%.
- Are the two trends causal?

The Source of Increased CO_{2}

- The primary source of the increased CO_{2} levels are combustion reactions of fossil fuels we use to get energy.
$\checkmark 1860$ corresponds to the beginning of the Industrial Revolution in the U.S. and Europe.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \quad 2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(g) \rightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g)
$$

Quantities in Chemical Reactions

- The amount of every substance used and made in a chemical reaction is related to the amounts of all the other substances in the reaction.
\checkmark Law of Conservation of Mass.
\checkmark Balancing equations by balancing atoms.
- The study of the numerical relationship between chemical quantities in a chemical reaction is called stoichiometry.

Making Pancakes

- The number of pancakes you can make depends on the amount of the ingredients you use.

1 cup flour +2 eggs $+1 / 2$ tsp baking powder $\rightarrow 5$ pancakes

- This relationship can be expressed mathematically. 1 cup flour $\equiv 2$ eggs $\equiv 1 / 2$ tsp baking powder $\equiv 5$ pancakes

Making Pancakes, Continued

- If you want to make more or less than 5 pancakes, you can use the number of eggs you have to determine the number of pancakes you can make.
\checkmark Assuming you have enough flour and baking powder.

8 eggs $\times \frac{5 \text { pancakes }}{2 \text { eggs }}=20$ pancakes
8 eggs

Making Molecules Mole-to-Mole Conversions

- The balanced equation is the "recipe" for a chemical reaction.
- The equation $3 \mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$ tells us that 3 molecules of H_{2} react with exactly 1 molecule of N_{2} and make exactly 2 molecules of NH_{3} or: 3 molecules $\mathrm{H}_{2} \equiv 1$ molecule $\mathrm{N}_{2} \equiv 2$ molecules NH_{3}
- Since we count molecules by moles:

3 moles $\mathrm{H}_{2} \equiv 1$ mole $\mathrm{N}_{2} \equiv 2$ moles NH_{3}

Example 8.1-How Many Moles of NaCl Result

 from the Complete Reaction of 3.4 Mol of Cl_{2} ?$$
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}
$$

Given: Find:	$\begin{aligned} & 3.4 \mathrm{~mol} \mathrm{Cl}_{2} \\ & \mathrm{~mol} \mathrm{NaCl} \end{aligned}$
Solution Map: Relationships:	$\begin{aligned} & \underset{\frac{2 \mathrm{~mol} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{Cl}_{2}}}{\underset{\mathrm{~mol} \mathrm{Cl}}{2}} \underset{\mathrm{~mol} \mathrm{NaCl}}{\longrightarrow} \\ & 1 \mathrm{~mol} \mathrm{Cl}_{2} \equiv 2 \mathrm{NaCl} \end{aligned}$
Solution:	$\begin{aligned} & 3.4 \mathrm{molCl}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NaCl}}{1 \mathrm{molCl}_{2}} \\ & =6.8 \mathrm{~mol} \mathrm{NaCl} \end{aligned}$
Check:	Since the reaction makes 2 molecules of NaCl for every 1 mole of Cl_{2}, the number makes sense.

Example 8.1:

- Sodium chloride, NaCl , forms by the following reaction between sodium and chlorine. How many moles of NaCl result from the complete reaction of 3.4 mol of Cl_{2} ? Assume there is more than enough Na .

$$
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(s)
$$

Example:

How many moles of NaCl result from the complete reaction of 3.4 mol of Cl_{2} in the reaction below?
$2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(s)$

- Write down the given quantity and its units.

Given: $\quad 3.4 \mathrm{~mol} \mathrm{Cl}_{2}$

```
Example:
How many moles of NaCl
result from the complete
reaction of 3.4 mol of Cl2 in
the reaction below?
2 Na(s)+ Cl2 (g) ->2 NaCl(s)
```

Information:
Given: $3.4 \mathrm{~mol} \mathrm{Cl}_{2}$

- Write down the quantity to find and/or its units. Find: ? moles NaCl

Example:	Information:
How many moles of NaCl	Given: $3.4 \mathrm{~mol} \mathrm{Cl}_{2}$
result from the complete	
reaction of 3.4 mol of Cl_{2} in	
the reaction below?	Find: ? moles NaCl
$2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(s)$	

- Collect needed conversion factors:

According to the equation:
1 mole $\mathrm{Cl}_{2} \equiv 2$ moles NaCl

Example:
How many moles of NaCl result from the complete reaction of 3.4 mol of Cl_{2} in the reaction below?
$2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(s)$

Information:
Given: $3.4 \mathrm{~mol} \mathrm{Cl}_{2}$
Find: ? moles NaCl
Conversion Factor:
$1 \mathrm{~mol} \mathrm{Cl}_{2} \equiv 2 \mathrm{~mol} \mathrm{NaCl}$

- Write a solution map for converting the units:

Example:	Information:
How many moles of NaCl	Given: 3.4 $\mathrm{mol} \mathrm{Cl}_{2}$
result from the complete	Find: ? moles NaCl
reaction of 3.4 mol of Cl_{2} in	Conversion Factor:
the reaction below?	1 mol Cl $\mathrm{Cl}_{2}=2 \mathrm{~mol} \mathrm{NaCl}$
$2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(s)$	Solution Map: $\mathrm{mol} \mathrm{Cl}_{2} \rightarrow \mathrm{~mol} \mathrm{NaCl}$

- Apply the solution map:

$$
\begin{aligned}
3.4 \mathrm{~mol} \mathrm{Cl}_{2} & \times \frac{2 \mathrm{~mol} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{Cl}_{2}}=\text { moles } \mathrm{NaCl} \\
& =6.8 \mathrm{~mol} \mathrm{NaCl}
\end{aligned}
$$

- Significant figures and round:

Example:
How many moles of NaCl
result from the complete reaction of 3.4 mol of Cl_{2} in the reaction below?
$2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(s)$

Information:

Given: $3.4 \mathrm{~mol} \mathrm{Cl}_{2}$
Find: ? moles NaCl
Conversion Factor:
$1 \mathrm{~mol} \mathrm{Cl}_{2} \equiv 2 \mathrm{~mol} \mathrm{NaCl}$
Solution Map: $\mathrm{mol} \mathrm{Cl}_{2} \rightarrow \mathrm{~mol} \mathrm{NaCl}$

- Check the solution:

$$
3.4 \mathrm{~mol} \mathrm{Cl}_{2} \equiv 6.8 \mathrm{~mol} \mathrm{NaCl}
$$

The units of the answer, moles NaCl , are correct.
The magnitude of the answer makes sense because the equation tells us you make twice as many moles of NaCl as the moles of Cl_{2}.

Practice

- According to the following equation, how many moles of water are made in the combustion of 0.10 moles of glucose?

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

How Many Moles of Water Are Made in the Combustion of 0.10 Moles of Glucose?

Given: Find:	$\begin{aligned} & 0.10 \text { moles } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\ & \text { moles } \mathrm{H}_{2} \mathrm{O} \end{aligned}$
Solution Map: Relationships:	$\begin{gathered} \mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \Longrightarrow \mathrm{~mol} \mathrm{H}_{2} \mathrm{OH} \\ \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{molC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \\ \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \quad \therefore 1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \equiv 6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \end{gathered}$
Solution:$0.10 \mathrm{mote}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mole}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=0.6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	
Check:	$0.6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=0.60 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ Since 6 x moles of $\mathrm{H}_{2} \mathrm{O}$ as $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, the number makes sense.

Making Molecules Mass-to-Mass Conversions

- We know there is a relationship between the mass and number of moles of a chemical.

1 mole $=$ Molar Mass in grams.

- The molar mass of the chemicals in the reaction and the balanced chemical equation allow us to convert from the amount of any chemical in the reaction to the amount of any other.

Example 8.2-How Many Grams of Glucose Can Be Synthesized from 58.5 g of CO_{2} in Photosynthesis?

- Photosynthesis:

$$
6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g)
$$

- The equation for the reaction gives the mole relationship between amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and CO_{2}, but we need to know the mass relationship, so the solution map will be:

Example 8.2-How Many Grams of Glucose Can Be

 Synthesized from 58.5 g of CO_{2} in Photosynthesis?,Continued

Given: Find:	$\begin{aligned} & 58.5 \mathrm{~g} \mathrm{CO}_{2} \\ & \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \end{aligned}$
Solution Map: Relationships:	
Solution:$\begin{aligned} & \text { Solution: } \\ & \text { 58.5 } \frac{1 \mathrm{gCO}_{2}}{} \times \frac{1 \mathrm{molCO}_{2}}{44.01 \frac{\Omega}{8} \mathrm{CO}_{2}} \times \frac{1{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}_{6 \mathrm{molCO}_{2}}^{\mathrm{m}_{6}} \times \frac{180.2 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1 \mathrm{molC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}}{=39.9 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}} \end{aligned}$	
Check:	Since $6 x$ moles of CO_{2} as $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, but the molar mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is $4 \mathrm{x} \mathrm{CO}_{2}$, the number makes sense.

Example 8.2:

- In photosynthesis, plants convert carbon dioxide and water into glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$, according to the following reaction. How many grams of glucose can be synthesized from 58.5 g of CO_{2} ? Assume there is more than enough water to react with all the CO_{2}.

$$
6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \xrightarrow{\text { sunlight }} 6 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)
$$

Example:

How many grams of glucose can be synthesized from 58.5 g
of CO_{2} in the reaction?
$6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow$
$6 \mathrm{O}_{2}(g)+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)$

- Write down the given quantity and its units.

Given: $\quad 58.5 \mathrm{~g} \mathrm{CO}_{2}$

Example:	Information:
How many grams of glucose	Given: $55.4 \mathrm{~g} \mathrm{CO}_{2}$
can be synthesized from 58.5 g	
of CO_{2} in the reaction?	
$6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow$	
$6 \mathrm{O}_{2}(g)+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}($ aq $)$	

- Write down the quantity to find and/or its units.

Find: ? $\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Example:

How many grams of glucose can be synthesized from 58.5 g of CO_{2} in the reaction?
$6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow$
$6 \mathrm{O}_{2}(g)+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)$

Information:
Given: $55.4 \mathrm{~g} \mathrm{CO}_{2}$
Find: $\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

- Collect needed conversion factors:

Molar mass $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6($ mass C$)+12($ mass H$)+6($ mass O$)$ $=6(12.01)+12(1.01)+6(16.00)=180.2 \mathrm{~g} / \mathrm{mol}$
Molar mass $\mathrm{CO}_{2}=1$ (mass C) +2 (mass O)
$=1(12.01)+2(16.00)=44.01 \mathrm{~g} / \mathrm{mol}$
1 mole $\mathrm{CO}_{2}=44.01 \mathrm{~g} \mathrm{CO}_{2}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.2 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \equiv 6 \mathrm{~mol} \mathrm{CO}_{2}$ (from the chem. equation)

Example:

How many grams of glucose can be synthesized from 58.5 g of CO_{2} in the reaction?
$6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow$
$6 \mathrm{O}_{2}(g)+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)$

Information:
Given: $58.5 \mathrm{~g} \mathrm{CO}_{2}$
Find: $\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Conversion Factors:
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.2 \mathrm{~g}$
$1 \mathrm{~mol} \mathrm{CO}_{2}=44.01 \mathrm{~g}$ $1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \equiv 6 \mathrm{~mol} \mathrm{CO} 2$

- Write a solution map:

$$
\left.\begin{array}{rl}
\underset{\mathrm{g}}{\mathrm{~g}} \\
\mathrm{CO}_{2}
\end{array} \longrightarrow \begin{array}{c}
\mathrm{mol} \\
\mathrm{CO}_{2}
\end{array} \longrightarrow \begin{array}{|c|c|}
\hline \mathrm{mol} \\
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
\end{array} \longrightarrow \begin{array}{c}
\mathrm{g} \\
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
\end{array}\right]
$$

Example:
How many grams of glucose can be synthesized from 58.5 g of CO_{2} in the reaction?
$6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow$
$6 \mathrm{O}_{2}(g)+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)$

Information:
Given: $58.5 \mathrm{~g} \mathrm{CO}_{2}$
Find: $\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Conversion Factors:
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.2 \mathrm{~g}$
$1 \mathrm{~mol} \mathrm{CO}_{2}=44.01 \mathrm{~g}$
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \equiv 6 \mathrm{~mol} \mathrm{CO}_{2}$
Solution Map: $\mathrm{g} \mathrm{CO}_{2} \rightarrow \mathrm{~mol} \mathrm{CO}_{2} \rightarrow$ $\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

- Apply the solution map:
$58.5 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~m}_{2} \mathrm{me} \mathrm{CO}_{2}}{44.01 \mathrm{gCO}_{2}} \times \frac{1 \mathrm{molC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{6 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{180.2 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1 \mathrm{moleC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}$
- Significant figures and round:

$$
=39.9 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

Example:
How many grams of glucose can be synthesized from 58.5 g of CO_{2} in the reaction?
$6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow$
$6 \mathrm{O}_{2}(g)+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)$

Information:
Given: $58.5 \mathrm{~g} \mathrm{CO}_{2}$
Find: $\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Conversion Factors:
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.2 \mathrm{~g}$
$1 \mathrm{~mol} \mathrm{CO}_{2}=44.01 \mathrm{~g}$
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \equiv 6 \mathrm{~mol} \mathrm{CO} 2$
Solution Map: $\mathrm{g} \mathrm{CO}_{2} \rightarrow \mathrm{~mol} \mathrm{CO}_{2} \rightarrow$ $\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

- Check the solution:

$$
58.5 \mathrm{~g} \mathrm{CO}_{2}=39.9 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

The units of the answer, $\mathrm{g}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, are correct. It is hard to judge the magnitude.

Practice-How Many Grams of O_{2} Can Be Made from the Decomposition of 100.0 g of PbO_{2} ?
$2 \mathrm{PbO}_{2}(s) \rightarrow 2 \mathrm{PbO}(s)+\mathrm{O}_{2}(g)$
$\left(\mathrm{PbO}_{2}=239.2, \mathrm{O}_{2}=32.00\right)$

Practice-How Many Grams of O_{2} Can Be Made from the

 Decomposition of 100.0 g of PbO_{2} ?$2 \mathrm{PbO}_{2}(s) \rightarrow 2 \mathrm{PbO}(s)+\mathrm{O}_{2}(g)$, Continued

Given: Find:	$\begin{aligned} & 100.0 \mathrm{~g} \mathrm{PbO}_{2}, 2 \mathrm{PbO}_{2} \rightarrow 2 \mathrm{PbO}+\mathrm{O}_{2} \\ & \mathrm{~g} \mathrm{O}_{2} \end{aligned}$
Solution Map: Relationships:	
$\begin{aligned} & \text { Solution: } \\ & \begin{array}{l} \text { 100.0 } \mathrm{gPbO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{PbO}_{2}}{239.2 \frac{\mathrm{~g} \mathrm{PbO}_{2}}{\mathrm{~Pb}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{PbO}_{2}} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}} \\ \quad=6.689 \mathrm{~g} \mathrm{O}_{2} \end{array} \end{aligned}$	
Check:	Since $1 / 2$ moles of O_{2} as PbO_{2}, and the molar mass of PbO_{2} is 7 x O_{2}, the number makes sense.

More Making Pancakes

- We know that:

1 cup flour +2 eggs $+1 / 2$ tsp baking powder $\rightarrow 5$ pancakes

- But what would happen if we had 3 cups of flour, 10 eggs, and 4 tsp of baking powder?

$$
\begin{aligned}
& \text { More Making Pancakes, } \\
& \text { Continued } \\
& 3 \text { cups flour } \times \frac{5 \text { pancakes }}{1 \text { cups flour }}=15 \text { pancakes } \\
& 10 \text { eggs } \times \frac{5 \text { pancakes }}{2 \text { eggs }}=25 \text { pancakes }
\end{aligned}
$$

4 tsp baking powder $\times \frac{5 \text { pancakes }}{1 / 2 \text { tsp baking powder }}=40$ pancakes

More Making Pancakes, Continued

- Each ingredient could potentially make a different number of pancakes.
- But all the ingredients have to work together!
- We only have enough flour to make 15 pancakes, so once we make 15 pancakes, the flour runs out no matter how much of the other ingredients we have.

More Making Pancakes, Continued

- The flour limits the amount of pancakes we can make. In chemical reactions we call this the limiting reactant.
\checkmark Also known as limiting reagent.
- The maximum number of pancakes we can make depends on this ingredient. In chemical reactions, we call this the theoretical yield.
\checkmark It also determines the amounts of the other ingredients we will use!

Example 8.4-What Is the Limiting Reactant and Theoretical Yield When 0.552 Mol of Al React with 0.887 Mol of Cl_{2} ? $2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}$

Given: Find:	$\begin{aligned} & 0.552 \mathrm{~mol} \mathrm{Al}^{2} 0.887 \mathrm{~mol} \mathrm{Cl}_{2} \\ & \mathrm{~mol} \mathrm{AlCl}_{3} \end{aligned}$
Solution Map: Relationships:	
Solution: L $\begin{array}{r} \text { React } \\ =0 . \end{array}$	$\begin{array}{ll} \text { 29. } 01 \mathrm{Al} \times \frac{2 \mathrm{~mol} \mathrm{AlCl}_{3}}{2 \mathrm{~mol} \mathrm{Al}} & 0.877 \mathrm{~mol} \mathrm{Cl}_{2} \times \frac{2 \mathrm{~mol} \mathrm{AlCl}_{3}}{3 \mathrm{~mol} / \mathrm{Cl}_{2}} \\ 52 \mathrm{~mol} \mathrm{AlCl} 3 \end{array}$

Example 8.4:

- What is the limiting reactant and theoretical yield when 0.552 mol of Al react with 0.887 mol of Cl_{2} ? $2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}$

Example:

What is the limiting reactant and theoretical yield when
0.552 mol of Al react with
0.887 mol of Cl_{2} ?
$2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}$

- Write down the given quantity and its units.

Given: $\quad 0.552 \mathrm{~mol} \mathrm{Al}$
$0.877 \mathrm{~mol} \mathrm{Cl}_{2}$

Example:	Information:
What is the limiting reactant	Given: $0.552 \mathrm{~mol} \mathrm{Al}, 0.877 \mathrm{~mol} \mathrm{Cl}_{2}$
and theoretical yield when	
0.552 mol of Al react with	
$0.887{\mathrm{~mol} \mathrm{of} \mathrm{Cl}_{2}}^{2}$?	
$2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}$	

- Write down the quantity to find and/or its units.

Find: limiting reactant theoretical yield

Example:	Information:
What is the limiting reactant	Given: $0.552 \mathrm{~mol} \mathrm{Al}, 0.877 \mathrm{~mol} \mathrm{Cl}_{2}$
and theoretical yield when	Find: limiting reactant, theor. yield
0.552 mol of Al react with	
$0.887{\mathrm{~mol} \mathrm{of} \mathrm{Cl}_{2} \text { ? }}^{2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}}$	

- Collect needed conversion factors:
$2 \mathrm{~mol} \mathrm{AlCl}_{3} \equiv 2 \mathrm{~mol} \mathrm{Al}$ (from the chem. equation)
$2 \mathrm{~mol} \mathrm{AlCl}_{3} \equiv 3 \mathrm{~mol} \mathrm{Cl}_{2}$ (from the chem. equation)

Example:	Information:
What is the limiting reactant	Given: $0.552 \mathrm{~mol} \mathrm{Al}, 0.877 \mathrm{~mol} \mathrm{Cl}_{2}$
and theoretical yield when	Find: limiting reactant, theor. yield
0.552 mol of Al react with	Conversion Factors:
0.887 mol of $\mathrm{Cl}_{2} ?$	$2 \mathrm{~mol} \mathrm{AlCl}_{3} \equiv 2 \mathrm{~mol} \mathrm{Al}$,
$2 \mathrm{Al}(S)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}$	$2 \mathrm{~mol} \mathrm{AlCl}_{3} \equiv 3 \mathrm{~mol} \mathrm{Cl}_{2}$

- Write a solution map:

	Information:
	Given: $0.552 \mathrm{~mol} \mathrm{Al}, 0.877 \mathrm{~mol} \mathrm{Cl}_{2}$
What is the limiting reactant	Find: limiting reactant, theor. yield
and theoretical yield when	Conversion Factors
0.552 mol of Al react with	$2 \mathrm{~mol} \mathrm{AlCl}_{3} \equiv 2 \mathrm{~mol} \mathrm{Al}$,
0.887 mol of Cl_{2} ?	$2 \mathrm{~mol} \mathrm{AlCl}_{3} \equiv 3 \mathrm{~mol} \mathrm{Cl}_{2}$
$2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}$	Solution Map:

- Apply the solution map: \quad Limiting reactant $=\mathrm{Al}$ $\begin{array}{ll}0.552 \mathrm{~mol} \mathrm{Al} \times \frac{2 \mathrm{~mol} \mathrm{AlCl}_{3}}{2 \mathrm{~mol} \mathrm{Al}} & 0.877 \mathrm{molCl}_{2} \times \frac{2 \mathrm{~mol} \mathrm{AlCl}_{3}}{3 \mathrm{~mol} \mathrm{Cl}_{2}} \\ =0.552 \mathrm{~mol} \mathrm{AlCl}_{3} & =0.58 \underline{4} 7 \mathrm{~mol} \mathrm{AlCl}_{3}\end{array}$

Smallest
amount
Theoretical yield $=0.552 \mathrm{~mol} \mathrm{AlCl}_{3}$

	Information:
	Given: $0.552 \mathrm{~mol} \mathrm{Al}, 0.877 \mathrm{~mol} \mathrm{Cl}_{2}$
and theoretical yield when	Find: limiting reactant, theor. yield Conversion Factors:
0.552 mol of Al react with	$2 \mathrm{~mol} \mathrm{AlCl}{ }_{3} \equiv 2 \mathrm{~mol} \mathrm{Al}$,
0.887 mol of Cl_{2} ?	$2 \mathrm{~mol} \mathrm{AlCl}_{3} \equiv 3 \mathrm{~mol} \mathrm{Cl}_{2}$
$2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}$	Solution Map:

- Check the solution:

$$
\begin{aligned}
& \text { Limiting reactant }=\mathrm{Al} \\
& \text { Theoretical yield }=0.552 \mathrm{~mol} \mathrm{AlCl}_{3}
\end{aligned}
$$

Usually hard to judge as there are multiple factors, but because Al resulted in smallest amount of AlCl_{3}, the answer makes sense.

Practice-How Many Moles of $\mathrm{Si}_{3} \mathrm{~N}_{4}$ Can Be Made from 1.20 Moles of Si and 1.00 Moles of N_{2} in the Reaction $3 \mathrm{Si}+2 \mathrm{~N}_{2} \rightarrow \mathrm{Si}_{3} \mathrm{~N}_{4}$?

 Reaction $3 \mathrm{Si}+2 \mathrm{~N}_{2} \rightarrow \mathrm{Si}_{3} \mathrm{~N}_{4}$?, Continued| Given: Find: | $\begin{aligned} & 1.20 \mathrm{~mol} \mathrm{Si}^{2} .00 \mathrm{~mol} \mathrm{~N} \\ & \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4} \end{aligned}$ |
| :---: | :---: |
| Solution Map:
 Relationships: | |
| Solution:
 Lime
 Rea $=0$ | |

More Making Pancakes

- Let's now assume that as we are making pancakes, we spill some of the batter, burn a pancake, drop one on the floor, or other uncontrollable events happen so that we only make 11 pancakes. The actual amount of product made in a chemical reaction is called the actual yield.
- We can determine the efficiency of making pancakes by calculating the percentage of the maximum number of pancakes we actually make. In chemical reactions, we call this the percent yield.
$\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100 \%=$ Percent Yield $\frac{11 \text { pancakes }}{15 \text { pancakes }} \times 100 \%=73 \%$

Theoretical and Actual Yield

- As we did with the pancakes, in order to determine the theoretical yield, we should use reaction stoichiometry to determine the amount of product each of our reactants could make.
- The theoretical yield will always be the least possible amount of product.
\checkmark The theoretical yield will always come from the limiting reactant.
- Because of both controllable and uncontrollable factors, the actual yield of product will always be less than the theoretical yield.

Measuring Amounts in the Lab

- In the lab, our balances do not measure amounts in moles, unfortunately, they measure amounts in grams.
- This means we must add two steps to each of our calculations: first convert the amount of each reactant to moles, then convert the amount of product into grams.

Example 8.6-When 11.5 g of C Are Allowed to React with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}$ in the Reaction Below, 87.4 g of Cu Are Obtained.

$$
\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g)
$$

Given: Find:	$11.5 \mathrm{~g} \mathrm{C}, 114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}, 87.4 \mathrm{~g} \mathrm{Cu}$ Limiting reactant, theoretical yield, percent yield
Solution Map:	
Relationships:	$\begin{aligned} & 1 \mathrm{~mol} \mathrm{C}=12.01 \mathrm{~g}, 1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O}=143.02 \mathrm{~g}, 1 \mathrm{~mol} \mathrm{Cu}=63.54 \mathrm{~g}, \\ & 2 \mathrm{~mol} \mathrm{Cu}=1 \mathrm{~mol} \mathrm{Cu}, 2 \mathrm{~mol} \mathrm{Cu}=1 \mathrm{~mol} \mathrm{Cu} \end{aligned}$

Example 8.6-When 11.5 g of C Are Allowed to React with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}$ in the Reaction Below, 87.4 g of Cu Are Obtained.

$$
\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g), \text { Continued }
$$

Example 8.6:

- When 11.5 g of C are allowed to react with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}$ in the reaction below, 87.4 g of Cu are obtained. Find the limiting reactant, theoretical yield, and percent yield.

$$
\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g)
$$

Example:

When 11.5 g of C reacts with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}, 87.4 \mathrm{~g}$ of Cu are obtained. Find the limiting reactant, theoretical yield, and percent yield.
$\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g)$

- Write down the given quantity and its units.

Given: $\quad 11.5 \mathrm{~g} \mathrm{C}$
$114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}$
87.4 g Cu produced

Example:
When 11.5 g of C reacts with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}, 87.4 \mathrm{~g}$ of Cu are obtained. Find the limiting reactant, theoretical yield, and percent yield.
$\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g)$

Information:
Given: $11.5 \mathrm{~g} \mathrm{C}, 114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}$
87.4 g Cu produced

- Write down the quantity to find and/or its units.

Find: limiting reactant theoretical yield percent yield

Example:

When 11.5 g of C reacts with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}, 87.4 \mathrm{~g}$ of Cu are obtained. Find the limiting reactant, theoretical yield, and percent yield.
$\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g)$

Information:
Given: $11.5 \mathrm{~g} \mathrm{C}, 114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}$ 87.4 g Cu produced

Find: lim. rct., theor. yld., \% yld.

- Collect needed conversion factors:

Molar mass $\mathrm{Cu}_{2} \mathrm{O}=143.02 \mathrm{~g} / \mathrm{mol}$
Molar mass $\mathrm{Cu}=63.54 \mathrm{~g} / \mathrm{mol}$
Molar mass $\mathrm{C}=12.01 \mathrm{~g} / \mathrm{mol}$
$1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O} \equiv 2 \mathrm{~mol} \mathrm{Cu}$ (from the chem. equation)
$1 \mathrm{~mol} \mathrm{C} \equiv 2 \mathrm{~mol} \mathrm{Cu}$ (from the chem. equation)

Example:

When 11.5 g of C reacts with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}, 87.4 \mathrm{~g}$ of Cu are obtained. Find the limiting reactant, theoretical yield, and percent yield.
$\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{Cu}(\mathrm{s})+\mathrm{CO}(\mathrm{g})$

Information:
Given: $11.5 \mathrm{~g} \mathrm{C}, 114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}$ 87.4 g Cu produced

Find: lim. rct., theor. yld., \% yld.
Conversion Factors: $1 \mathrm{~mol} \mathrm{C}=12.01 \mathrm{~g}$;
$1 \mathrm{~mol} \mathrm{Cu}=63.54 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu} \mathrm{Cu}_{2} \mathrm{O}=$ $143.08 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O} \equiv 2 \mathrm{~mol} \mathrm{Cu}$; $1 \mathrm{~mol} \mathrm{C} \equiv 2 \mathrm{~mol} \mathrm{Cu}$

- Write a solution map:

Example:

When 11.5 g of C reacts with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}, 87.4 \mathrm{~g}$ of Cu are obtained. Find the limiting reactant, theoretical yield, and percent yield.
$\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g)$

Information:
Given: $\quad 11.5 \mathrm{~g} \mathrm{C}, 114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}$ 87.4 g Cu produced

Find: lim. rct., theor. yld., \% yld.
Conversion Factors: $1 \mathrm{~mol} \mathrm{C}=12.01 \mathrm{~g}$; $1 \mathrm{~mol} \mathrm{Cu}=63.54 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O}=$ $143.08 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O} \equiv 2 \mathrm{~mol} \mathrm{Cu}$; $1 \mathrm{molC} \equiv 2 \mathrm{~mol} \mathrm{Cu}$
Solution Map:
$\mathrm{g} \mathrm{rct} \rightarrow \mathrm{mol} \mathrm{rct} \rightarrow \mathrm{mol} \mathrm{Cu} \rightarrow \mathrm{g} \mathrm{Cu}$

- Apply the solution map:
$11.5 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mole} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}} \times \frac{2 \mathrm{~mol} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{C}} \times \frac{63.54 \mathrm{~g} \mathrm{Cu}}{1 \mathrm{~mole} \mathrm{Cu}}=122 \mathrm{~g} \mathrm{Cu}$
$114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O} \times \frac{1 \mathrm{~mole} \mathrm{Cu}_{2} \mathrm{O}}{143.08 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O}} \times \frac{63.54 \mathrm{~g} \mathrm{Cu}}{1 \mathrm{~mole} \mathrm{Cu}}=101.7 \mathrm{~g} \mathrm{Cu}$

Example:

When 11.5 g of C reacts with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}, 87.4 \mathrm{~g}$ of Cu are obtained. Find the limiting reactant, theoretical yield, and percent yield.
$\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g)$

Information:

Given: $\quad 11.5 \mathrm{~g} \mathrm{C}, 114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}$ 87.4 g Cu produced

Find: lim. rct., theor. yld., \% yld.
Conversion Factors: $1 \mathrm{~mol} \mathrm{C}=12.01 \mathrm{~g}$; $1 \mathrm{~mol} \mathrm{Cu}=63.54 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O}=$ $143.08 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O} \equiv 2 \mathrm{~mol} \mathrm{Cu}$; $1 \mathrm{molC} \equiv 2 \mathrm{~mol} \mathrm{Cu}$
Solution Map:
$\mathrm{g} \mathrm{rct} \rightarrow \mathrm{mol} \mathrm{rct} \rightarrow \mathrm{mol} \mathrm{Cu} \rightarrow \mathrm{g} \mathrm{Cu}$

- Apply the solution map:
11.5 g C can make $122 \mathrm{~g} \mathrm{Cu} \quad$ Theoretical yield $=101.7 \mathrm{~g} \mathrm{Cu}$
$114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}$ can make 101.7 g Cu Limiting reactant $=\mathrm{Cu}_{2} \mathrm{O}$

Least amount

Example:

When 11.5 g of C reacts with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}, 87.4 \mathrm{~g}$ of Cu are obtained. Find the limiting reactant, theoretical yield, and percent yield.
$\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g)$

Information:
Given: $11.5 \mathrm{~g} \mathrm{C}, 114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}$ 87.4 g Cu produced

Find: lim. rct., theor. yld., \% yld.
Conversion Factors: $1 \mathrm{~mol} \mathrm{C}=12.01 \mathrm{~g}$; $1 \mathrm{~mol} \mathrm{Cu}=63.54 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu} \mathrm{C}_{2} \mathrm{O}=$ $143.08 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O} \equiv 2 \mathrm{~mol} \mathrm{Cu}$; $1 \mathrm{molC} \equiv 2 \mathrm{~mol} \mathrm{Cu}$

- Write a solution map:

Actual Yield
 Theoretical Yield

Example:
When 11.5 g of C reacts with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}, 87.4 \mathrm{~g}$ of Cu are obtained. Find the limiting reactant, theoretical yield, and percent yield.
$\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g)$

Information:
Given: $\quad 11.5 \mathrm{~g} \mathrm{C}, 114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}$ 87.4 g Cu produced

Find: lim. rct., theor. yld., \% yld.
Conversion Factors: $1 \mathrm{~mol} \mathrm{C}=12.01 \mathrm{~g}$; $1 \mathrm{~mol} \mathrm{Cu}=63.54 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu} \mathrm{C}_{2} \mathrm{O}=$ $143.08 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O} \equiv 2 \mathrm{~mol} \mathrm{Cu}$; $1 \mathrm{molC} \equiv 2 \mathrm{~mol} \mathrm{Cu}$
Solution Map: $\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100 \%=$ Percent Yield

- Apply the solution map:

$$
\begin{aligned}
& \frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100 \%=\text { Percent } \\
& \frac{87.4 \mathrm{~g} \mathrm{Cu}}{101.7 \mathrm{~g} \mathrm{Cu}} \times 100 \%=85.9 \%
\end{aligned}
$$

Example:

When 11.5 g of C reacts with 114.5 g of $\mathrm{Cu}_{2} \mathrm{O}, 87.4 \mathrm{~g}$ of Cu are obtained. Find the limiting reactant, theoretical yield, and percent yield.
$\mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}(g)$

Information:
Given: $11.5 \mathrm{~g} \mathrm{C}, 114.5 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{O}$ 87.4 g Cu produced

Find: lim. rct., theor. yld., \% yld.
Conversion Factors: $1 \mathrm{~mol} \mathrm{C}=12.01 \mathrm{~g}$; $1 \mathrm{~mol} \mathrm{Cu}=63.54 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O}=$ $143.08 \mathrm{~g} ; 1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O} \equiv 2 \mathrm{~mol} \mathrm{Cu}$; $1 \mathrm{molC} \equiv 2 \mathrm{~mol} \mathrm{Cu}$

- Check the solutions:

> Limiting reactant $=\mathrm{Cu}_{2} \mathrm{O}$
> Theoretical yield $=101.7 \mathrm{~g}$
> Percent yield $=85.9 \%$

The percent yield makes sense as it is less than 100%.

Practice-How Many Grams of $\mathrm{N}_{2}(g)$ Can Be Made from 9.05 g of NH_{3} Reacting with 45.2 g of CuO ? $2 \mathrm{NH}_{3}(g)+3 \mathrm{CuO}(s) \rightarrow \mathrm{N}_{2}(g)+3 \mathrm{Cu}(s)+3 \mathrm{H}_{2} \mathrm{O}(l)$ If 4.61 g of N_{2} Are Made, What Is the Percent Yield?

Practice-How Many Grams of $\mathrm{N}_{2}(\mathrm{~g})$ Can Be Made from 9.05 g of NH_{3} Reacting with 45.2 g of CuO ? $2 \mathrm{NH}_{3}(g)+3 \mathrm{CuO}(s) \rightarrow \mathrm{N}_{2}(g)+3 \mathrm{Cu}(s)+3 \mathrm{H}_{2} \mathrm{O}(l)$ If 4.61 g of N_{2} Are Made, What Is the Percent Yield?, Continued

Given: Find:	$9.05 \mathrm{~g} \mathrm{NH}_{3}, 45.2 \mathrm{~g} \mathrm{CuO}$ g N 2

```
Practice-How Many Grams of N}\mp@subsup{\textrm{N}}{2}{}(\textrm{g})\mathrm{ Can Be Made from 9.05g of NH
    45.2g of CuO? 2 NH3}(g)+3\textrm{CuO}(s)->\mp@subsup{\textrm{N}}{2}{}(g)+3\textrm{Cu}(s)+3\mp@subsup{\textrm{H}}{2}{}\textrm{O}(l
        If 4.61 g of N}\mp@subsup{\textrm{N}}{2}{}\mathrm{ Are Made, What Is the Percent Yield?, Continued
```

Solution:$\begin{gathered} 9.05 \mathrm{~g} \mathrm{NH}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.03 \mathrm{~g} \mathrm{NH}} 33 \end{gathered} \frac{1 \mathrm{molN}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}} \times \frac{28.02 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{molN}_{2}}=7.42 \mathrm{~g} \mathrm{~N}_{2},$		
Check:	Since the percent yield is less than 100 answer makes sense.	00 , the

Enthalpy Change

- We previously described processes as exothermic if they released heat, or endothermic if they absorbed heat.
- The enthalpy of reaction is the amount of thermal energy that flows through a process.
\checkmark At constant pressure.
$\checkmark \Delta \mathrm{H}_{\mathrm{rxn}}$

Sign of Enthalpy Change

- For exothermic reactions, the sign of the enthalpy change is negative when:
\checkmark Thermal energy is produced by the reaction.
\checkmark The surroundings get hotter.
$\checkmark \Delta \mathrm{H}=-$
\checkmark For the reaction $\mathrm{CH}_{4}(s)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$, the $\Delta \mathrm{H}_{\mathrm{rxn}}=-802.3 \mathrm{~kJ}$ per mol of CH_{4}.
- For endothermic reactions, the sign of the enthalpy change is positive when:
\checkmark Thermal energy is absorbed by the reaction.
\checkmark The surroundings get colder.
$\checkmark \Delta \mathrm{H}=+$
\checkmark For the reaction $\mathrm{N}_{2}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)$, the

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=+182.6 \mathrm{~kJ} \text { per mol of } \mathrm{N}_{2} .
$$

Enthalpy and Stoichiometry

- The amount of energy change in a reaction depends on the amount of reactants.
\checkmark You get twice as much heat out when you burn twice as much CH_{4}.
- Writing a reaction implies that amount of energy changes for the stoichiometric amount given in the equation.
For the reaction $\mathrm{C}_{3} \mathrm{H}_{8}(l)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=-2044 \mathrm{~kJ}
$$

So $1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \equiv 5 \mathrm{~mol} \mathrm{O}_{2} \equiv 3 \mathrm{~mol} \mathrm{CO}_{2} \equiv 4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \equiv$ -2044 kJ.

Example 8.7-How Much Heat Is Associated with the Complete Combustion of $11.8 \times 10^{3} \mathrm{~g}_{\mathrm{of}} \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$?

Given: Find:	$\begin{aligned} & 11.8 \times 10^{3} \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}, \\ & \text { heat, } \mathrm{kJ} \end{aligned}$
Solution Map: Relationships:	
$\begin{gathered} \text { Solution: } \\ 11.8 \times 10^{3} \mathrm{~g} \end{gathered}$	$\mathrm{C}_{3} \mathrm{H}_{8} \times \frac{1 \mathrm{~mole}_{3} \mathrm{H}_{8}}{44.11 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}} \times \frac{-2044 \mathrm{~kJ}}{1 \mathrm{~mol}_{3} \mathrm{H}_{8}}=-5.47 \times 10^{5} \mathrm{~kJ}$
Check:	The sign is correct and the value is reasonable.

Practice-How Much Heat Is Evolved When a 0.483 g Diamond Is Burned? $\left(\Delta H_{\text {combustion }}=-395.4 \mathrm{~kJ} / \mathrm{mol} \mathrm{C}\right)$

Practice—How Much Heat Is Evolved When a 0.483 g Diamond Is Burned?

Given: Find:	$0.483 \mathrm{~g} \mathrm{C}$ heat, kJ
Solution Map: Relationships:	
Solution:$0.483 \mathrm{~g} \in \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g}} \times \frac{-395.4 \mathrm{~kJ}}{1 \mathrm{mot}}=-15.9 \mathrm{~kJ}$	
Check:	The sign is correct and the value is reasonable since there is less than 0.1 mol C .

