

Name $\qquad$

Hour $\qquad$

## Simplifying Radicals - REVIEW



## 8-2 Pythagorean Theorem and Converse


\(\left.\begin{array}{|l|l|l|}\hline A) 3 <br>
B) 4 <br>
C) 12 <br>

D) 15\end{array}\right]\)| A 20-foot ladder is placed against a building to reach a window that is 16 feet above the |
| :--- |
| ground. How many feet away from the building is the bottom of the ladder? |

(2)

## 8-3 Special Right Triangles



|  | Theorem $8.930^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem |
| :---: | :---: |
| Use the properties of $30^{\circ}-60^{\circ}-90^{\circ}$ <br> triangles. | In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse $h$ is 2 times the length of the shorter leg $s$, and the length of the longer leg $\ell$ is $\sqrt{3}$ times the length of the shorter leg. <br> Symbols In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, $h=2 s$ and $\ell=s \sqrt{3}$. <br> Example 8-3-3: Find Lengths in a $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle <br> Find $x$ and $y$. <br> Your Turn, find $x$ and $y$. |
|  | d) <br> e) <br> f) |

8-4 Right Triangle Trigonometry

| I can ... |  |
| :--- | :--- | :--- |
| Find trigonometric <br> ratios using right <br> triangles. | The three basic trigonometric ratios are <br> triangle with acute angle $\angle \mathrm{A}$ are defined as <br> follows: |
| Use trigonometric <br> ratios to find angle |  |

measures in right triangles.

b. Express $\cos L$ as a fraction and as a decimal to the nearest hundredth.
c. Express $\tan L$ as a fraction and as a decimal to the nearest hundredth.
d. Express $\sin N$ as a fraction and as a decimal to the nearest hundredth.
e. Express $\cos N$ as a fraction and as a decimal to the nearest hundredth.
f. Express $\tan N$ as a fraction and as a decimal to the nearest hundredth.




## 8-5 Angles of Elevation and Depression

| \| can... |  |
| :---: | :---: |
| Solve problems involving angles of elevation and depression. <br> Use angles of elevation and depression to find the distance between two objects. | Angles of Elevation and Depression <br> An angle of elevation is the angle formed by a horizontal line and a line of sight to a point above the line. <br> An angle of depression is the angle formed by a horizontal line and a line of sight to a point below the line. <br> Example 8-5-1: Classifying Angles of Elevation and Depression <br> Classify each angle as an angle of elevation or angle of depression. <br> a. $\angle 1$ <br> b. $\angle 4$ <br> Example 8-5-2: Application of Angles of Elevation and Depression <br> a. When the angle of elevation to the sun is $52^{\circ}$, a tree casts a shadow that is 9 meters long. What is the height of the tree? <br> K: <br> N : <br> U: <br> b. A person snorkeling sees a turtle on the ocean floor at an angle of depression of $38^{\circ}$. She is 14 feet above the ocean floor. How far from the turtle is she? <br> K: <br> N : <br> U: |


| Example 8-5-2: Application of Angles of Elevation and Depression <br> c. The angle of ascent of the first hill of a roller coaster is 55 degrees. If the length of the track from the beginning of the ascent to the highest point is 98 feet, what is the height of the roller coaster when it reaches the top of the first hill? <br> K: <br> N : <br> U : <br> Example 8-5-3: Angle of Elevation <br> At the circus, a person in the audience at ground level watches the high-wire routine. A 5 -foot-6-inch tall acrobat is standing on a platform that is 25 feet off the ground. How far is the audience member from the base of the platform, if the angle of elevation from the audience member's line of sight to the top of the acrobat is $27^{\circ}$ ? <br> K: <br> N : <br> U: <br> Example 8-5-4: Angle of Depression <br> DISTANCE Maria is at the top of a cliff and sees a seal in the water. If the cliff is 40 feet above the water and the angle of depression is $52^{\circ}$, what is the horizontal distance from the seal to the cliff, to the nearest foot? <br> K: <br> N : <br> U: |
| :---: |


|  | Example 8-5-5: Use Two Angles of Elevation or Depression <br> Vernon is on the top deck of a cruise ship and observes two dolphins following each other <br> directly away from the ship in a straight line. Vernon's position is 154 meters above sea <br> level, and the angles of depression to the two dolphins are $35^{\circ}$ and $36^{\circ}$. Find the distance <br> between the two dolphins to the nearest meter. <br> Dolphin U <br> $\mathrm{K}:$ <br> $\mathrm{N}:$ <br> $\mathrm{U}:$ |
| :--- | :--- |
|  | Dolphin K <br> $\mathrm{K}:$ <br> $\mathrm{N}:$ <br> $\mathrm{U}:$ |

## 8-6 Law of Sines

| I can... |  |
| :---: | :---: |
| Use the law of | Theorem 8.10 Law of Sines |
| sines to solve triangles | If $\triangle A B C$ has lengths $a, b$, and $c$, representing the lengths of the sides opposite the angles with measures $A, B$, and $C$, then $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} .$ <br> Example 8-6-1: Law of Sines (AAS or ASA) <br> Find $p$. Round to the nearest tenth |




