Chapter 9

Bistable Multivibrators

1. Design a fixed-bias bistable multivibrator using Ge transistors having $h_{F E(\min)}=50$, $V_{C C}=10 \mathrm{~V}$ and $V_{B B}=10 \mathrm{~V}, V_{\mathrm{CE}(\text { sat })}=0.1 \mathrm{~V}, V_{\mathrm{BE}(\mathrm{sat})}=0.3 \mathrm{~V}, I_{\mathrm{C}(\mathrm{sat})}=5 \mathrm{~mA}$ and assume $I_{\mathrm{B}(\text { sat })}=1.5 I_{\mathrm{B}(\text { min })}$.

Solution:

$$
\begin{aligned}
& R_{C}=\frac{V_{C C}-V_{C E(\text { sat })}}{I_{C 2}}=\frac{10-0.1 \mathrm{~V}}{5 \mathrm{~mA}}=\frac{9.9 \mathrm{~V}}{5 \mathrm{~mA}} \\
& =1.98 \mathrm{k} \Omega \\
& \quad R_{2}=\frac{V_{\sigma}-\left(-V_{B B}\right)}{I_{2}} \\
& \quad \text { Choose } I_{2} \approx \frac{1}{10} I_{C 2} \\
& =0.5 \mathrm{~mA} \\
& \therefore R_{2}=\frac{0.3+10}{0.5}=\frac{10.3 \mathrm{~V}}{0.5 \mathrm{~mA}}=20.6 \mathrm{k} \Omega \\
& I_{B 2 \min }=\frac{I_{C 2}}{h_{F E \min }}=\frac{5 \mathrm{~mA}}{50}=0.1 \mathrm{~mA}
\end{aligned}
$$

If Q_{2} is in saturation

$$
\begin{aligned}
I_{B 2} & =1.5 I_{B 2 \text { min }} \\
& =0.15 \mathrm{~mA} \\
I_{1} & =I_{2}+I_{B 2} \\
& =0.5 \mathrm{~mA}+0.15 \mathrm{~mA}=0.65 \mathrm{~mA} \\
R_{C} & +R_{1}=\frac{V_{C C}-V_{\sigma}}{I_{1}}=\frac{10-0.3}{0.65 \mathrm{~mA}}=\frac{9.7 \mathrm{~V}}{0.65 \mathrm{~mA}}=14.92 \mathrm{k} \Omega \\
R_{1} & =\left(R_{C}+R_{1}\right)-R_{C} \\
& =14.92-1.98=12.94 \mathrm{k} \Omega .
\end{aligned}
$$

2. For a fixed-bias bistable multivibrator shown in Fig. 9p. 2 using $n-p-n$ Ge transistor $V_{C C}=10 \mathrm{~V}, R_{C}=1 \mathrm{k} \Omega, R_{1}=10 \mathrm{k} \Omega, R_{2}=20 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{FE}(\min)}=40, V_{B B}=10 \mathrm{~V}$. Calculate: (a) Stable-state currents and voltages assuming Q_{1} is OFF and Q_{2} is ON and in saturation. Verify whether Q_{1} is OFF and Q_{2} is ON or not. (b) the maximum load current.

Fig. 9p. 2 The fixed-bias bistable multivibrator

Solution:

Assume $V_{C E(\text { sat })}=0.1 \mathrm{~V}, V_{B E(\mathrm{sat})}=0.3 \mathrm{~V}$
Calculate $V_{B 1}$ to verify whether Q_{1} is OFF or not.
$V_{B 1}=V_{C E \text { (sat) }} \frac{R_{2}}{R_{1}+R_{2}}+\left(-V_{B B}\right) \frac{R_{1}}{R_{1}+R_{2}}=\frac{0.1 \times 20}{10+20}+\frac{(-10) 10}{10+20}$
$=0.066-3.333=-3.267 \mathrm{~V}$
Hence Q_{1} is OFF
$\therefore V_{C 1}=V_{C C}=10 \mathrm{~V}$
To verify whether Q_{2} is in saturation or not:
Calculate $I_{B 2}, I_{C 2}$
To calculate $I_{B 2}$.
Consider the cross-coupling circuit shown in Fig.2.1.

Fig. 2.1 Circuit to calculate the base current of Q_{2}

$$
\begin{aligned}
& I_{1}=\frac{V_{C C}-V_{\sigma}}{R_{C}+R_{1}}=\frac{10-0.3}{1+10}=\frac{9.7 \mathrm{~V}}{11 \mathrm{k} \Omega}=0.88 \mathrm{~mA} \\
& I_{2}=\frac{V_{\sigma}+V_{B B}}{R_{2}}=\frac{0.3+10}{20}=\frac{10.3}{20}=0.515 \mathrm{~mA} \\
& I_{B 2}=0.88-0.51 \\
& =0.37 \mathrm{~mA}
\end{aligned}
$$

To calculate $I_{C 2}$
Consider the cross-coupling network shown in Fig. 2.2.

Fig. 2.2 Circuit to calculate the collector current of Q_{2}

$$
\begin{aligned}
& I_{3}=\frac{V_{C C}-V_{C E(\text { sat })}}{R_{C}} \\
& =\frac{10-0.1}{1 \mathrm{~K}}=9.9 \mathrm{~mA} \\
& I_{4}=\frac{V_{C E(\text { sat })}+V_{B B}}{R_{1}+R_{2}} \\
& =\frac{10.1}{30 \mathrm{~K}}=0.336 \mathrm{~mA} \\
& I_{C 2}=I_{3}-I_{4} \\
& =9.9-0.34=9.56 \mathrm{~mA} \\
& I_{B 2 \text { min }}=\frac{I_{C 2}}{h_{F E} \text { min }}=\frac{9.56 \mathrm{~mA}}{40}=0.24 \mathrm{~mA} \\
& I_{B 2} \gg I_{B 2 \min } \\
& \text { Hence } Q_{2} \text { is verified to be in saturation. } \\
& \therefore V_{C 2}=0.1 \mathrm{~V}, V_{B 2}=0.3 \mathrm{~V} . \\
& V_{C 1}=V_{C C}-I_{1} R_{C} \\
& =10-(0.88) 1 \\
& =9.12 \mathrm{~V}
\end{aligned}
$$

Hence the stable-state currents and voltages are as follows:
$V_{C 1}=9.12 \mathrm{~V}, V_{B 1}=-3.267 \mathrm{~V}$
$V_{C 2}=0.1 \mathrm{~V} \quad I_{B 2}=0.37 \mathrm{~mA}, I_{C 2}=9.56 \mathrm{~mA}$
To find the maximum load current or minimum load resistance, consider Fig.2.3.

Fig. 2.3 Circuit to calculate maximum load current
I_{L} is maximum $\left(\mathrm{I}_{\mathrm{L}(\max)}\right)$ when $I_{B 2}$ is $I_{B 2(\text { min })}$

$$
\begin{aligned}
& I_{B 2(\min)}=0.2 \mathrm{~mA} \\
& I_{2}=0.51 \mathrm{~mA} \\
& I_{1(\min)}=I_{2}+I_{B 2(\min)} \\
& =0.51+0.24 \\
& =0.75 \mathrm{~mA} \\
& V_{C 1(\min)}=I_{1(\min)} R_{1}+V_{\sigma} \\
& =0.75 \times 10+0.3 \\
& =7.8 \mathrm{~V} \\
& I=\frac{V_{C C}-V_{C 1(\min)}}{R_{C}}=\frac{12-7.8}{1}=4.2 \mathrm{~mA} \\
& I_{L \text { max }}=I-I_{1(\min)}=4.2 \mathrm{~mA}-0.75 \mathrm{~mA} \\
& =3.45 \mathrm{~mA} \\
& R_{L(\min)}=\frac{7.8 \mathrm{~V}}{3.45 \mathrm{~mA}}=2.26 \mathrm{k} \Omega .
\end{aligned}
$$

3. Design a self-bias bistable multivibrator shown in Fig.9p. 2 with a supply voltage of 12 V . A $p-n-p$ silicon transistors with $h_{F E(\min)}=50, V_{C E(\mathrm{sat})}=-0.3 \mathrm{~V}, V_{B E(\mathrm{sat})}=-0.7 \mathrm{~V}$ and $I_{C 2}=-4 \mathrm{~mA}$ are used.

Fig. 9p. 2 Self-bias bistable multivibrator

Solution:

Assume $V_{E N}=\frac{1}{3} V_{C C}=\frac{1}{3} \times-12=-4 \mathrm{~V}$
$I_{C 2}=-4 \mathrm{~mA}$

$$
I_{B 2(\min)}=\frac{-4 \mathrm{~mA}}{50}=-0.08 \mathrm{~mA}
$$

Choose $I_{B 2}=1.5 I_{B 2(\text { min })}=-0.12 \mathrm{~mA}$
$\left(I_{C 2}+I_{B 2}\right)=-4-0.12=-6.12 \mathrm{~mA}$
$R_{E}=\frac{V_{E N 2}}{I_{C 2}+I_{B 2}}=\frac{-4 \mathrm{~V}}{-4.12 \mathrm{~mA}}=0.97 \mathrm{k} \Omega$
$R_{C}=\frac{V_{C C}-V_{C E}(\mathrm{sat})-V_{E N 2}}{I_{C}}$
$=\frac{-12+0.3+4}{-4 \mathrm{~mA}}=\frac{-7.7 \mathrm{~V}}{-4 \mathrm{~mA}}=1.925 \mathrm{k} \Omega$
Let $\quad I_{2}=\frac{1}{10} I_{C 2}=\frac{1}{10} \times-4 \mathrm{~mA}=-0.4 \mathrm{~mA}$
$V_{B N 2}=V_{E N 2}+V_{\sigma}=-4-0.7=-4.7 \mathrm{~V}$
$R_{2}=\frac{V_{B N 2}}{I_{2}}=\frac{-4.7 \mathrm{~V}}{-0.4 \mathrm{~mA}}=11.75 \mathrm{k} \Omega$
Choose $R_{2}=12 \mathrm{k} \Omega$
Find I_{2} for this R_{2}
$I_{2}=\frac{V_{B N 2}}{R_{2}}=\frac{-4.7 \mathrm{~V}}{12.0 \mathrm{~K}}=-0.392 \mathrm{~mA}$
$R_{C}+R_{1}=\frac{V_{C C}-V_{B N 2}}{I_{2}+I_{B 2}}$
$=\frac{-12+4.7}{-0.392-0.12}=\frac{-7.3 \mathrm{~V}}{-0.512 \mathrm{~mA}}=14.26 \mathrm{k} \Omega$
$\left(R_{C}+R_{1}\right)=14.26 \mathrm{k} \Omega$
$R_{1}=\left(R_{C}+R_{1}\right)-R_{C}=14.26-1.925=12.33 \mathrm{k} \Omega$
Choose $R_{1}=12 \mathrm{k} \Omega$
Note: Choose the nearest standard values.
4. A self-bias bistable multivibrator uses Si transistors having $h_{F E(\min)}=50 . V_{C C}=18 \mathrm{~V}$, $R_{1}=R_{2}, I_{C(\mathrm{sat})}=5 \mathrm{~mA}$. Fix the component values R_{E}, R_{C}, R_{1} and R_{2}.

Solution:

Assume $V_{E N}=\frac{1}{3} V_{C C}=\frac{1}{3} \times 18=6 \mathrm{~V}$
and $I_{C(\text { sat })}=5 \mathrm{~mA}$
$I_{B 2(\text { min })}=\frac{5 \mathrm{~mA}}{50}=0.1 \mathrm{~mA}$
Choose $I_{B 2}=1.5 I_{B 2(\min)}=0.15 \mathrm{~mA}$

$$
\begin{aligned}
& \left(I_{C 2}+I_{B 2}\right)=5+0.15=5.15 \mathrm{~mA} \\
& R_{E}=\frac{V_{E N 2}}{I_{C 2}+I_{B 2}}=\frac{6 \mathrm{~V}}{5.15 \mathrm{~mA}}=1.16 \mathrm{k} \Omega \\
& R_{C}=\frac{V_{C C}-V_{C E(\text { sat })}-V_{E N 2}}{I_{C}} \\
& =\frac{18-0.3-6}{5 \mathrm{~mA}}=\frac{11.7 \mathrm{~V}}{5 \mathrm{~mA}}=2.34 \mathrm{k} \Omega \\
& V_{B N 2}=V_{E N 2}+V_{\sigma}=6+0.7=6.7 \mathrm{~V} \\
& R_{C}+R_{1}=\frac{V_{C C}-V_{B N 2}}{I_{2}+I_{B 2}} \\
& R_{C}+R_{1}=\frac{V_{C C}-V_{B N 2}}{\frac{V B N_{2}}{R_{2}}+I_{B 2}}=\frac{R_{1}\left(V_{C C}-V_{B N 2}\right)}{V B N_{2}+R_{1} I_{B 2}} \\
& 2.34+R_{1}=\frac{R_{1}(18-6.7)}{6.7+0.15 R_{1}}=\frac{11.3 R_{1}}{6.7+0.15 R_{1}} \\
& 0.15 R_{1}^{2}-4.25 R_{1}+15.67=0 \\
& R_{1}=4.25 \pm \frac{\sqrt{(-4.25)^{2}-4 \times 0.15 \times 15.67}}{2 \times 0.15} \\
& R_{1}=R_{2}=14 \mathrm{k} \Omega .
\end{aligned}
$$

5. For a Schmitt trigger in Fig. 9p. 4 using $n-p-n$ silicon transistors having $h_{F E(\min)}=40$, the following are the circuit parameters: $V_{C C}=15 \mathrm{~V}, R_{S}=0, R_{C 1}=4 \mathrm{k} \Omega, R_{C 2}=1 \mathrm{k} \Omega$, $R_{1}=3 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega$ and $R_{E}=6 \mathrm{k} \Omega$. Calculate V_{1} and V_{2}.

Fig. 9p. 4 The Schmitt trigger circuit

Solution:

From the given data, if Q_{2} is in the active region, typically, $V_{B E 2}=0.6 \mathrm{~V}$ and let $h_{F E}=40$.
To calculate V_{1} :
$R_{E}\left(1+h_{F E}\right)=6(1+40)=246 \mathrm{k} \Omega$
$R^{\prime}=R_{2} / /\left(R_{C 1}+R_{1}\right)=10 \mathrm{k} \Omega / /(4 \mathrm{k} \Omega+3 \mathrm{k} \Omega)=4.11 \mathrm{k} \Omega$
$V^{\prime}=V_{C C} \times \frac{R_{2}}{\left(R_{C 1}+R_{1}+R_{2}\right)}=15 \times \frac{10}{4+3+10}=8.82 \mathrm{~V}$
$V_{E N 2}=\left(V^{\prime}-V_{B E 2}\right) \frac{R_{E}\left(1+h_{F E}\right)}{R^{\prime}+R_{E}\left(1+h_{F E}\right)}$
$\therefore V_{E N 2}=(8.82-0.6) \times \frac{246}{4.11+246}=8.08 \mathrm{~V}$
$\therefore V_{1}=V_{E N 2}+V_{\gamma_{1}}=8.08+0.5=8.58 \mathrm{~V}$

To calculate V_{2} :

$\alpha=\frac{R_{2}}{R_{1}+R_{2}}=\frac{10}{3+10}=0.769$
$R_{t}=\frac{R_{C 1}\left(R_{1}+R_{2}\right)}{R_{C 1}+R_{1}+R_{2}}$
$R_{t}=\frac{4(3+10)}{4+3+10}=3.05 \mathrm{k} \Omega$

$$
\begin{aligned}
& \alpha R_{t}=0.769 \times 3.05=2.35 \mathrm{k} \Omega \\
& R_{E}^{\prime \prime}=\left(1+\frac{1}{h_{F E}}\right) R_{E}=\frac{41 \times 6}{40}=6.15 \mathrm{k} \Omega \\
& \alpha V_{t}=V^{\prime}=V_{C C} \times \frac{R_{2}}{\left(R_{C 1}+R_{1}+R_{2}\right)}=15 \times \frac{10}{4+3+10}=8.82 \mathrm{~V} \\
& I_{C 1}=\frac{\left(V^{\prime}-V_{\gamma 2}\right)}{\alpha R_{t}+R_{E}^{\prime \prime}}=\frac{(8.82-0.5)}{2.35+6.15}=0.978 \mathrm{~mA} \\
& V_{2}=V_{B E 1}+I_{C 1} R_{E}^{\prime \prime} \\
& \therefore V_{2}=0.6 \mathrm{~V}+(0.978 \mathrm{~mA})(6.15 \mathrm{k} \Omega) \\
& =0.6 \mathrm{~V}+6.01 \mathrm{~V}=6.61 \mathrm{~V} \\
& \text { Hence for the given Schmitt trigger } \\
& V_{1}=8.58 \mathrm{~V} \\
& V_{2}=6.61 \mathrm{~V}
\end{aligned}
$$

6. The self-bias transistor bistable multivibrator shown in Fig. 9p. 3 uses $n-p-n \mathrm{Si}$ transistors. Given that $V_{C C}=15 \mathrm{~V}, V_{\mathrm{CE}(\text { sat })}=0.2 \mathrm{~V}, V_{\sigma}=0.7 \mathrm{~V}$, $R_{C}=3 \mathrm{k} \Omega, R_{1}=20 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{E}=500 \Omega$. Find:
(i) Stable-state currents and voltages and the $h_{\text {FE }}$ needed to keep the ON device in saturation.
(ii) $\mathrm{f}_{(\text {max })}$, if $C_{1}=100 \mathrm{pF}$.
(iii) The maximum value of $I_{\text {CBO }}$ that will still ensure one device is OFF and the other is ON.
(iv) The maximum temperature up to which the multivibrator can work normally if $I_{\text {CBO }}$ at $25^{\circ} \mathrm{C}=20 \mu \mathrm{~A}$.

Fig. 9p. 3 The given self-bias bistable multivibrator

Solution:

(i) To calculate $I_{B 2}$, consider the base circuit of Q_{2}, Fig. 6.1.

Fig.6.1. Circuit to calculate $V_{\text {thb }}$ and $R_{\text {thb }}$ of Q_{2}.
From Fig. 6.1,
$V_{t h b}=V_{C C} \times \frac{R_{2}}{R_{C}+R_{1}+R_{2}}=\frac{15 \times 10}{3+20+10}=\frac{150}{33}=4.54$
V
$R_{t h b}=R_{2} \|\left(R_{C}+R_{1}\right)=\frac{10 \times(3+20)}{3+20+10}=\frac{230}{33}=6.96 \mathrm{k} \Omega$
(ii) To calculate $I_{\mathrm{C} 2}$, consider the collector circuit of Q_{2}, Fig. 6.2.

Fig. 6.2. Circuit to calculate $V_{\text {thc }}$ and $R_{\text {thc }}$ of Q_{2}

$$
\begin{gathered}
V_{t h c}=V_{C C} \times \frac{R_{1}+R_{2}}{R_{C}+R_{1}+R_{2}}=\frac{15 \times(20+10)}{3+20+10}=\frac{450}{33}=13.6 \mathrm{~V} \\
R_{\text {thc }}=R_{C} \|\left(R_{1}+R_{2}\right)=\frac{3 \times 30}{33}=\frac{90}{33}=2.72 \mathrm{k} \Omega
\end{gathered}
$$

Now let us draw the base and collector circuits of Q_{2}, Fig. 6.3.

Fig. 6.3. Circuit to calculate $I_{\mathrm{B} 2}$ and $I_{\mathrm{C} 2}$
Writing the KVL equations of the input and output loops

$$
\begin{gather*}
4.54-0.7=(6.96+0.5) I_{B 2}+0.5 I_{C 2} \tag{1}\\
13.6-0.2=0.5 I_{B 2}+(2.72+0.5) I_{C 2} \tag{2}
\end{gather*}
$$

Eqs. (1) and (2) are simplified as

$$
\begin{align*}
& 3.84=7.46 I_{B 2}+0.5 I_{C 2} \tag{3}\\
& 13.4=0.5 I_{B 2}+3.22 I_{C 2}
\end{align*}
$$

Solving Eqs. (3) and (4) for $I_{B 2}$ and $I_{C 2}$ we get

$$
\begin{gathered}
I_{B 2}=0.263 \mathrm{~mA} \\
I_{C 2}=3.75 \mathrm{~mA} \\
h_{\mathrm{FE}}=\frac{3.75}{0.263}=14.25
\end{gathered}
$$

The h_{FE} that keeps the ON device in saturation is 14.25 .

$$
\begin{gathered}
V_{E N 2}=\left(I_{B 2}+I_{C 2}\right) R_{E}=(0.263+3.75) 0.5=2 \mathrm{~V} \\
V_{C N 2}=V_{E N 2}+V_{C E(\text { sat })}=2+0.2=2.2 \mathrm{~V} \\
V_{B N 2}=V_{E N 2}+V_{\sigma}=2+0.7=2.7 \mathrm{~V} . \\
V_{B N 1}=V_{C N 2} \times \frac{R_{2}}{R_{1}+R_{2}}=\frac{2.2 \times 10}{20+10}=\frac{22}{30}=0.733 \mathrm{~V} \\
V_{B E 1}=V_{B N 1}-V_{E N 2}=0.733-2=-1.26 \mathrm{~V}
\end{gathered}
$$

Hence Q_{1} is OFF
$\therefore V_{C N 1}$ should be $V_{C C}$. But actually it is less than $V_{C C}$.

$$
\begin{gathered}
I_{1}=\frac{V_{C C}-V_{B N 2}}{R_{C}+R_{1}}=\frac{15-2.7}{3+20}=0.534 \mathrm{~mA} . \\
V_{C N 1}=V_{\mathrm{CC}}-I_{1} R_{\mathrm{C}}=15-(0.534)(3)=13.4 \mathrm{~V} . \\
f_{\max }=\frac{R_{1}+R_{2}}{2 R_{1} R_{2} C_{1}}=\frac{(20+10) 10^{3}}{2 \times 20 \times 10^{3} \times 10 \times 10^{3} \times 100 \times 10^{-12}}=750 \mathrm{kHz}
\end{gathered}
$$

(iii) $V_{B E 1}$ was calculated as -1.26 V . This voltage exists at the base of Q_{1} to keep Q_{1}

OFF. Till such time the voltage at B_{1} of Q_{1} is 0 V , let us assume that Q_{1} is OFF, Fig. 6.4.To calculate R_{B} and hence $I_{\mathrm{CBO}} R_{B}$, short $V_{E N}$ (though $I_{\mathrm{E} 1}=0$, there exists a
voltage $V_{E N}$ at the first emitter) and $V_{\mathrm{CE}(\text { sat })}$ sources. From Fig. 6.4, it is seen that R_{B} is the parallel combination of R_{2} and $\left(R_{1}+R_{E}\right)$.

Fig. 6.4. Circuit to calculate $I_{\mathrm{CBO}} R_{\mathrm{B}}$

$$
R_{B}=R_{2} \|\left(R_{1}+R_{E}\right)=\frac{10 \times 20.5}{10+20.5}=6.72 \mathrm{k} \Omega
$$

Until $\mathrm{I}_{\mathrm{CBo}(\max)} R_{B}=V_{B E 1,} Q_{1}$ will be OFF.

$$
\therefore I_{C B o(\max)}=\frac{1.26 \mathrm{~V}}{6.72 \mathrm{k} \Omega}=0.187 \mathrm{~mA}=187 \mu \mathrm{~A}
$$

(iv) $I_{C B o}$ at $25^{\circ} \mathrm{C}=20 \mu \mathrm{~A}$

$$
\begin{gathered}
\frac{I_{C B o(\max)}}{I_{C B 0}}=\frac{187}{20}=9.35 \\
9.35=2^{n} \\
n=\frac{\log 9.35}{\log 2}=\frac{0.97}{0.3}=3.23 \\
\frac{\Delta T}{10}=n \\
\frac{T_{2}-25}{10}=3.23 \\
T_{2}=25+32.3=57.3^{\circ} \mathrm{C}
\end{gathered}
$$

7. (a) Design a Schmitt trigger shown in Fig. 9p. 4 with UTP of 8 V and LTP of 4 V . Si transistors with $h_{F E}=40$ and $I_{C}=5 \mathrm{~mA}$ are used. The supply voltage is 18 V . The ON transistor is in the active region for which $V_{\mathrm{BE}}=0.6 \mathrm{~V}, V_{\mathrm{CE}}=2.0 \mathrm{~V}$. (b) Calculate R_{el} for eliminating hysteresis.

Fig. 9p. 4 The Schmitt trigger circuit

Solution:

Till UTP is reached Q_{1} is OFF and Q_{2} is ON and in active region. Just at V_{1} (UTP) Q_{1} goes ON and Q_{2} goes OFF. Just prior to this, Q_{2} is ON and Q_{1} is OFF, Fig. 7.1.

Fig. 7.1 Circuit when Q_{1} is OFF and Q_{2} is ON

$$
\begin{gathered}
V_{1}=\mathrm{UTP}=V_{B N 2}=8 \mathrm{~V} \\
I_{E}=I_{C 2}=5 \mathrm{~mA} \\
V_{\mathrm{EN}}=V_{\mathrm{EN} 2}=V_{\mathrm{BN} 2}-V_{\mathrm{BE} 2} \\
V_{\mathrm{EN} 2}=8-0.6=7.4 \mathrm{~V} . \\
R_{E}=\frac{V_{E N 2}}{I_{E}}=\frac{7.4}{5 \mathrm{~mA}}
\end{gathered}
$$

$$
=1.48 \mathrm{k} \Omega
$$

Choose $R_{E}=1.5 \mathrm{k} \Omega$
If Q_{2} is in the active region and $V_{C E}=2 \mathrm{~V}$
$I_{C 2} R_{C 2}=V_{C C}-V_{C E}-V_{E N 2}$

$$
\therefore R_{C 2}=\frac{18-2.0-7.4}{5}=\frac{8.6 \mathrm{~V}}{5 \mathrm{~mA}}=1.72 \mathrm{k} \Omega
$$

Choose $R_{C 2}=1.75 \mathrm{k} \Omega$

$$
\begin{aligned}
& I_{2}=\frac{1}{10} I_{C 2}=0.5 \mathrm{~mA} \\
& R_{2}=\frac{V_{B N 2}}{I_{2}}=\frac{8 \mathrm{~V}}{0.5 \mathrm{~mA}}=16 \mathrm{k} \Omega \\
& I_{B 2 \min }=\frac{I_{C 2}}{h_{F E}}=\frac{5 \mathrm{~mA}}{40}=0.125 \mathrm{~mA} \\
& I_{B 2}=1.5 \times I_{B 2 \text { min }}=1.5 \times 0.125=0.1875 \mathrm{~mA} \\
& I_{B 2}+I_{2}=0.1875 \mathrm{~mA}+0.5 \mathrm{~mA}=0.6875 \mathrm{~mA} \\
& \left(R_{C 1}+R_{1}\right)=\frac{V_{C C}-V_{B N 2}}{\left(I_{B 2}+I_{2}\right)}=\frac{18-8}{0.6875}=\frac{10}{0.6875}=14.55 \mathrm{k} \Omega \\
& R_{1}=14.55 \mathrm{k} \Omega-R_{C 1}
\end{aligned}
$$

At LTP $=4 \mathrm{~V}$, consider the Fig. 7.2.

Fig. 7.2 Circuit at LTP

$$
V_{B N 2}=V_{B N 1}=4 \mathrm{~V}=\mathrm{LTP}=V_{2}
$$

Let I_{1} be the current in R_{2}

$$
\begin{aligned}
& I_{1}=\frac{V_{B N 2}}{R_{2}}=\frac{4 \mathrm{~V}}{16 \mathrm{k} \Omega}=0.25 \mathrm{~mA} \\
& I_{C 1}=I_{E 1}=\frac{V_{2}-V_{B E 1}}{R_{E}}=\frac{4-0.6}{1.5 \mathrm{k} \Omega}
\end{aligned}
$$

$$
I_{C 1}=2.27 \mathrm{~mA}
$$

Writing the KVL equation of the outer loop consisting of $R_{\mathrm{C} 1}, R_{2}$ and R_{1},

$$
\begin{gathered}
V_{C C}=\left(I_{C 1}+I_{1}\right) R_{C 1}+I_{1}\left(R_{1}+R_{2}\right)=\left(I_{C 1}+I_{1}\right) R_{C 1}+I_{1}\left(14.55 \mathrm{k} \Omega-R_{C 1}+R_{2}\right) \\
V_{C C}=I_{C 1} R_{C 1}+I_{1}\left(14.55 \mathrm{k} \Omega+R_{2}\right) \\
R_{C 1}=\frac{V_{C C}-I_{1}\left(14.55+R_{2}\right)}{I_{C 1}} \\
=\frac{18-0.25(14.55+16)}{2.27}=\frac{10.36}{2.27}=4.56 \mathrm{k} \Omega \\
R_{C 1}=4.56 \mathrm{k} \Omega \\
R_{1}=\left(R_{\mathrm{C} 1}-R_{1}\right)-R_{C 1}=14.55-4.56=9.99 \mathrm{k} \Omega
\end{gathered}
$$

Choose $R_{1}=10 \mathrm{k} \Omega$ and $R_{\mathrm{C} 1}=4.5 \mathrm{k} \Omega$.
The designed Schmitt trigger circuit is shown in Fig. 7.3 with component values.

Fig. 7.3 Designed Schmitt trigger
(b) To eliminate hysteresis $R_{\mathrm{e} 1}$ is added in series with the emitter of $Q_{1,}$, Fig. 7.4, such that $V_{1}-V_{2}=V_{\mathrm{H}}=\left(I_{\mathrm{C} 1}+I_{\mathrm{B} 1}\right) R_{\mathrm{e} 1}$
$R_{\mathrm{el}}=\frac{4 \mathrm{~V}}{2.27 \mathrm{~mA}}=1.76 \mathrm{k} \Omega$

Fig. 7.4 $R_{e 1}$ connected to eliminate hysteresis
8. (i) Design a Schmitt trigger in Fig.9p. 5 with UTP of 8 V and LTP of 4 V . Si transistors with $h_{F E}=40$ and $I_{C}=4 \mathrm{~mA}$ are used. The supply voltage is 12 V . The ON transistor is in saturation for which $V_{\mathrm{BE}}=0.7 \mathrm{~V}, V_{C E(\mathrm{sat})}=0.2 \mathrm{~V}$. (ii) Calculate $R_{\mathrm{e} 1}$ for eliminating hysteresis. (iii) Find $R_{\mathrm{e} 2}$ to eliminate hysteresis.

Fig. 9p. 5 The given Schmitt trigger circuit

Solution:

(i) Till UTP is reached, Q_{1} is OFF and Q_{2} is ON and in saturation region. Just at $V_{1}(\mathrm{UTP}) Q_{1}$ goes ON and Q_{2} goes OFF. Just prior to this, Q_{2} is ON and Q_{1} is OFF, Fig. 8.1.

Fig. 8.1 Circuit when Q_{1} is OFF and Q_{2} is ON

$$
\begin{gathered}
V_{1}=\mathrm{UTP}=V_{B N 2}=8 \mathrm{~V} \\
I_{E}=I_{C 2}=4 \mathrm{~mA} \\
V_{E N}=V_{E N 2}=V_{B N 2}-V_{B E 2} \\
V_{E N 2}=8-0.7=7.3 \mathrm{~V} . \\
R_{E}=\frac{V_{E N 2}}{I_{E}}=\frac{7.3}{4 \mathrm{~mA}}=1.825 \mathrm{k} \Omega
\end{gathered}
$$

If Q_{2} is in the saturation region and $V_{C E}=0.2 \mathrm{~V}$

$$
\begin{gathered}
I_{C 2} R_{C 2}=V_{C C}-V_{C E}-V_{E N 2} \\
\therefore R_{C 2}=\frac{12-0.2-7.3}{4}=\frac{4.5 \mathrm{~V}}{4 \mathrm{~mA}}=1.125 \mathrm{k} \Omega \\
I_{2}=\frac{1}{10} I_{C 2}=0.4 \mathrm{~mA} \\
R_{2}=\frac{V_{B N 2}}{I_{2}}=\frac{8 \mathrm{~V}}{0.4 \mathrm{~mA}}=20 \mathrm{k} \Omega \\
I_{B 2 \min }=\frac{I_{C 2}}{h_{F E}}=\frac{4 \mathrm{~mA}}{40}=0.1 \mathrm{~mA} \\
I_{B 2}=1.5 \times I_{B 2 \mathrm{~min}}=1.5 \times 0.1=0.15 \mathrm{~mA} \\
I_{B 2}+I_{2}=0.15 \mathrm{~mA}+0.4 \mathrm{~mA}=0.55 \mathrm{~mA} \\
\left(R_{C 1}+R_{1}\right)=\frac{V_{C C}-V_{B N 2}}{\left(I_{B 2}+I_{2}\right)}=\frac{12-8}{0.55}=\frac{4}{0.55}=7.27 \mathrm{k} \Omega \\
R_{1}=7.27 \mathrm{k} \Omega-R_{C 1}
\end{gathered}
$$

At LTP $=4$ V, consider Fig. 8.2.

Fig. 8.2 Circuit at LTP

$$
V_{B N 2}=V_{B N 1}=4 \mathrm{~V}=\mathrm{LTP}=V_{2}
$$

Let I_{1} be the current in R_{2}

$$
\begin{aligned}
& I_{1}=\frac{V_{B N 2}}{R_{2}}=\frac{4 \mathrm{~V}}{20 \mathrm{k} \Omega}=0.2 \mathrm{~mA} \\
& I_{C 1}=I_{E 1}=\frac{V_{2}-V_{B E 1}}{R_{E}}=\frac{4-0.7}{1.825 \mathrm{k} \Omega}=1.8 \mathrm{~mA}
\end{aligned}
$$

Writing the KVL equation of the outer loop consisting of $R_{\mathrm{C} 1}, R_{2}$ and R_{1},

$$
\begin{gathered}
V_{C C}=\left(I_{C 1}+I_{1}\right) R_{C 1}+I_{1}\left(R_{1}+R_{2}\right) \\
V_{C C}=\left(I_{C 1}+I_{1}\right) R_{C 1}+I_{1}\left(7.27-R_{C 1}+R_{2}\right) \\
V_{C C}=I_{C 1} R_{C 1}+I_{1}\left(7.27+R_{2}\right) \\
R_{C 1}=\frac{V_{C C}-I_{1}\left(7.27+R_{2}\right)}{I_{C 1}} \\
R_{C 1}=\frac{12-0.2(7.27+20)}{1.8}=\frac{10.36}{2.27}=3.6 \mathrm{k} \Omega \\
R_{1}=\left(R_{C 1}-R_{1}\right)-R_{C 1} \\
R_{1}=7.27-3.6=3.67 \mathrm{k} \Omega
\end{gathered}
$$

(ii) To eliminate hysteresis $R_{\mathrm{e} 1}$ is added in series with the emitter of Q_{1}, Fig. 8.3, such that

$$
\begin{gathered}
V_{1}-V_{2}=V_{\mathrm{H}}=\left(I_{\mathrm{C} 1}+I_{\mathrm{B} 1}\right) R_{\mathrm{e} 1} \\
R_{\mathrm{e} 1}=\frac{4 \mathrm{~V}}{1.8 \mathrm{~mA}}=2.22 \mathrm{k} \Omega
\end{gathered}
$$

Fig. 8.3 $\mathrm{R}_{\mathrm{e} 1}$ connected to eliminate hysteresis
(iii) To eliminate hysteresis $R_{\mathrm{e} 2}$ is added in series with the emitter of Q_{2}, Fig. 8.4, such that

Fig. 8.4 $R_{\mathrm{e} 2}$ connected to eliminate hysteresis

$$
\begin{gathered}
V^{\prime}=\frac{V_{C C} R_{2}}{R_{C 1}+R_{1}+R_{2}}=\frac{12 \times 20}{3.6+3.67+20}=8.8 \mathrm{~V} \\
R^{\prime}=R_{2} / /\left(R_{\mathrm{C} 1}+R_{1}\right)=\frac{20 \times 7.27}{27.27}=5.33 \mathrm{k} \Omega
\end{gathered}
$$

We know,

$$
\begin{aligned}
& V_{2}=\left(V^{\prime}-V_{B E 2}\right) \times \frac{\left(1+h_{F E}\right) R_{E}}{R^{\prime}+\left(1+h_{F E}\right)\left(R_{e 2}+R_{E}\right)}+V_{\gamma} \\
& 4=(8.8-0.7) \times \frac{41 \times 1.825}{5.33+(41)\left(R_{e 2}+1.825\right)}+0.5
\end{aligned}
$$

$$
\begin{gathered}
3.5=\frac{606}{80.1+41 R_{e 2}} \\
143.5 R_{\mathrm{e} 2}=325.65 \\
R_{\mathrm{e} 2}=2.26 \mathrm{k} \Omega .
\end{gathered}
$$

