
Chapter 9: Electrical Design of Overhead Lines  

Introduction 

An a.c. transmission line has resistance, inductance and capacitance 
uniformly distributed along its length.  

 

These are known as constants or parameters of the line.  

 

The performance of a transmission line, the efficiency and voltage 
regulation depends upon these constants.  

 

Therefore, we shall focus our attention on the methods of calculating 
these constants for a given transmission line.  

 

And special attention will be given to  inductance and capacitance. 
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9.1 Constants of a Transmission Line 
A transmission line has resistance, inductance and capacitance uniformly 
distributed along the whole length of the line.  

(i) Resistance. It is the opposition of line conductors to current flow. The 
resistance is distributed uniformly along the whole length of the line as 
shown in Fig. 9.1 (i), and Fig. 9.1 (ii) .  

(ii) Inductance. When an alternating current flows through a conductor, a 
changing flux is set up which links the conductor.  

Mathematically, inductance is defined as the flux linkages per ampere i.e., 

  Inductance, L = ψ / I             henry 

The inductance is also uniformly distributed along the length of the  line as 
show in Fig. 9.1(i), and Fig. 9.1(ii). 
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(iii) Capacitance. As any two conductors of an overhead transmission line 
are separated by air which acts as an insulation, therefore, capacitance 
exists between any two overhead line conductors.  

The capacitance between the conductors is the charge per unit potential 
difference i.e., 

  Capacitance, C =q / v farad 

 

The capacitance is uniformly distributed along the whole length of the line 
and may be regarded as a uniform series of capacitors connected between 
the conductors as shown in Fig. 9.2(i) and Fig. 9.2(ii). 
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9.2 Resistance of a Transmission Line 

The resistance R of a line conductor having resistivity ρ, length l and 
area of cross section 

a is given by ; R = ρ l / a 

 

The variation of resistance of metallic conductors with temperature 
is practically linear over the normal range of operation.  

Suppose R1 and R2 are the resistances of a conductor at t1
oC and 

t2
oC(t2 > t1) respectively.  

If α1 is the temperature coefficient at t1°C, then, 

  R2 = R1 [1 + α1 (t2− t1)] 

where   α1 = 
α0

1 + α0 
t1

   

 

  α0 = temperature coefficient at 0o C 
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9.3 Skin Effect 

When a conductor is carrying steady direct current (dc), this current is 
uniformly distributed over the whole cross-section of the conductor.  

 

However, an alternating current flowing through the conductor does not 
distribute uniformly, rather it has the tendency to concentrate near the 
surface of the conductor as shown in Fig. 9.3.  This is known as skin effect. 

 

The tendency of alternating current to concentrate  

near the surface of a conductor is known as skin effect. 

 

Due to skin effect, the effective area of cross-section  

of the conductor through which current flows is reduced.  

 

Consequently, the resistance of the conductor is slightly increased when 
carrying an alternating current.  
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9.4 Flux Linkages (For more detail see the text book page 205) 

As stated earlier, the inductance of a circuit is defined as the flux linkages 
per unit current.  

Therefore, in order to find the inductance of a circuit, the determination of 
flux linkages is of primary importance. 

We shall discuss two important cases of flux linkages. 

1. Flux linkages due to a single current carrying conductor. Consider a 
long straight cylindrical conductor of radius r meters and carrying a 
current I amperes (rms) as shown in Fig. 9.4 (i). 
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This current will set up magnetic field. The magnetic lines of 
force will exist inside the conductor as well as outside the 
conductor.  

Both these fluxes will contribute to the inductance of the 
conductor. 

 

(i) Flux linkages due to internal flux. Refer to Fig. 9.4 (ii) the  
total flux linkages from center up to the conductor surface: 
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(i) Flux linkages due to internal flux. Refer to Fig. 9.4 (ii)  

 

 

 

 

 

 

 

 

And the 
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2. Flux linkages in parallel current carrying conductors. Fig. 9.6 shows the 
conductors A,B, C etc. carrying currents IA, IB, IC  etc .  

 

Let us consider the flux linkages with  

one conductor, say conductor A.  

There will be flux linkages with  

Conductor A due to its own current as  

discussed previously.  

 

Also there will be flux linkages with this  

conductor due to the mutual inductance  

effects of IB, IC, ID etc.  
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9.5 Inductance of a Single Phase Two-wire Line 
A single phase line consists of two parallel conductors which form a 
rectangular loop of one turn. 
 
When an alternating current flows through such a loop, a changing magnetic 
flux is set up.  
 
The changing flux links the loop and hence the loop (or single phase line) 
possesses inductance. 
 
Consider a single phase overhead  line  
consisting of two parallel conductors A  
and B spaced d meters apart as shown in 
 Fig. 9.7.  
 
Conductors A and B carry the same amount 
of current (i.e. IA = IB), but in the opposite direction because one forms the 
return circuit of the other. 
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Expression in alternate form. The expression for the inductance of a 
conductor can be put in a concise form: 

 

 

 

 

 

 

 

 

 

 

Therefore, the loop inductance is given by: 
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9.6 Inductance of a 3-Phase Overhead Line 
Fig. 9·8 shows the three conductors A, B and C of a 3-phase line carrying 
currents IA, IB and IC respectively.  

 

Let d1, d2 and d3 be the spacing between the  

conductors as shown.  

 

Let us further assume that the loads are balanced i.e. IA + IB + IC = 0. 

Consider the flux linkages with conductor A.  

 

There will be flux linkages with conductor A due to its own current and also 
due to the mutual inductance effects of IB and IC. 

 

The total flux linkage conductor A due to the three currents is given by: 
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(i) Symmetrical spacing.  
If the three conductors A, B and C are placed symmetrically at the corners 
of an equilateral triangle of side d, then, d1 = d2 = d3 = d.  

Under such conditions, the flux linkages with conductor A become : 
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(ii) Unsymmetrical spacing. When 3-phase line conductors are not 
equidistant from each other, the conductor spacing is said to be 
unsymmetrical.  

Under such conditions, the flux linkages and inductance of each phase are 
not the same.  

 

A different inductance in each phase results in unequal voltage drops in 
the three phases even if the currents in the conductors are balanced.  

 

Therefore, the voltage at the receiving end will not be the same for all 
phases.  

 

In order that voltage drops are equal in all conductors, we generally 
interchange the positions of the conductors at regular intervals along the 
line so that each conductor occupies the original position of every other 
conductor over an equal distance.  

Such an exchange of positions is known as transposition.  
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Fig. 9.9 shows the transposed line. The phase conductors are designated as 
A, B and C and the positions occupied are numbered 1, 2 and 3.  

The effect of transposition is that each conductor has the same average 
inductance. 
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9.7 Concept of Self-GMD and Mutual-GMD 

The use of self geometrical mean distance (GMD) and mutual geometrical 
mean distance (GMD) simplifies the inductance calculations, of multi-
conductor arrangements. The symbols used for these are respectively Ds 
and Dm.  
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9.8 Inductance Formulas in Terms of GMD 
The inductance formulas developed are: 

11/28/2016 Power System/ Dr. Ramzi A. Abdul-Halem 20 



11/28/2016 Power System/ Dr. Ramzi A. Abdul-Halem 21 



11/28/2016 Power System/ Dr. Ramzi A. Abdul-Halem 22 



11/28/2016 Power System/ Dr. Ramzi A. Abdul-Halem 23 



11/28/2016 Power System/ Dr. Ramzi A. Abdul-Halem 24 



11/28/2016 Power System/ Dr. Ramzi A. Abdul-Halem 25 



11/28/2016 Power System/ Dr. Ramzi A. Abdul-Halem 26 



Assignment # 6 

PB1 

 

 

PB2 

 

 

PB3 
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9.9 Electric Potential 
The electric potential at a point due to a charge is the work done in bringing a 
unit positive charge from infinity to that point.  
 
The concept of electric potential is extremely important for the determination 
of capacitance in a circuit since the latter is defined as the charge per unit 
potential.  
 
Thus, the electric potential due to some important conductor arrangements 
will be discussed. 
 
(i) Potential at a charged single conductor. 
 
 
 
Consider a long straight cylindrical conductor A of radius r meters as shown in  
Fig. 9.19.  
Let the conductor operates at such a potential (VA) that charge QA coulombs 
per meter exists on the conductor. 
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The electric intensity E at a distance x from the center of the conductor in air 
is given by: 

  E =    
QA 

2πxε0
  volts/m 

 

where   QA = charge per meter length 

  ε0 = permittivity of free space 

As x approaches infinity, the value of E approaches zero.  

Therefore, the potential difference between conductor A and infinity distant 
neutral plane is given by : 

 

 

 

(ii) Potential at a conductor in a group of charged conductors. 

Overall potential difference between conductor A, refer to Fig. 9.20, and 
infinite neutral plane is, and assuming balanced conditions i.e., QA + QB + QC 
= 0, we have, 
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9.10 Capacitance of a Single Phase Two-wire Line 

Consider a single phase overhead transmission line consisting of two 
parallel conductors A and B spaced d meters apart in air, as shown in Fig. 
9.21.  

Suppose that radius of each conductor is  

r meters.  

Let their respective charge be + Q and − Q 

 coulombs per meter length. 

 

The potential difference between conductors A and B is 
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Capacitance to neutral. Equation (i) gives the capacitance between the 
conductors of a two wire line [See Fig. 9.22].  

 

 

 

 

 

Often it is desired to know the capacitance between one of the conductors 

and a neutral point between them.  

 

 

 

 

Thus the capacitance to ground or capacitance to neutral for the two wire 

line is twice the line-to-line capacitance (capacitance between conductors as 
shown in Fig 9.23). 
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9.11 Capacitance of a 3-Phase Overhead Line 

In a 3-phase transmission line, the capacitance of each conductor is 
considered instead of capacitance from conductor to conductor. 

 

Here, again two cases arise viz., symmetrical  

spacing and unsymmetrical spacing. 

(i) Symmetrical Spacing. Fig. 9.24 shows the  

three conductors A, B and C of the 3-phase  

overhead transmission line having charges QA,  

QB and QC per meter length respectively. 

 

Let the conductors be equidistant (d meters)  

from each other.  

 

Assuming balanced supply, we have, QA + QB + QC = 0 
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Note that this equation is identical to capacitance to neutral for two-wire 
line., the expressions for capacitance of conductors B and C are the identical. 

 

(ii) Unsymmetrical spacing.  

Fig. 9.25 shows a 3-phase transposed line having unsymmetrical spacing. Let 
us assume balanced conditions i.e. QA + QB + QC = 0. 
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In considering all the three sections of the transposed line for phase A, the 
capacitance to neutral of conductor A can expressed by: 

11/28/2016 Power System/ Dr. Ramzi A. Abdul-Halem 35 



11/28/2016 Power System/ Dr. Ramzi A. Abdul-Halem 36 



11/28/2016 Power System/ Dr. Ramzi A. Abdul-Halem 37 


