
Chapter 9	  Form Controls	 Page 197

Chapter 9
Form Controls

Every form needs interface controls. Selecting the right control for the job is 
not always an obvious decision. In this chapter you will examine the various 
controls you have for your forms, and see what they each do well and what they 
do poorly. You’ll see some of  the nuances associated with various controls and 
learn how to take advantage of  them. Through designing your own control 
classes, you’ll find out that there is very little that you cannot accomplish in 
user-interface design.

The general use of form controls
First, let’s examine each control in the Visual FoxPro toolbox in terms of  its purpose 
and use. Table 9.1 is a list of  the available controls.

Table 9.1. The basic form controls available in Visual FoxPro

Control Description
CheckBox Used to indicate one of two states: on/off, yes/no, and so 

on.
ComboBox A drop-down list. There are two styles: a list that limits the 

user to selecting items that are part of the available list, 
and a combo box that allows selection from the list or entry 
of values not in the list.

CommandButton An action button. Usually used to initiate an action of some 
kind when the button is pressed.

CommandGroup A group of CommandButton controls. 
Container A control that is able to contain other controls.
EditBox Used for editing character values. Allows for scrolling 

­vertically for editing amounts of text that do not easily fit 
within the space allotted in the form. 

Grid Multi-record editing control that presents data from many 
records in a row (record) and column (field) display. The 
grid is a compound control that is comprised of columns, 
which in turn contain headers and controls.



Page 198	 Effective Techniques for Application Development with Visual FoxPro

Control Description
HyperLink A HyperLink object can request that an ActiveX hyperlink-

aware container, such as Microsoft Internet Explorer, jump 
to a particular URL.

Image Displays an image.
Label Displays text that cannot be changed interactively by the 

user.
Line Displays a horizontal, vertical, or diagonal line.
ListBox Displays a list of items from which one or more may be 

selected.
OLEControl Hosts OLE or ActiveX objects in a Visual FoxPro form.
OLEBoundControl Displays the contents of a general field in a DBF file.
OptionButton Can only be added to an OptionGroup.
OptionGroup A container for OptionButtons. Allows the user to select 

one from a set of mutually exclusive choices.
PageFrame A container for holding Pages. A PageFrame is sometimes 

referred to as a tabbed dialog.
Page A single tab within a PageFrame.
Shape A graphical object that can display a box, circle, or ellipse.
Spinner Allows the setting of a numeric value by “spinning” through 

a range of acceptable values. Numbers can also be typed 
into the spinner.

Timer An invisible control that allows for the execution of code at 
a certain time interval.

TextBox A control that allows the editing of data.

The following sections will examine many of  the Table 9.1 controls in more detail, 
focusing on the uses of  these controls for user-interface design. I’ll discuss when to 
use which control and how to make the controls exhibit the behavior you want.

Label
The label is one of  the simplest controls at your disposal. It is most often used for 
displaying prompt information alongside other controls. Because it is “fixed” text, it’s 
well adapted for the prompt job.
The label is often underestimated, though. It can do quite a bit more than prompt the 
user. Even though it isn’t editable by the user, you can change its Caption property 
at will in your code. You could use a label for displaying non-editable data by simply 
setting its caption property whenever a new record is encountered.



Chapter 9	  Form Controls	 Page 199

For example, assume you have a customer table with a field named balance. This 
balance field can’t be edited because it is a calculated value from other tables. You 
could put a label in the form, make its name lblBalance, and enter the following in 
the form’s refresh method:
THISFORM.lblBalance.Caption = TRANSFORM(Customer.Balance, 
"$999,999,999.99")

You need the TRANSFORM() in the above code because label captions can only 
accept character values.
Another strength of  the label control is that it’s a very lightweight object, meaning 
that it doesn’t take a lot of  memory to create. This makes it a candidate for being the 
base class for many non-visible classes. Add to its light weight the fact that it can have 
a descriptive caption that is seen in the form designer, and the label becomes an even 
better candidate for non-visible objects. You make the label non-visible by setting its 
visible property to .F.
When designing a label class, you can add to it any methods or properties that you 
need, so the fact that it is a label does not limit its functionality.

TextBox
The TextBox is the workhorse control for data entry. It is universal in the types of  
data it can handle and its user interface is simple. Users naturally seem to know how 
to use a TextBox; they type in it.
You could say that the TextBox is also an underestimated control. Its flexibility for 
data entry is often not fully appreciated. You have virtually unlimited control over the 
look of  a TextBox. Figure 9.1 shows the Textbox form from the sample code.

Figure 9.1. The Textbox form.



Page 200	 Effective Techniques for Application Development with Visual FoxPro

Figure 9.1 is an example of  the variety of  ways that a TextBox can look. It can have 
a border or not, the border can be 3-D or plain, and the color schemes and fonts can 
be modified. All of  these features of  the TextBox make it a versatile control for your 
forms. But, I haven’t even scratched the surface of  it yet.
The TextBox will inherently process the user’s keystrokes. In most situations this is 
exactly what you want, and you don’t have to do anything special to handle the user’s 
typing. But there are circumstances where creating a TextBox class and overriding the 
inherent key processing can be beneficial.
How often have you used a TextBox for entering numeric values? You want the value 
formatted with commas and a decimal point, so you set the InputMask property to 
“999,999,999.99” and hope for the best. The problem is that when the user starts 
typing into the TextBox, the formatting gets messed up until they finish. See Figure 
9.2 for an example.

Figure 9.2. Messed up numbers in a TextBox.

Notice the “525” in the TextBox in Figure 9.2. It looks weird. The TextBox started 
with the value 125.25 in it and I typed 525 at the beginning of  the TextBox to get 
the result shown in Figure 9.2. Users are easily confused by this formatting problem. 
There is no native property setting of  the TextBox that will correct the problem, 
either.
In this chapter you’ll build a TextBox class that will provide for number entry simi-
lar to a calculator, where the digits enter the TextBox from the right to the left and 
are correctly formatted as they are entered. The sample project has a TextBox class 
named txtNumber in the Controls class library. This class was built to intercept the 
user’s keystrokes and process them in a special fashion. Listing 9.1 shows the key-
press code for this class.



Chapter 9	  Form Controls	 Page 201

Listing 9.1. The keypress event code for the numeric textbox.
LPARAMETERS nKeyCode, nShiftAltCtrl
DO CASE
  CASE nKeyCode >= 48 AND nKeyCode <= 57
   * Digits 0 to 9
   NODEFAULT
   THIS.cSoFar = THIS.cSoFar + CHR(nKeyCode)
   THIS.SetValue()
  CASE nKeyCode = 43
   * + key
   NODEFAULT
   IF LEFT(THIS.cSoFar,1) = "-"
     THIS.cSoFar = SUBSTR(THIS.cSoFar,2)
     THIS.SetValue()
   ENDIF
  CASE nKeyCode = 45
   * - key
   NODEFAULT
   IF LEFT(THIS.cSoFar,1) <> "-"
     THIS.cSoFar = "-" + THIS.cSoFar
     THIS.SetValue()
   ENDIF
  CASE nKeyCode = 9 OR nKeyCode = 15
   * Tab and Backtab
  CASE nKeyCode = 7
   * Del
   NODEFAULT
   THIS.cSoFar = "0"
   THIS.SetValue()
  OTHERWISE
   * Ignore all other keys
   NODEFAULT
ENDCASE

Notice the use of  NODEFAULT in the code above. This command prevents Visual 
FoxPro from executing its default behavior for the KeyPress event. You use the 
NODEFAULT so you can process these keystrokes yourself.
The txtNumber class has two added properties named cSoFar and nDecimal. The 
cSoFar property is used to store a character representation of  what the user has 
typed so far, and the nDecimal property is used to store a divisor used to position the 
decimal point. The cSoFar is set to “0” in the GotFocus so that users always replace 
the entire current value when they type in the control. nDecimal is set in the Init for 
the control by finding the decimal point in the InputMask property and doing a cal-
culation. A SetDecimal method has been added to the class; it contains the following 
code: 



Page 202	 Effective Techniques for Application Development with Visual FoxPro

LOCAL lnDec
lnDec = LEN(ALLTRIM(THIS.InputMask)) - ;
        RAT(".",ALLTRIM(THIS.InputMask))
THIS.nDecimal = MAX(1,10 ^ lnDec)

The Init event has one line that calls THIS.SetDecimal(). The InputMask property has 
been given an assign method so that any time the value of  the InputMask property is 
changed, the assign method will run. The code for the assign method is listed below.

Visual FoxPro gives us two special types of  methods: assign and access. These 
methods allow you to trap activities involving properties and write code to 
manage them. An assign method is executed whenever there is an attempt to 

assign a value to a property and it is passed the value that is being assigned. The access 
method is executed whenever there is an attempt to read the value of  a property and 
the RETURN value of  that method is the value that the code accessing the property 
will see.
These methods are named <PropertyName>_access and <PropertyName>_assign. 
In the numeric TextBox, I used a method named InputMask_assign so it will react to 
any changes made to the InputMask of  the TextBox control at runtime.
LPARAMETERS vNewVal
THIS.InputMask = m.vNewVal
THIS.SetDecimal()
THIS.SetValue()

Figure 9.3 shows a form using the txtNumber class. In this form I typed the same 
525 that I typed earlier.

Figure 9.3. The txtNumber class in use.

Notice that the display now shows 5.25. This is because the InputMask of  999,999.99 
is setting the decimal point. To get 525.00, I would type 52500 in the TextBox.



Chapter 9	  Form Controls	 Page 203

The key point of  this class is to demonstrate the fact that you are not limited in the 
usage of  any control in Visual FoxPro. You can override the default behavior and 
provide your own behavior, thereby creating a new control. When you feel frustrated 
by the way things are happening, stop and ask yourself, “How can I make it happen 
the way I want it to happen?”

EditBox
Similar to the TextBox, the EditBox is a fairly simple editing control: It can be used 
to present and edit character data. The EditBox has the additional functionality of  
being able to present data that is too large to fit neatly inside the control. With verti-
cal scrollbars on the right side, this control allows the user to scroll through large 
amounts of  character data.
When you need to present free-form character data, such as the contents of  a memo 
field, the EditBox really shines. Figure 9.4 shows a form with an EditBox being used 
to edit the mNotes field of  the Clients table in the Time and Billing sample data.

Figure 9.4. An editbox used for a memo field.

The scroll bars on the right are enabled, indicating that more data follows what you 
can see. Note the way the last visible line is cut in half. This occurs because of  the 
height of  the EditBox and the FontSize used. The spacing of  the lines causes a partial 
display of  the last line.
You can fix this partial display by making the height of  the EditBox neatly fit the line 
height for the font and FontSize being used. You may see that as a painful process, 
calculating the height of  the font and then figuring out the correct control height. 
Lucky for us, Microsoft gave us a property that handles this specific problem: the 
IntegralHeight property.
When IntegralHeight is set to .F. (the default), the results are similar to Figure 9.4. 
However, setting IntegralHeight to .T. will resize the control to fit an exact number 



Page 204	 Effective Techniques for Application Development with Visual FoxPro

of  lines. Figure 9.5 shows the same form, only this time the IntegralHeight for the 
EditBox is set to .T.

Figure 9.5. Using IntegralHeight on an EditBox control.

The EditBox allows you to control just about every detail of  its appearance. You 
can make the scrollbar go away by setting the ScrollBars property to 0–None. You 
can affect the appearance of  the border around the EditBox using the BorderStyle, 
BorderColor, and SpecialEffect properties. A full complement of  events and methods 
are available in the EditBox for controlling the behavior of  the control.
To view the EditBox as a tool only for editing memo fields would greatly limit the 
utility of  this control. A little imagination will reveal some uses for this control that 
go well beyond its obvious utility for editing memos. Figure 9.6 shows an EditBox 
being used in quite a different way.

Figure 9.6. Using an EditBox for a unique purpose.

The text in Figure 9.6 is in an EditBox. The form is in the sample project on your 
CD and is named EditBox2.scx. The code in the Start button’s click method is a very 
simple simulation of  some processing. That code is listed here:



Chapter 9	  Form Controls	 Page 205

THISFORM.Edit1.Value = "Starting"
LOCAL lnCnt
FOR lnCnt = 1 TO 5
  INKEY(1.0)
  THISFORM.Edit1.Value = THISFORM.Edit1.Value + CHR(13) + ;
             "Process " + LTRIM(STR(lnCnt)) + " Completed"
ENDFOR
THISFORM.Edit1.Value = THISFORM.Edit1.Value + CHR(13) + "Finished"

Table 9.2 shows the non-default property setting for the EditBox in Figure 9.6.

Table 9.2. The property settings for the EditBox in the EditBox2 form.

Property Setting
BackStyle 0 – Transparent
BorderStyle 0 – None
FontBold .T.
FontSize 12
ForeColor 255,0,0
IntegralHeight .T.
ReadOnly .T.
ScrollBars 0 – None

The EditBox control, like all of  the other controls, has its obvious use and also some 
not-so-obvious uses. “Thinking outside the box” will allow you to exploit the unique 
qualities of  any control to suit your requirements, and the EditBox is no different in 
this respect.

Spinner
The Spinner is designed for numeric data types. It allows the user to input or change 
its value in two ways: by typing directly into the control or by using the up- and 
down-arrow buttons at the right side of  the control. Figure 9.7 shows a form with 
a Spinner control.

Figure 9.7. The Spinner control.

The Spinner in Figure 9.7 has some property settings that are worth mentioning. 
Table 9.3 lists the non-default properties and their settings.



Page 206	 Effective Techniques for Application Development with Visual FoxPro

Table 9.3. Property settings for the Spinner seen in Figure 7.

Property Setting
Increment 0.25
InputMask 999.99
KeyboardHighValue 100
KeyboardLowValue 0
SpinnerHighValue 100
SpinnerLowValue 0

Some other properties are set to values other than their defaults, like Top, Height, 
Name, and so on; however, those properties are not important to the behavior of  the 
control. Table 9.3 lists the important properties.
The Increment property controls how much the value of  the control will be increased 
or decreased when the spin buttons are used. The up- and down-arrow keys have the 
same effect as the respective spin buttons when the Spinner has the focus.
Inputmask has the same effect on a Spinner as it does on any other control: it defines 
the display mask for the data. In the Spinner above, the Inputmask defines a display 
of  three digits, a decimal point, and two digits.
The next four properties seem to be two sets of  two properties, and in fact they are. 
Why two sets? Users can alter the value of  the Spinner in two distinctly different 
ways. They can use the keyboard to type into the control, or they can use the Spinner 
buttons. The Keyboard properties control the range of  values that can be typed in, 
and the Spinner properties affect the range of  values for the spin buttons.
Hmm, now wait one minute … why would these two sets of  properties be set differ-
ently from one another? It seems unlikely that you would want them to be different, 
but “unlikely” is not the same as “never.”
Here’s one example where you might want these properties to have different ranges. 
Suppose you are using a Spinner to present the data for a bowling alley’s number 
of  strings for a league game. The business rules say that the range for the number 
of  strings is always between 1 and 3. An additional rule says that in rare situations 
the number of  strings may be more or less than that range. Your analysis finds that 
97 percent of  the leagues have a number of  strings within the range. So you decide 
to use a Spinner and set the SpinnerHighValue to 3, the SpinnerLowValue to 1, the 
KeyboardHighValue to 15 and the KeyboardLowValue to 1. This allows the user to 
spin within the common range but prevents an unusually high number from being 
entered without the user expressly typing that number into the control.



Chapter 9	  Form Controls	 Page 207

CheckBox
This is an easy one. The CheckBox is either checked or not checked. It is a two-state 
control that can be used for such data entry tasks as true/false, on/off, or yes/no. 
Seems simple enough.
The CheckBox supports two data types: logical and numeric. When using a logical 
data type, true is represented by a checked state of  the control, and false is unchecked. 
For numeric data types, 0 represents unchecked and non-zero (any value other than 
0) represents the checked state. Figure 9.8 shows the form in the sample project 
named Check.scx.

Figure 9.8. A CheckBox in the Check form.

The form in Figure 9.8 was built to demonstrate the possible values for a CheckBox 
control. The Toggle Logical and Toggle Numeric buttons alter the values between 
.T./.F. and 0/1, respectively. By running the form and clicking the buttons, you can 
see the checked state of  the CheckBox change. The Current Value line in the form 
shows you the current value for the CheckBox. Clicking on the CheckBox will toggle 
the value just like the buttons do. However, note that clicking the CheckBox toggles 
the value within the current data type for the value property of  the CheckBox, while 
using the buttons will change the data type.
The Negative Number button assigns a value of  –1 to the CheckBox. When you click 
that button, the CheckBox’s state becomes checked. But you’ll see that the CheckBox 
takes on the disabled colors. Clicking the CheckBox will show you that the control is 
not disabled. You can only assume that the disabled colors are used to visually show 
negative numbers differently than positive numbers. Setting the value to a negative 
number reinforces the fact that a value of  0 will be unchecked and any value other 
than 0 will be checked.
Clicking the Make NULL button assigns a value of NULL to the CheckBox. The 
value of NULL displays the same as a negative number; checked with disabled colors. 
The NULL-valued CheckBox isn’t really disabled, though. Clicking the NULL val-
ued CheckBox toggles it to the unchecked value for the data type, a logical .F. or 
numeric 0.



Page 208	 Effective Techniques for Application Development with Visual FoxPro

Graphical CheckBox	
A graphical CheckBox is not another control; it is just a CheckBox with the Style 
property set to 1–Graphical instead of  0–Standard. So what is a graphical CheckBox? 
Figure 9.9 shows a pair of  graphical CheckBoxes, with the left one unchecked and 
the right one checked.

Figure 9.9. Graphical CheckBoxes in the CheckG form.

The Figure 9.9 form is the CheckG form in the sample project on the CD. Graphical 
CheckBoxes are those buttons that “stay pushed” when you click them. Other than 
their appearance, they are no different from the standard CheckBoxes.

One issue that relates to both the CheckBox just discussed and the Option-
Group discussed later in this chapter is that they act differently when the user 
presses the Enter key to move to the next control. Both the CheckBox and the 

OptionButton change the selection status of  the control before moving on when the 
Enter key is pressed. This often causes a user to grab the mouse to navigate through 
these controls and can therefore slow down data entry. It is wise to avoid both of  
these controls in a “heads-down” data-entry form.

ComboBox
The ComboBox is the first of  the complex controls, those that have more than one part 
to their interfaces. The ComboBox has the data-entry box and the drop-down list as 
its two parts.
The ComboBox is a very flexible and useful control with two distinct personalities 
that are controlled by its Style property. One of  these personalities is the drop-down 
combo and the other is the drop-down list. Both styles provide a list of  values in the 
ComboBox from which the user can make a selection. The drop-down combo style 
also allows the user to type a value into the control that is not included in the list. The 
drop-down list restricts the user’s selection to only those items in the list. In a later 
chapter there is a detailed discussion of  the ComboBox, along with other complex 
controls. Here I will focus on the general aspects of  the control and the “when and 
where” of  using it.



Chapter 9	  Form Controls	 Page 209

Drop-down combo
The „drop-down combo” style ComboBox allows the user the ease of  selecting an 
entry from a list of  possible values but doesn’t limit him to selections from that list. 
That is the party line on the drop-down combo, but in truth things won’t work that 
way without some coding on your part.
Both combo styles have two properties that hold values. The Value property is 
connected to the ControlSource for the combo and the DisplayValue is the value that 
is visible when the combo’s list is not dropped down. The DisplayValue and the Value 
will only be the same when the DisplayValue is found in the list. If  the DisplayValue 
is not found in the list, then the Value will be blank.
If  you choose the drop-down combo style, thinking that the user can type in any 
value and that value will be saved to the ControlSource, you are mistaken. Unless 
you have written some code to add the DisplayValue to the combo’s list when it isn’t 
found in the list, the typed value won’t be stored in the ControlSource.
In the sample project, the form named DDCombo.scx was built to demonstrate the 
effects just described. Figure 9.10 illustrates this form.

Figure 9.10. Drop-down combo demonstration form.

The form has three controls in it: a CheckBox that is used to turn on and off  the 
ability to add a value to the combo’s list, the combo itself, and a TextBox at the bot-
tom that shows the value of  the ControlSource for the combo. The combo has its 
ControlSource set to a property (cValue) that has been added to the form, so that 
changing the value of  the combo will change the value of  the form’s cValue property. 
The TextBox has its ControlSource set to the same form property as the combo.
Here is the code in the combo’s Init that populates the list with values:
THIS.AddListItem("One",this.NewItemId+1)
THIS.AddListItem("Two",this.NewItemId+1)
THIS.AddListItem("Three",this.NewItemId+1)



Page 210	 Effective Techniques for Application Development with Visual FoxPro

This combo has its RowSourceType set to none (there will be more discussion of  
RowSourceType later) and uses the AddListItem method to add items to the list. The 
When event of  the combo contains the following code:
THISFORM.txtcValue.Refresh()

This line simply refreshes the display of  the TextBox each time the selected item in 
the combo is changed. Finally, there is the code in the Valid event:
IF THISFORM.chkAdd.Value
  * If the checkbox is checked
  IF NOT ALLTRIM(THIS.DisplayValue) == ALLTRIM(THIS.Value)
   * Declare variable to temporarily hold the DisplayValue
   LOCAL lcValue
   * Save the DisplayValue
   lcValue = THIS.DisplayValue
   * Add the DisplayValue to the list
   THIS.AddListItem(THIS.DisplayValue,THIS.NewItemId + 1)
   * Requery the combo›s list
   THIS.Requery()
   * Set the combo›s Value to be the same as the DisplayVaue
   THIS.Value = lcValue
   * Now refresh the textbox
   THISFORM.txtcValue.Refresh()
  ENDIF
ENDIF

This code first checks to see if  the CheckBox on the form is checked; if  not, the 
code does nothing. If  the CheckBox is checked, the code then looks to see if  the 
DisplayValue and the Value properties have different values. If  these two properties 
have the same value, then you don’t need to do anything. The DisplayValue is diffe
rent from the Value when the user types a string that isn’t in the list. In that situation, 
you execute the code inside the IF statement in order to add the item to the combo’s 
list, requery the combo’s list, and then set the Value property to the same value that 
the DisplayValue property had. Finally, the TextBox is refreshed.
If  you run this form and try using the ComboBox to enter the value of  “Four” 
with and without checking the CheckBox, you’ll see for yourself  the difference in 
behavior. If  the CheckBox is checked, the value of  “Four” will be put into the form’s 
cValue property by the ComboBox. When the CheckBox is not checked, the value 
of  “Four” appears when you type it in, but that value is lost once you try to leave the 
ComboBox. Both the ComboBox and the TextBox show a value that is blank.
In the next section, you’ll see the various types of  row sources that a combo can have. 
The code in the above example works well when the ComboBox has a RowSourceType 
of  None, meaning that the combo manages its own list internally. In the example, you 
used the AddListItem method to populate the list. If  you had used one of  the other 
RowSourceTypes available, you would have then needed to add the typed value to the 
RowSource for the combo, rather than using the AddListItem.



Chapter 9	  Form Controls	 Page 211

Drop-down list
The other style for a ComboBox is „drop-down list.” The drop-down list does not 
allow the user to type values that are not in the list, but forces the user to make a 
selection from the list. This style is useful in situations where you know the available 
options ahead of  time, so that only the valid choices can be included in the list.
You can obtain the available choices from a number of  different places. They might be 
in a table, or obtained through a SQL SELECT command. The RowSource property 
controls the source for the list items. The RowSourceType setting dictates the accept-
able values for the RowSource property. The possible values for the RowSourceType 
property are shown in Table 9.4.

Table 9.4. RowSourceType settings for Lists and ComboBoxes.

RowSource
Type

RowSource

0 – None There is no RowSource; the list is filled using the AddItem and/or 
the AddListItem methods.

1 – Value The RowSource will be a comma-delimited list of values, such as 
“Apples, Oranges, Bananas.”

2 – Alias RowSource will be an alias name for an open table or cursor. The 
ColumnCount and ColumnWidth properties can be used to con-
trol the fields that are displayed.

3 – SQL 
Select

The RowSource will contain a SQL SELECT command that pro-
duces a table or cursor—perhaps something like “SELECT Name 
FROM Customer WHERE State = ‘NY’ INTO CURSOR MyList.”

4 – Query 
(QPR)

RowSource will contain the name of a .QPR file. QPR files are 
produced from the Query wizard and contain a SQL SELECT 
command.

5 – Array RowSource will contain the name of a memory variable array (or 
an array property of an object). The ColumnCount and Colum-
nWidth properties can be used to control the display of multiple 
columns from the array.

6 – Fields RowSource will contain a comma-delimited list of field names, 
which may or may not include the alias and period. Example: 
“Name, Address, State” or “Customer.Name, Address, State”. 
Notice that when using the alias name, only the first field in the 
list gets it. Repeating the alias name on the other field names 
will cause an error at runtime. The list will be populated from the 
values of the fields in the list.

7 – Files The ComboBox will be populated with a list of files in the current 
directory. The RowSource property can contain a filename mask 
such as “*.DBF” or “*.TXT” to limit the filenames shown in the list.



Page 212	 Effective Techniques for Application Development with Visual FoxPro

RowSource
Type

RowSource

8 – Structure The list will contain the field names for the table whose alias 
name is in the RowSource. If the RowSource is left blank, then 
the currently selected alias will be used to obtain the field names 
for the list.

9 – Popup The items in the list will be obtained from a popup menu’s bars 
as defined with the DEFINE POPUP and DEFINE BAR com-
mands. This option for RowSourceType is present in the product 
for backward compatibility and should be avoided.

With all these choices, how do you decide what to use? The most common four 
choices by far are None, Alias, SQL Select, and Array. The others may be useful in 
certain situations; when you’re faced with one of  those situations, you’ll know it.
The Alias, SQL Select, and Array settings are self-explanatory, but where does the 
setting of  None come in? To be truthful, the None setting is probably the most 
flexible of  all the settings. It requires that the AddListItem or AddItem methods be 
used to populate the list of  the control. This may initially seem to be a hindrance, but 
although it requires you to populate the list, it also gives you complete control over 
what gets into the list.
For example, what if  a certain alias has all of  the possible choices in it? It might be 
easier to just use the Alias RowSourceType and be done with it. But what if  not all 
of  the values in the alias are valid in all situations? This would require using the Valid 
method of  the control to disallow making certain choices from the list. The problem 
with this technique is that a list control shouldn’t include items that the user cannot 
choose. By using the None setting, you could write code in the Requery method of  
the control that would scan the alias and call the list’s AddListItem method to add 
only those values that were valid choices. That way, the user could never choose an 
invalid value from the list.
There are a few other benefits to the None RowSourceType. Along with the Value 
RowSourceType, None can have its Sorted property set to .T. to provide a sorting 
of  the items in the list. In a List control, the MoverBars can be used to rearrange the 
order of  the items in the control if  the RowSourceType is set to None or Value.

ListBox
The ListBox control is similar to the ComboBox in that it presents a list of  values 
from which the user can choose. The difference is that with the ListBox, more than 
one item from the list is visible all the time, and the selected item(s) is(are) high-
lighted. The ComboBox only shows the list when the list has been “dropped down;” 
otherwise it shows only the currently selected value. This means the ListBox will take 
up more real estate in the form. Besides the space requirement, the ListBox may be 



Chapter 9	  Form Controls	 Page 213

inappropriate because it can cause confusion for the user by showing multiple items.
These are considerations for choosing a ListBox over a ComboBox in your interface. 
Keep in mind, though, that what is a problem in one situation may be exactly what 
is needed in another situation. One feature of  a ListBox is the ability to allow multi-
selection; that is, to allow the user to select more than one item in the list. In this 
situation, it’s important to make it clear to the user what items are currently selected. 
The ListBox can do this by highlighting multiple items in the list. Later in this chapter 
I’ll show you a better method of  multi-selection than just the ListBox.
The ListBox and ComboBox controls are both valuable when you need to present a 
list of  possible choices to the user. Their limitation is that they must keep their entire 
list in memory; therefore, they aren’t very good candidate controls when the possible 
list of  choices is greater than between 100 and 500. Of  course, if  you think about 
it from the user’s perspective, a ListBox or ComboBox is not an easy way to make a 
choice from a large number of  possibilities. I try to limit my lists to fewer than 100 
items, believing that any more than 100 choices would be better presented to the user 
in a different way.
The ListBox has the same choices for RowSourceType as the ComboBox: Alias, 
Array, SQL SELECT Statement, and None. The sample code contains a list form 
named MoverJB.scx. Figure 9.11 shows this form with both lists populated.

Figure 9.11. A mover dialog using two ListBoxes.

The interesting thing about this mover dialog is that both of  the ListBoxes have 
None as their RowSourceType. The population of  the lists is done through program 
code. Selecting and unselecting are handled in methods of  the form. Here is the code 
that originally populates the ListBox on the left:



Page 214	 Effective Techniques for Application Development with Visual FoxPro

LOCAL lcAlias, lnNextItem
lcAlias = ALIAS()
SELECT SystemCodes
WITH THISFORM
  WITH .lstSource
   .Sorted = .F.
   .Clear()
   SCAN
     lnNextItem = .NewItemId + 1
     .AddListItem( cDescription, lnNextItem,1)
     .AddListItem( cType, lnNextItem,2)
     .AddListItem( STR(icode_id,4,0), lnNextItem,3)
   ENDSCAN
   .Sorted = .T.
  ENDWITH
  .ResetButtons()
ENDWITH

Notice the use of  the NewItemId property of  the ListBox to get an ItemId for 
adding an item. Using AddListItem rather than AddItem allows you to add multiple 
columns of  information. Also note the use of  the Sorted property to sort the items 
in the list.
The code below will select one item from the list on the left and move it to the list on 
the right. This method of  the form is named SelectOne. It is called from the Select 
One button as well as the DblClick event of  the left list. Putting this code to a form 
method allows us to call it from two different places providing the user with more 
than one way to move an item to the selected list.

Listing 9.2. The SelectOne method of the form.
LOCAL lcCol1, lcCol2, lcCol3, lnSourceItem
WITH THIS
  * Shut off sorting to speed things up
  .lstSource.Sorted = .F.
  WITH .lstSource
   * Pick up values from source list
   lcCol1 = .ListItem( .ListItemId, 1 )
   lcCol2 = .ListItem( .ListItemId, 2 )
   lcCol3 = .ListItem( .ListItemId, 3 )
   .RemoveListItem( .ListItemId )
  ENDWITH
  WITH .lstTarget
   * Add the item to the target list
   lnItemId = .NewItemId + 1
   .AddListItem( lcCol1, lnItemId, 1 )
   .AddListItem( lcCol2, lnItemId, 2 )
   .AddListItem( lcCol3, lnItemId, 3 )
  ENDWITH
  * Set focus to the target list
  .lstTarget.SetFocus()
  * Sort the source list



Chapter 9	  Form Controls	 Page 215

  .lstSource.Sorted = .T.
  * Process all events
  DOEVENTS
  * Now reset the buttons
  .ResetButtons()
ENDWITH

This code first saves the three columns of  information from the source list to 
variables. It then removes the item from the source list. Next it adds an item to the 
target list with the variables as the data.
Notice that the source list’s sorted property is first set to .F. and then reset to .T. after 
everything is done. This is because if  the list is sorted while you manipulate its con-
tents, everything slows down while Visual FoxPro tries to keep the list items sorted.
The SelectAll method of  this form is essentially the same as the SelectOne method, 
except that it moves all items in the source list to the target list. The Unselect methods 
are also similar, except they move the data the other way.
Next, there is the DoEvents command, which tells Visual FoxPro to process all pen
ding events in the event queue. This command is needed here to deal with a timing 
problem related to the ResetButtons method that is called next. As you’ll see in the 
ResetButtons code, you will refer to the items in the two lists to determine which but-
tons should be enabled and disabled. Calling the DoEvents command will ensure that 
the proper settings have affected the lists before you run the ResetButtons method.
The ResetButtons method is used to enable and disable the buttons for selecting and 
unselecting items from the lists. Here is the code for this method:
WITH THIS
  * Enable the Unselect buttons only if there is
  * at least one item selected
  .cmdUnselectOne.Enabled = (.lstTarget.ListItemId <> 0)
  .cmdUnselectAll.Enabled = (.lstTarget.ListCount > 0)
  
  * Enable the Select buttons if there is
  * at least one item in the source list
  .cmdSelectOne.Enabled = (.lstSource.ListItemId <> 0)
  .cmdSelectAll.Enabled = (.lstSource.ListCount > 0)
  
ENDWITH

One last note about the mover dialog: notice the button-like objects to the left of  
each item in the selected list on the right. These are MoverBars, which allow the user 
to rearrange the order of  the list items. You could use code to read the items in the 
selected list from top to bottom and do something with the data. These MoverBars 
allow the user to determine in which order those things will be done. MoverBars are 
available only when the RowSourceType for the list is either None or Value. Any 
other choice of  RowSourceType will force the list’s MoverBars property to be .F.



Page 216	 Effective Techniques for Application Development with Visual FoxPro

OptionGroup
The OptionGroup used to be called radio buttons, which were named after the ‘50s 
and ‘60s car radios that had a front panel of  buttons with which to select stations. The 
OptionGroup is used when there is a short list of  options that are mutually exclusive. 
The OptionGroup can contain any number of  OptionButtons. Each OptionButton 
represents a single choice. Only one OptionButton can be “selected” at any one time; 
selecting a different OptionButton will deselect the previously selected one.
Where do these OptionGroups fit into user-interface design? Not very many places, 
because they tend to slow down the data-entry person rather than speed him up. The 
OptionGroup has to be manipulated differently from the other controls, and that 
alone will slow down a user. I find myself  using OptionGroups in some of  the forms 
I design for report criteria setup, because in those forms there are often opportunities 
to use the OptionGroup effectively. However, a TextBox or short list is more effec-
tive in common data-entry situations, such as marital status, which could have Single, 
Married, Widowed, or Divorced as choices.
Okay, so how do they work? The OptionGroup is a specialized container that is 
limited to containing only OptionButtons. By default the OptionGroup has two but-
tons in it, and you can vary the number of  buttons by adjusting the OptionGroup’s 
ButtonCount property. The OptionGroup has a Value property that contains the 
number of  the currently selected button. 
Another useful property of  the OptionGroup is Autosize. Setting this property to .T. 
will size the OptionGroup box to surround the contained buttons perfectly. If  you 
change the ButtonCount, the OptionGroup will resize itself.
The buttons inside the OptionGroup do not need to be placed vertically in a column, 
although that is their default positioning. Figure 9.12 shows a number of  different 
arrangements of  the OptionButtons in an OptionGroup. 

Figure 9.12. Various configurations of OptionGroups.



Chapter 9	  Form Controls	 Page 217

CommandButton and CommandGroup
I‘m going to address the CommandButton and CommandGroup controls at the same 
time because they relate so closely to each other. The CommandButton is used for 
starting an action like saving the user’s work or closing a form. The CommandGroup 
is a special container that, similarly to an OptionGroup, can only contain Command-
Buttons, which allows you to group buttons into inseparable units.
Whether it’s a good or bad idea to combine CommandButtons into CommandGroups 
is a matter of  opinion. I can say that when CommandButtons are combined into 
CommandGroups, the buttons should be fully defined before they are added to the 
group. This is the issue of  “early vs. late” composition. The later the composition 
(that is, building the whole from its parts), the better the design.
Consider a set of  four buttons that navigate in a table: forward, backward, to the first 
record and to the last record. You could design this CommandGroup in two different 
ways. You could create a CommandGroup class, add four buttons to it, and write the 
necessary code in each button’s click event. 
The second choice would be to define a command button class named cmdNavigate. 
Then you define each of  the navigation command buttons as a subclass of  
cmdNavigate with all of  the code that provides each button with its behavior. You 
would then have four command button classes, one for each button. You could then 
define a container class and place one of  each of  the command button classes into 
the container.
Which way is better? The latter method is preferred. But why? Because the latter 
method, defining each button as part of  a class of  buttons and then combining them 
into the group, provides the most flexibility in evolving the construct in the future. 
You can change the behavior of  any one button by altering its class code, but you can 
also affect the entire group by altering the cmdNavigate class. You don’t need to find 
the CommandGroup that contains those buttons to make the changes.
On an even more important level, what if  your design required you to have a set of  
all four navigation buttons in some forms, but only two buttons (next and previous) 
in other forms? Then you would have two CommandGroups: one with four buttons 
and one with two buttons. If  you followed the first methodology of  constructing the 
CommandGroups, there would be no cmdNext class because you defined the button 
inside its container. If  you wanted to improve the functionality of  cmdNext, you’d 
have to edit two class definitions: the CommandGroup with four buttons and the one 
with two buttons. If  you followed the concept of  late composition, you’d have a class 
for cmdNext that was used in both CommandGroups, and therefore you’d have only 
one place to alter your code.
This discussion of  CommandGroups and CommandButtons is equally true for all 
composition situations. Build the pieces completely before you try to assemble the 
whole.



Page 218	 Effective Techniques for Application Development with Visual FoxPro

Timer
The timer is at once the simplest and most complex control in Visual FoxPro. It’s 
simple in its elegant design and ease of  use. It’s complex in the types of  problems it 
can solve.
The timer has three properties and methods of  concern. The Enabled property turns 
the timer on and off, the Interval property determines how often the timer will “fire,” 
and the Timer method holds the code that runs when the timer “fires.”
The Enabled property can be set to .T. to turn the timer on, and .F. to turn it off. The 
Interval property sets the time between firings of  the timer event when the timer is 
turned on. The Interval is set in milliseconds, so a one-second interval has a value 
of  1000.

The interval of  a timer is set in milliseconds. It’s easy to bring an application to 
its knees by setting the interval thinking in seconds rather than milliseconds.
Finally, the code written in the timer event will be executed every time the 

interval expires. One caution: Be sure that the code runs in less time than the interval 
for the timer. 
It is also important to note that the timer event will not fire if  other Visual FoxPro 
code is running. In this case the timer will wait until the other code finishes and then 
it will run its timer event code. 
So what can a timer be used for? The answer to that question is in your own imagina-
tion. You could use a timer to check for a condition after each interval, or to cause a 
delayed action to occur. The possibilities are limited only by your own imagination. 

PageFrames and Pages
A tabbed dialog is a control with tabs across the top. When clicked, each tab presents 
a different set of  controls. To produce a tabbed dialog in Visual FoxPro, use a Page-
Frame, which is a special container that can contain only Pages. Pages are containers 
that can contain any object except a form or formset. Pages can actually contain other 
PageFrames, although the interface design might become confusing to the user.
One of  the properties available on the PageFrame is the Tabs property. When set to 
.T. (the default) each page has a tab at the top of  the PageFrame that can be clicked to 
select that page. When the Tabs property is set to .F., there are no tabs at the top and 
the only way to change pages is programmatically. Imagining a PageFrame without 
tabs may seem silly at first, but consider a simple data-entry form. You might want to 
provide a searching capability for this form where the user can specify a number of  
different values to assist in the search.
Your first thought might be to bring up another form when the user clicks the Search 
button. But what if  your PageFrame in the data-entry form had all data-entry con-
trols on page 1 and the searching controls on page 2? If  that PageFrame had no tabs 



Chapter 9	  Form Controls	 Page 219

and it filled the form, the user would have no idea the PageFrame was even there.
When the user clicked the Search button, you’d simply set the ActivePage property 
of  the PageFrame to 2, which would display the search controls. When the user 
finished the search, your code would reset the ActivePage of  the PageFrame to 1, 
again showing the edit controls. This provides search functionality without throwing 
another form in the user’s face. Figure 9.13 shows such a form.

Figure 9.13. An edit form with a PageFrame that has no tabs.

Figure 9.14 shows the same form after the user has clicked the Search button.

Figure 9.14. The same form as Figure 13 after the user has clicked the Search button.



Page 220	 Effective Techniques for Application Development with Visual FoxPro

The form in Figures 9.13 and 9.14 is included on the CD in the sample project and 
is named PgfSrch.scx.
Another use for PageFrames is to simplify the design of  a data-entry form. Often, 
the amount of  data required to describe a certain entity can easily make any data-
entry form appear crowded and cluttered. A PageFrame can reduce the clutter and 
confusion. PageFram.scx, also included in the sample project, demonstrates the use of  
a PageFrame to accomplish this goal of  simplifying the interface for the user. Figure 
9.15 shows the first page of  the form.

Figure 9.15. The demographic page of a customer edit form.

Figure 9.16 shows the financial page of  the same form.

Figure 9.16. The financial page of the customer edit form in Figure 15.



Chapter 9	  Form Controls	 Page 221

Without viewing every one of  the five pages here, you can imagine that if  a Page-
Frame were not used, the amount of  information required for one entity would 
crowd and clutter a single form. The user would have to work harder to find what 
he was looking for. With the PageFrame tool you can separate the information into 
groups of  related data and thus make the user’s job easier.

What about speed?
From the previous example, you can readily see that by using PageFrames a form 
could become quite complex with a large number of  controls in it. This could have 
an impact on the amount of  time it takes for that form to be created in memory. Is 
there a way to have the best of  both worlds, that is, the quick response of  a simple, 
single-page form and the simplicity of  the interface of  a multi-page form? Yes, and 
it’s called delayed instantiation. With delayed instantiation you only put the controls on 
the page of  the form that the user can see. The other pages have a single control on 
them called a proxy, a stand-in for the real controls. The real controls for the page are 
defined in a container-class definition and are instantiated when the user brings that 
page to the front.
Try using PageFram.scx to create a delayed-instantiation situation. Figure 9.17 shows 
page 4, the financial page, of  the form.

Figure 9.17. The financial page of the customer edit form.

In order to use delayed instantiation, first save the controls in question as a class, 
and then instantiate that class at runtime. You can select all controls on the page (use 
Shift-Click to select each control), then choose Save As Class from the File menu as 
shown in Figure 9.18.



Page 222	 Effective Techniques for Application Development with Visual FoxPro

Figure 9.18. The Save As Class option of the File menu.

Once you click Save As Class, you can fill in the dialog as shown in Figure 9.19.

Figure 9.19. The Save As Class dialog completed for your class.

The controls you selected will appear in a container class, so you can delete those 
controls from the page in the form designer.
Next, in the Project Manager, select the Classes tab as shown in Figure 9.20.



Chapter 9	  Form Controls	 Page 223

Figure 9.20. The Classes tab of the Project Manager.

Notice that your cntFinPage class is already in the Controls.vcx class library. Edit the 
cntFinPage class and make one minor change. Change the BorderWidth property to 
0 so the container has no border. Highlight the cntFinPage class and then click the 
Modify button. This will open that class in the Visual Class Designer. Right-click the 
class and choose Properties, find the BorderWidth property and change its value to 0. 
Then click the Close button in the class designer and click Yes to save the changes.
Finally, create the proxy class. Highlight any class in the controls library and then click 
the New button. Figure 9.21 shows the resulting New Class dialog, filled in the way 
you want it to be.

Figure 9.21. The New Class dialog filled in for your proxy class.



Page 224	 Effective Techniques for Application Development with Visual FoxPro

Figure 9.22 shows the lblProxy class after a few properties have been changed. Set 
the BackColor to red, the ForeColor to yellow, the Caption to “Proxy for actual con-
trols,” and the Visible property to .F.

Figure 9.22. The lblProxy class with your property settings.

From the Class menu select New Property and add two properties named ProxyClass-
Lib and ProxyClass. You’ll notice that these properties are added to the end of  the 
property list in the property sheet. Go to each of  these properties and give them each 
a value of  a single space to set their data type to character. Now add some code to the 
UIEnable event of  your class. The UIEnable event is fired for all objects in a page 
whenever that page is activated or deactivated. Because you want your proxy object 
to do its thing when the page is activated, the UIEnable event is the correct one to 
choose. Put this code in the UIEnable event:
LOCAL lcVisible
IF TYPE("THIS.Parent."+THIS.ProxyClass+".Name") <> "C"
  SET CLASSLIB TO (THIS.ProxyClassLib) ADDITIVE
  THIS.Parent.AddObject(THIS.ProxyClass,THIS.ProxyClass)
  lcVisible = "THIS.Parent." + THIS.ProxyClass + ".Visible"
  &lcVisible = .T.
ENDIF

This code checks to see if  the container is there already. If  it is, it does nothing. If  
the container isn’t there, the code opens the class library and then adds that container 
object to the page.
Now return to your PageFram.scx form, open the financial page, and put an lblProxy 
object on that page. Figure 9.23 shows this form designer for your PageFrame 
form. 



Chapter 9	  Form Controls	 Page 225

Figure 9.23. The lblProxy class added to the financial page of your form.

Notice in the properties sheet that you’ve set the ProxyClass property to cntFinPage, 
the name of  your controls container for this page and the ProxyClassLib property 
to VCX\Controls.vcx, the class library that holds your container class. The label base 
class was used so you could give it a caption that is visible in the form designer, 
reminding you of  its purpose.
At runtime the label can’t be seen because its Visible property is set to .F., but once 
that page is brought to the front the controls are present as shown in Figure 9.24.

Figure 9.24. The PageFrame form at runtime after the lblProxy class has added the 
container to the page.



Page 226	 Effective Techniques for Application Development with Visual FoxPro

By using this proxy technique for every page in the PageFrame, except for page 1, 
you can greatly reduce the amount of  time it takes the form to initially be created by 
reducing the number of  controls that need to be instantiated.
The actual gain in performance achieved depends on how many pages are involved 
and how many controls are on each of  those pages. The downside of  this proxy 
approach is that you must edit the controls in the class designer instead of  in the 
form designer.

Grid
The next control is the one most often requested by FoxPro 2.x developers. The Grid 
is not unlike the FoxPro 2.x Browse control because it displays multiple records in 
a row-and-column orientation, and allows the user to navigate in both row (record) 
and column (field) directions. The major weakness of  Browse in earlier versions of  
FoxPro was that it wouldn’t coordinate well with a data-entry screen or form.
The Grid control in Visual FoxPro is, in fact, a control that can be placed inside a 
form, and it acts just like any other control in the form. Figure 9.25 shows a Visual 
FoxPro form with a Grid as the only control.

Figure 9.25. A form with a simple Grid control showing the Clients table in the Time and 
Billing database.



Chapter 9	  Form Controls	 Page 227

Figure 9.26 shows this form in the form designer.

Figure 9.26. The Grid form in the form designer.

Notice that the ColumnCount property for the grid is set to -1. This is a special 
ColumnCount that indicates that the Grid should have one column for each field in 
its record source. The actual count of  columns will be determined at runtime.
This format for a Grid can be used to get the simplest Grid into a form. Of  course, 
you can set the ColumnCount property to any number you choose and fully control 
the number of  columns the Grid will have. Let’s step back a moment before you dig 
into this, and take a more general look at the Grid itself  and its construction.
The Grid is a container that can contain only one object class: a column. A column, 
also a container, can contain one header object and one or more controls. The default 
control in a column is a TextBox. Figure 9.27 shows this containership relationship. 

Figure 9.27. The Visual FoxPro Grid containership structure.



Page 228	 Effective Techniques for Application Development with Visual FoxPro

In Figure 9.27 the outer box is the Grid, which can contain only columns. The 
columns in turn can contain one header and one or more controls. 
As stated earlier, the default control for a column is a TextBox. However, you can 
actually put any control you like into the column of  a Grid. Right-clicking the Grid 
and choosing the Edit option will allow you to add a different control to a column. 
When you choose Edit from the right-click menu, the Grid will get a colored box 
around it, indicating that you are now editing the Grid and its contents.
Once the Grid is in edit mode, you can choose a control from the form controls 
toolbar and simply drop it on one of  the columns in the Grid. Note that this can 
only be done on Grids with a ColumnCount other than -1. Figure 9.28 shows your 
Grid form after you have changed the ColumnCount to 4 and you are about to select 
Edit.

Figure 9.28. The shortcut menu for your Grid, ready to select the Edit option.

Next, click the EditBox control in the form controls toolbar and drop that control 
over the fourth column of  the Grid. See Figure 9.29.



Chapter 9	  Form Controls	 Page 229

Figure 9.29. Dropping the EditBox control in column 4 of the Grid.

To confirm that the EditBox has actually been added to column 4, you can use the 
ComboBox at the top of  the property sheet as shown in Figure 9.30.

Figure 9.30. The Grid form in the form designer.



Page 230	 Effective Techniques for Application Development with Visual FoxPro

The listing under column 4 contains a Header, a TextBox, and an EditBox. Consider 
that any column can contain more than one control, but at any time only one of  
those controls is the current control, the one that the user will see. You can change 
the CurrentControl property for column 4 to be the Edit1 EditBox.
While you’re editing the Grid, you can also increase its row height by dragging the line 
between rows. Make your Grid look like the one in Figure 9.31.

Figure 9.31. The Grid form with a larger row height.

You can also change the RowHeight of  the Grid by typing a new height in the 
property sheet for the RowHeight property.
Now run the form and see what it looks like. Figure 9.32 shows the Grid form 
running.

Figure 9.32. The Grid form as it’s running.



Chapter 9	  Form Controls	 Page 231

Notice that column 4 contains the word “Memo” rather than the contents of  the 
memo field. This is because of  one column property that is very important to 
understand: Sparse. This property tells the column whether to show the control in 
the column, or just the data, when a cell doesn’t have focus. By default the Sparse 
property is .T., which only shows the data and does not draw the CurrentControl in 
all cells of  the column except the cell that has focus. That is why you see the word 
“Memo,” the data when an EditBox is not used for a memo field. If  you simply 
change the Sparse property of  column 4 to .F. and then run the form, you’ll see 
something similar to Figure 9.33.

Figure 9.33. Column 4 with the Sparse property set to .F.

I’ll discuss more about the Grid control in the next chapter, “Advanced Form Con-
trols.”

Container
The Container control is simply a holder for other controls. In the PageFrame section 
of  this chapter, we presented the idea of  delayed instantiation, you saved all controls 
on a page into a class library. Visual FoxPro automatically placed these controls inside 
a container for you.
You can use containers in your class designs as well. Whenever you need more than 
one control to perform a function, there is a possibility that a container might make 
the job easier.
You’ll still have to deal with the issue of  “early vs. late” composition when using con-
tainers. It’s always a good idea to fully define each control as a class of  its own before 
adding it to the container. The next, “Advanced Form Controls,” will discuss the use 
of  containers in more depth.



Page 232	 Effective Techniques for Application Development with Visual FoxPro

Misusing and abusing the controls
Ah, the misuse and abuse of  controls. You see it everywhere. One issue that comes 
up quite often is the question of  how long it takes a ListBox to load a list of  20,000 
items. Think about it. Would you want to scroll through a ListBox of  20,000 items 
looking for the one you wanted? ListBox and ComboBox are powerful controls for 
presenting a relatively small number of  choices to the user. When the number of  op-
tions grows too large, then it’s time to find another way to present the choices.
How about the form with nothing in it but a Grid that has ComboBoxes in some 
columns, EditBoxes in others, and even a Grid in one of  the columns? Wouldn’t 
this interface be better presented to the user by diverging and using more than one 
control?
Take a look at Figure 9.34. Can you see anything wrong with this interface design?

Figure 9.34. A PageFrame gone wild.

This is obviously a poor use of  a PageFrame. What do you do when you have more 
customers than you can fit into pages? 
Another abuse of  PageFrames is using one when the interface should actually use 
multiple forms. Another is where the PageFrame is unnecessary (all of  the controls 
could fit in one form without a PageFrame).
An OptionGroup should never have more than four or five options in it. More choi
ces than that should use a ComboBox or ListBox control. Using an OptionGroup for 
more than four or five choices is another example of  abuse of  a control.
I can go on and on listing the abuses of  various controls; the point is that each con-
trol has its strengths and weaknesses. The design of  an interface should take advan-
tage of  the strengths of  a control and avoid its weaknesses.



Chapter 9	  Form Controls	 Page 233

As a developer, you need to understand the purpose for the form and then build its 
contents to meet that purpose. You need to know the strengths and weaknesses for 
each of  the controls available and choose the control that best meets the require-
ments at hand.
The misuse of  containers isn’t uncommon. You should use a container only when it 
adds to the functionality or reusability of  the controls it contains. Do not use con
tainers simply to “Lasso” a bunch of  controls together.

Summary
The control is the object closest to the user. Although the user sees and interacts with 
forms, the controls provide a message path between the user and the application. 
The selection of  controls is not always a simple process. Many times you will need to 
change your initial choices to better meet the user’s needs.
Visual FoxPro not only provides a variety of  base controls for you to choose from, 
but it provides you the ability to create your own controls. Using the class designer, 
you can modify the behavior of  the Visual FoxPro base classes and create new con-
trols that are specialized for whatever purpose you have.
You can combine multiple controls, using containers, into more complex interface 
objects that meet the needs of  the user. These containers can also be used to reduce 
your own development time. By using containers to combine the controls that are 
“always” found together, you reduce the time it takes to build the forms. For example, 
building an address block container as a class would allow you to place that address 
block in the customer form, the employee form, the vendor form, etc.
Choosing the right control is critically important to building a good user interface. 
While it is possible to misuse any control discussed in this chapter, each one deserves 
a place in your toolbox.



Page 234	 Effective Techniques for Application Development with Visual FoxPro


