
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 9

GUI Programming Using Tkinter

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Text-based User Interfaces
Text-based user interfaces (TUI) is a user interface that uses
text, symbols, and colors. It runs in a character-based terminal.

alternately called terminal user interfaces, or a character-
based user interfaces to reflect a dependence upon the properties
of computer terminals.

Like GUIs, they may use the entire screen area and
accept mouse and other inputs. They may also use color and
often structure the display using special graphical characters
such as ┌ and ╣, referred to in Unicode as the "box drawing"
set.

The modern context of use is usually a terminal emulator.

2

https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvVGVybWluYWxfZW11bGF0b3I

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Text-based User Interfaces

3

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Types of text terminals

From text application's point of view, a text screen (and communications with it)
can belong to one of three types (here ordered in order of decreasing accessibility):

A genuine text mode display, controlled by a video adapter or the central
processor itself. This is a normal condition for a locally running application on
various types of personal computers and mobile devices. If not deterred by
the operating system, a smart program may exploit the full power of a
hardware text mode.

A text mode emulator. Examples are xterm for X Window System and win32
console (in a window mode) for Microsoft Windows. This usually supports
programs which expect a real text mode display, but may run considerably
slower. Certain functions of an advanced text mode, such as an
own font uploading, almost certainly become unavailable.

A remote text terminal. The communication capabilities usually become
reduced to a serial line or its emulation, possibly with few ioctl()s as an out-of-
band channel in such cases as Telnet and Secure Shell. This is the worst case,
because software restrictions hinder the use of capabilities of a remote display
device.

4

https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvQ29uc29sZV9hcHBsaWNhdGlvbg
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvVGV4dF9tb2Rl
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvVmlkZW9fYWRhcHRlcg
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvUGVyc29uYWxfY29tcHV0ZXI
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvTW9iaWxlX2RldmljZQ
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvT3BlcmF0aW5nX3N5c3RlbQ
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvRW11bGF0b3I
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvWHRlcm0
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvWF9XaW5kb3dfU3lzdGVt
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvV2luMzJfY29uc29sZQ
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvTWljcm9zb2Z0X1dpbmRvd3M
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvUmFzdGVyX2ZvbnQ
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvVGV4dF90ZXJtaW5hbA
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU2VyaWFsX2xpbmU
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvSW9jdGw
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvT3V0LW9mLWJhbmRfZGF0YQ
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvVGVsbmV0
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU2VjdXJlX1NoZWxs

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

MS-DOS command-line interface
MS-DOS was the main operating system for IBM PC compatible personal computers during
the 1980s

On IBM Personal Computers and compatibles, the Basic Input Output System (BIOS) and
DOS system calls provide a way to write text on the screen.

5

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Microsoft Windows

command-line interface
All versions of Microsoft Windows have had an
MS-DOS-like command-line interface (CLI) called
Command Prompt. This could run many DOS and
variously Win32, OS/2 1.x and POSIX command
line utilities in the same command-line session,
allowing piping between commands

6

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Terminal Emulators
Terminal emulators replicate the functionality of a
traditional computer terminal to provide users with
access to a local or distant host. The emulator
presents a terminal window to appear as though it
is directly connected to the client. Most terminal
emulators are designed for specific uses and
function only with specific operating systems.
Companies use these tools to access data and
programs on remote devices, servers, or
mainframes.

7

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Graphical User Interface (GUI)
The graphical user interface
is a form of user interface
that allows users to interact
with electronic devices
through graphical icons or
elements instead of text-
based user interfaces.

GUIs were introduced in
reaction to the perceived
steep (high) learning curve
of command-line interfaces
(CLIs) which require
commands to be typed on a
computer keyboard.

The actions in a GUI are
usually performed through
direct manipulation of the
graphical elements.

8

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

GUIs

The precursor to GUIs
was invented by
researchers at the
Stanford Research
Institute, led by
Douglas Engelbart.
They developed the use
of text-based
hyperlinks manipulated
with a mouse (1963).

In 1983, the Apple Lisa
was first GUI offering.

9

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

GUIs

The X Windows
System was
introduced in the
mid-1980s to
provide graphical
support for unix
operating systems.

Microsoft introduced
A Windows 1.0 in
1985

10

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

GUIs

The GUIs familiar to most people today are

– Microsoft Windows,

– Mac OS X, and

– the X Window System interfaces for desktop

and laptop computers in Unix based systems,

– Android, Windows Phone, and Apple's iOS for

handheld ("smartphone") devices.

11

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

GUI programming in Python

Python has a huge number of GUI

frameworks (or toolkits) available for

it,from Tkinter (traditionally bundled with

Python, using Tk) to a number of other

cross-platform solutions, as well as bindings

to platform-specific technologies.

12

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Python GUI Frameworks
PyQT: PyQT is one of the favoured
cross-platform Python bindings
implementing the Qt library for the Qt
(owned by Nokia) application
development framework. Currently,
PyQT is available for Unix/Linux,
Windows, Mac OS X and Sharp
Zaurus. It combines the best of Python
and Qt and it up to the programmer to
decide whether to create a program by
coding or using Qt Designer to create
visual dialogs.

It is available in both, commercial as
well as GPL license. Although some
features may not be available in the
free version, if your application is
open source, then you can use it under
the free license.

13

Resource: https://blog.resellerclub.com/the-6-best-python-gui-frameworks-for-developers/

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Python GUI Frameworks

Kivy : Kivy is an
OpenGL ES 2
accelerated framework
for the creation of new
user interfaces. It
supports multiple
platforms namely
Windows, MacOSX,
Linux, Android iOS and
Raspberry Pi. It is open
source and comes with
over 20 widgets in its
toolkit.

14

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Python GUI Frameworks
WxPython : WxPython is an open source wrapper for cross-platform GUI
library WxWidgets (earlier known as WxWindows) and implemented as a
Python extension module. With WxPython you as a developer can create
native applications for Windows, Mac OS and Unix. If you’re just beginning
to develop applications in WxPython, here is a good simple tutorial you can go
through.

PyGUI : PyGUI is a graphical application cross-platform framework for Unix,
Macintosh and Windows. Compared to some other GUI frameworks, PyGUI is
by far the simplest and lightweight of them all, as the API is purely in sync
with Python.PyGUI inserts very less code between the GUI platform and
Python application, hence the display of the application usually displays the
natural GUI of the platform.

PySide: PySide is a free and cross-platform GUI toolkit Qt initiated and
sponsored by Nokia, Qt is a UI framework and a cross-platform application.
PySide currently supports Linux/X11, Mac OS X, Maemo and Windows and,
support for Android is in the plans for the near future.PySide provides tools to
works with multimedia, XML documents, network, databases and GUI. A key
feature of PySide is its API compatibility with PyQt4, so if you wish to
migrate to PySide then the process will be hassle-free.

For a complete list: http://wiki.python.org/moin/GuiProgramming

15

http://wiki.python.org/moin/GuiProgramming

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Python GUI Frameworks
Tkinter: Tkinter is the most
popular programming package for
graphical user interface or desktop
apps. It is so named because of its
simplicity. Tkinter is the
combination of Tk and Python's
standard GUI framework.

TKinter comes with an abundance
of resources of codes and
reference books which is the major
merit of choosing it as a package.
It provides diverse widgets, such
as labels, buttons, and text boxes
used in a graphical user interface
application. The Button control
also called widgets are used to
display buttons in developed
application while the Canvas
widget is used to draw shapes
(lines, ovals, polygon...) in your
application.

16

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

Motivations

We will learn Tkinter.

Tkinter is not only a useful tool for

developing GUI projects, but also a valuable

pedagogical tool for learning object-oriented

programming.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Tkinter Programming

Tkinter is the standard GUI library for Python. Python when
combined with Tkinter provides a fast and easy way to create
GUI applications. Tkinter provides a powerful object-oriented
interface to the Tk GUI toolkit.

Tkinter (pronounced tea-kay-inter) is the Python interface to Tk,
the GUI toolkit for Tcl/Tk.

Tcl (pronounced "tickle" and is an acronym for Tool Command
Language) is a popular scripting language in the domains of
embedded applications, testing, prototyping, and GUI
development. Tk on the other hand is an open source,
multiplatform widget toolkit that is used by many different
languages for building GUI programs.

The Tkinter interface is implemented as a Python module,
tkinter.py, which is just a wrapper around a C-extension that
uses Tcl/Tk libraries.

18

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Tkinter Programming : Widgets

tkinter is one of the libraries which provides a number of
graphical components to implement GUI based programs.
They are called widgets.

Widgets are standard graphical user interface (GUI)
elements like butons, labels, textboxes.

In a GUI program, there is a window with various graphical
widgets/components with which the user can interact.

Widgets are basic building blocks of a GUI application.
Over the years, several widgets became a standard in all
toolkits on all OS platforms; for example a button, a check
box or a scroll bar. Some of them might have different
names. For instance, a check box is called a check button in
Tkinter.

Tkinter has a small set of widgets which cover basic
programming needs. More specialised widgets can be
created as custom widgets.

Widgets are something like elements in the HTML. You
will find different types of widgets to the different types of
elements in the Tkinter.

19

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Tkinter Programming : Widgets

20

Button: The Button widget is used to display buttons in your

application.

Canvas: The Canvas widget is used to draw shapes, such as

lines, ovals, polygons and rectangles, in your application.

Checkbutton: The Checkbutton widget is used to display a

number of options as checkboxes. The user can select multiple

options at a time.

Entry: The Entry widget is used to display a single-line text

field for accepting values from a user.

https://www.tutorialspoint.com/python/python_gui_programming.htm

https://www.tutorialspoint.com/python/tk_button.htm
https://www.tutorialspoint.com/python/tk_canvas.htm
https://www.tutorialspoint.com/python/tk_checkbutton.htm
https://www.tutorialspoint.com/python/tk_entry.htm

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Tkinter Programming : Widgets

Frame: The Frame widget is used as a container widget to

organize other widgets.

Label: The Label widget is used to provide a single-line

caption for other widgets. It can also contain images.

Listbox: The Listbox widget is used to provide a list of options

to a user.

21

https://www.tutorialspoint.com/python/tk_frame.htm
https://www.tutorialspoint.com/python/tk_label.htm
https://www.tutorialspoint.com/python/tk_listbox.htm

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Tkinter Programming : Widgets

22

Menubutton: The Menubutton widget is used to display menus in

your application.

Menu: The Menu widget is used to provide various commands to a

user. These commands are contained inside Menubutton.

Message: The Message widget is used to display multiline text

fields for accepting values from a user.

Radiobutton: The Radiobutton widget is used to display a number

of options as radio buttons. The user can select only one option at a

time.https://www.tutorialspoint.com/python/python_gui_programming.htm

https://www.tutorialspoint.com/python/tk_menubutton.htm
https://www.tutorialspoint.com/python/tk_menu.htm
https://www.tutorialspoint.com/python/tk_message.htm
https://www.tutorialspoint.com/python/tk_radiobutton.htm

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Tkinter Programming : Widgets
Scale: The Scale widget is used to provide a slider widget.

Scrollbar: The Scrollbar widget is used to add scrolling capability

to various widgets, such as list boxes.

23

Text: The Text widget is used to display text in multiple lines.

Toplevel: The Toplevel widget is used to provide a separate

window container.

Spinbox: The Spinbox widget is a variant of the standard Tkinter

Entry widget, which can be used to select from a fixed number of

values.

https://www.tutorialspoint.com/python/tk_scale.htm
https://www.tutorialspoint.com/python/tk_scrollbar.htm
https://www.tutorialspoint.com/python/tk_text.htm
https://www.tutorialspoint.com/python/tk_toplevel.htm
https://www.tutorialspoint.com/python/tk_spinbox.htm

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Tkinter Programming : Widgets

24

PanedWindow: A PanedWindow is a container widget that

may contain any number of panes, arranged horizontally or

vertically.

LabelFrame: A labelframe is a simple container widget. Its

primary purpose is to act as a spacer or container for

complex window layouts.

tkMessageBox: This module is used to display message

boxes in your applications.

https://www.tutorialspoint.com/python/python_gui_programming.htm

https://www.tutorialspoint.com/python/tk_panedwindow.htm
https://www.tutorialspoint.com/python/tk_labelframe.htm
https://www.tutorialspoint.com/python/tk_messagebox.htm

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Tkinter Programming
Creating a GUI application using Tkinter is an easy task. All you
need to do is perform the following steps:
– Import the Tkinter module.

– Generate the GUI application main (root) window.

– Add one or more widgets to the GUI application.

– Enter the main event loop to take action against each event
triggered by the user

25

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Root Window

The root window is just like a piece of paper on which
you can draw graphical objects. The actual UI
construction is pretty standardized. You create a root
window, add widgets and then add functionality to
widgets.

Following are the steps you are required to follow:
1. Create a root window

2. Add widgets to the root window

3. Customize widgets

4. The geometry of the widgets

5. Bind event handlers to widget events

6. Start the main event loop

26

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Generating An Empty Root

Window

27

import tkinter

def main():

#Create a root window

root = tkinter.Tk()

#Call the event loop

root.mainloop()

#Call the function main

main()

import tkinter imports all the methods, classes, and

attributes of tkinter module into the current

workspace. (import Tkinter in Pyhton 2.X, import

tkinter in pyhton 3.X)

root = tkinter.Tk() generates an instance of tkinter’s

Tk class which is a root window and assigned it to

the variable root. Simply speaking, it is Tk class’s

constructor method to create the main window.

root.mainloop() executes the mainloop function.

This function runs like an infinite loop until you

close the main window. (An event loop is basically

telling the code to keep displaying the window until

we manually close it. It runs in an infinite loop in

the back-end.)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Adding widgets to root window

We have generated our main or main, top-level or root

window. Now we’ve to add components within it. These

components, as previously described, are called Widgets.

The basic syntax of creating widgets is as follows:

Syntax:

<var_name for widget> =

WidgetName(its container window, its configuration options)

The container window can be the root window, a frame or a

pane. So, add or place widgtes on the root window.

28

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Adding widgets to root window

The code added a new
instance(for the sake of
simplicity we will call it
an object) named button
for the Button widget.

The first parameter
defined root as its
container.

The second parameter is
a configuration
parameter which
configured its text option
as “Click Me”

We call the pack method
on this widget. This tells
it to size itself to place
and fit the given text, and
make itself visible.

29

import tkinter

def main():

Create a root window

root = tkinter.Tk()

create a button widget

button = tkinter.Button(root, text="Click Me")

button.pack()

Call the event loop

root.mainloop()

Call the function main

main()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Adding functionality to a button

We will write a callback function to add
behavior to our button.

A callback function is also known as an event
handler because it handles the event that
occurs when the user clicks the button.

After writing the event handler or callback
function, we register it with the button. We
provide one more configuration option while
creating a button.

30

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Adding functionality to a button

31

import tkinter

from tkinter import messagebox

#callback function

def do_something():

#the following line of code show messagebox

messagebox.showinfo('Response', 'You have clicked the button')

def main():

Create a root window

root = tkinter.Tk()

create a button widget

button = tkinter.Button(root, text="Click Me", command = do_something)

button.pack()

Call the event loop

root.mainloop()

Call the function main

main()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Three Components Of GUI

Programming
There are mainly three components or
fundamentals of GUI programming in Python:
1.What to place on the screen? (Widgets)

- Generate root window
- Add widgets

2.Where to place widgets on the screen and how to
organize them? (Geometry Management)

3.How do widgets work? (Events and callback
functions)

- Write callback or event handler functions to the events
such as button click.

32

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Geometry Management

All Tkinter widgets have access to specific geometry
management methods, which have the purpose of organizing
widgets throughout the parent widget area. Tkinter exposes the
following geometry manager classes: pack, grid, and place.

– The pack() Method − This geometry manager organizes widgets in
blocks before placing them in the parent widget.

– The grid() Method − This geometry manager organizes widgets in
a table-like structure in the parent widget.

– The place() Method − This geometry manager organizes widgets
by placing them in a specific position in the parent widget.

33

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

pack() Method
This geometry manager organizes widgets in blocks before placing
them in the parent widget.

Syntax : widget.pack(pack_options)

Here is the list of possible options −

– expand − When set to true, widget expands to fill any space not otherwise
used in widget's parent.

– fill − Determines whether widget fills any extra space allocated to it by the
packer, or keeps its own minimal dimensions: NONE (default), X (fill
only horizontally), Y (fill only vertically), or BOTH (fill both horizontally
and vertically).

– side − Determines which side of the parent widget packs against: TOP
(default), BOTTOM, LEFT, or RIGHT.

34

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

pack() Method

35

import tkinter

window = tkinter.Tk()

window.title("GUI")

creating 2 frames TOP and BOTTOM

top_frame = tkinter.Frame(window).pack()

bottom_frame = tkinter.Frame(window).pack(side = "bottom")

now, create some widgets in the top_frame and bottom_frame

btn1 = tkinter.Button(top_frame, text = "Button1", fg = "red").pack()# 'fg - foreground' is used to color the contents

btn2 = tkinter.Button(top_frame, text = "Button2", fg = "green").pack()# 'text' is used to write the text on the Button

btn3 = tkinter.Button(bottom_frame, text = "Button2", fg = "purple").pack(side = "left")# 'side' is used to align the widgets

btn4 = tkinter.Button(bottom_frame, text = "Button2", fg = "orange").pack(side = "left")

window.mainloop()

LEFT places the three label side by side

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

fill Option

If you want to make the
widgets as wide as the
parent widget, you have
to use the fill=tk.X option

36

import tkinter as tk

root = tk.Tk()

w = tk.Label(root, text="Red Sun", bg="red", fg="white")

w.pack()

w = tk.Label(root, text="Green Grass", bg="green", fg="black")

w.pack(fill=tk.X)

w = tk.Label(root, text="Blue Sky", bg="blue", fg="white")

w.pack(fill=tk.X)

tk.mainloop()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Grid Manager

The first geometry manager of Tk had been pack. The algorithmic
behaviour of pack is not easy to understand and it can be difficult to
change an existing design.

Grid was introduced in 1996 as an alternative to pack. Though grid is
easier to learn and to use and produces nicer layouts, lots of developers
keep using pack.

Grid is in many cases the best choice for general use. While pack is
sometimes not sufficient for changing details in the layout, place gives
you complete control of positioning each element, but this makes it a
lot more complex than pack and grid.

The Grid geometry manager places the widgets in a 2-dimensional
table, which consists of a number of rows and columns. The position
of a widget is defined by a row and a column number.

37

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

grid() Method

This geometry manager organizes widgets in a table-like structure in
the parent widget.

Syntax : widget.grid(grid_options)

Here is the list of possible options −
– column − The column to put widget in; default 0 (leftmost column).

– columnspan − How many columns widget occupies; default 1.

– ipadx, ipady − How many pixels to pad widget, horizontally and
vertically, inside widget's borders.

– padx, pady − How many pixels to pad widget, horizontally and vertically,
outside v's borders.

– row − The row to put widget in; default the first row that is still empty.

– rowspan − How many rowswidget occupies; default 1.

– sticky − What to do if the cell is larger than widget. By default, with
sticky='', widget is centered in its cell. sticky may be the string
concatenation of zero or more of N, E, S, W, NE, NW, SE, and SW,
compass directions indicating the sides and corners of the cell to which
widget sticks.

38

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Example 1 with grid

Places Labels in positions
(0,0),(1,0),(2,0),(3,0),(4,0),(5,0) : First Column

Places Entries in positions
(0,1),(1,1),(2,1),(3,1),(4,1),(5,1) : Second
Column

39

import tkinter as tk

colours = ['red','green','orange','white','yellow','blue']

r = 0

for c in colours:

tk.Label(text=c, relief=tk.RIDGE, width=15).grid(row=r,column=0)

tk.Entry(bg=c, relief=tk.SUNKEN, width=10).grid(row=r,column=1)

r = r + 1

tk.mainloop()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Example 2 with grid

40

import tkinter

root = tkinter.Tk()

for r in range(3):

for c in range(4):

tkinter.Label(root, text='R%s/C%s'%(r,c), borderwidth=3, padx=3, pady=3, fg="yellow", \

bg="blue").grid(row=r,column=c)

root.mainloop()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

place() Method

This geometry manager organizes widgets by placing them in a
specific position in the parent widget.

Syntax: widget.place(place_options)

Here is the list of possible options −
– anchor − The exact spot of widget other options refer to: may be N, E, S,

W, NE, NW, SE, or SW, compass directions indicating the corners and
sides of widget; default is NW (the upper left corner of widget)

– bordermode − INSIDE (the default) to indicate that other options refer to
the parent's inside (ignoring the parent's border); OUTSIDE otherwise.

– height, width − Height and width in pixels.

– relheight, relwidth − Height and width as a float between 0.0 and 1.0, as
a fraction of the height and width of the parent widget.

– relx, rely − Horizontal and vertical offset as a float between 0.0 and 1.0,
as a fraction of the height and width of the parent widget.

– x, y − Horizontal and vertical offset in pixels

41

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Example 1 with place

42

import tkinter

from tkinter import messagebox

top = tkinter.Tk()

top.geometry("300x400") #Width x Height

def helloCallBack():

messagebox.showinfo("Hello Python", "Hello World")

B = tkinter.Button(top, text ="Hello", command = helloCallBack)

B.pack()

B.place(bordermode="outside", height=100, width=200)

top.mainloop()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Example 2 with place

43

import tkinter as tk

import random

root = tk.Tk()

width x height + x_offset + y_offset:

geometry("window width x window height + position right + position down")

position the top left corner of the window right 300 pixels and down 300 pixels.

root.geometry("170x200+30+230")

languages = ['Python', 'Perl', 'C++', 'Java', 'Tcl/Tk']

labels = range(5)

for i in range(5):

ct = [random.randrange(256) for x in range(3)]

brightness = int(round(0.299 * ct[0] + 0.587 * ct[1] + 0.114 * ct[2]))

ct_hex = "%02x%02x%02x" % tuple(ct)

bg_colour = '#' + "".join(ct_hex)

l = tk.Label(root,

text=languages[i],

fg='White' if brightness < 120 else 'Black',

bg=bg_colour)

l.place(x=20, y=30 + i * 30, width=120, height=25)

root.mainloop()

- we assign to every label a different colour, which we randomly create using the randrange method of

the random module. We calculate the brightness (grey value) of each colour. If the brightness is less than

120, we set the foreground colour (fg) of the label to White otherwise to black, so that the text can be

easier read.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Binding Functions
Calling functions whenever an event occurs refers to a binding function.
– In the below example, when you click the button, it calls a function called say_hi.

– Function say_hi creates a new label with the text Hi.

44

import tkinter

window = tkinter.Tk()

window.title("GUI")

creating a function called say_hi()

def say_hi():

tkinter.Label(window, text = "Hi").pack()

'command' is executed when you click the button

in this above case we're calling the function 'say_hi'.

tkinter.Button(window, text = "Click Me!", command =

say_hi).pack()

window.mainloop()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Binding Functions

Another way to bind functions is using events. Events are something
like mousemove, mouseover, clicking, scrolling, etc..,.

Example on the next slide has clicking events are of 3 different types
namely leftClick, middleClick, and rightClick.

<Button-1>' parameter of bind method is the left clicking event, i.e.,
when you click the left button the bind method call the function
associated with it.

– <Button-1> for left click

– <Button-2> for middle click

– <Button-3> for right click

45

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Binding Functions

46

import tkinter

window = tkinter.Tk()

window.title("GUI")

#creating 3 different functions for 3 events

def left_click(event):

tkinter.Label(window, text = "Left Click!").pack()

def middle_click(event):

tkinter.Label(window, text = "Middle Click!").pack()

def right_click(event):

tkinter.Label(window, text = "Right Click!").pack()

window.bind("<Button-1>", left_click)

window.bind("<Button-2>", middle_click)

window.bind("<Button-3>", right_click)

window.mainloop()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

GUI with Classes
You can use GUI Classes using root window when you're
developing a large software or something that's big.

47

import tkinter

class GeeksBro:

def __init__(self, window):

create a button to call a function called 'say_hi'

self.text_btn = tkinter.Button(window, text = "Click Me!", command = self.say_hi)

self.text_btn.pack()

closing the 'window' when you click the button

self.close_btn = tkinter.Button(window, text = "Close", command = window.quit)

self.close_btn.pack()

def say_hi(self):

tkinter.Label(window, text = "Hi").pack()

window = tkinter.Tk()

window.title("GUI")

geeks_bro = GeeksBro(window)

window.mainloop()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
48

Examples from textbook:

Getting Started with Tkinter

Getting started with Tkinter with a simple example.

SimpleGUI Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
49

Processing Events
window.mainloop() # Create an event loop

The statement creates an event loop. The event loop processes the
events continuously.

ProcessButtonEvent

Run

Event to

Process?

Yes

false

Start Event Loop

Request to

Terminate?

Process

Yes

No

Terminate

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
50

The Widget Classes

Widget Class Description

Button A simple button, used to execute a command.

Checkbutton Clicking a check button toggles between the values.

Radiobutton Clicking a radio button sets the variable to that value,

and clears all other radio buttons associated with the

same variable.

Entry A text entry field, a.k.a a text field or a text box.

Frame A container widget for containing other widgets.

Menu A menu pane, used to implement pull down and popup menus.

Menubutton A menu button, used to implement pull down menus.

Label Displays a text or an image.

Message Displays a text. Similar to the label widget, but can

automatically wrap text to a given width or aspect ratio.

Text Formatted text display. Allows you to display and edit

text with various styles and attributes. Also supports

embedded images and windows.

Scale Allows you to set a numerical value by dragging a

"slider".

Canvas Structured graphics, used to draw graphs and plots,

create graphics editors, and to implement custom widgets.

Toplevel A container widget displayed as a separate, top-level

window.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
51

Color and Font
To specify a color, you can either use
– a color name such as red, yellow, green, blue, white, black, purple,

etc,
– or explicitly specify the red, green, and blue (RGB) color

components using a string #RRGGBB, where RR, GG, BB are
hexadecimal representations of the red, green and blue values,
respectively.

You can specify a font in a string that includes the font name,
size, and style. Here are

Some examples:

"Times 10 bold"

"Helvetica 10 bold italic"

"Courier New 20 bold italic"

"Courier New 20 bold italic over strike underline"

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
52

Text Formatting

The text in a label and a button is centered by default.

You can change it by using the justify option with values

LEFT, CENTER, or RIGHT.

You can also display the text in multiple lines by

inserting the newline character \n to separate texts.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
53

Mouse Cursor

You can set a mouse cursor by using the cursor option with

values such as

"arrow" (default),

"circle",

"cross"

"plus", etc.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
54

Change Properties
When you construct a widget, you can specify its properties such as fg, bg, font, cursor,
text, and command in the constructor.
Later in the program, you can change the widget’s properties by using the following
syntax:

widgetName["propertyName] = newPropertyValue

Examples:

btShowOrHide = Button(window, text = "Show", bg = "white")

btShowOrHide["text"] = "Hide"

btShowOrHide["bg"] = "red"

btShowOrHide["fg"] = "#AB84F9" # Change fg color to #AB84F9

btShowOrHide["cursor"] = "plus" # Change mouse cursor to plus

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
55

Widget Demo

WidgetsDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
56

Canvas

(0, 0) X Axis

Y Axis

(x, y)

 x

 y

Python Coordinate

System

X Axis
Conventional

Coordinate

System

(0, 0)

Y Axis

Canvas can be used to display shapes.

You can use the method such as create_rectangle,

create_oval, create_arc, create_polygon, and create_line to

draw a rectangle, oval, arc, polygon, and line on a canvas.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
57

Canvas Demo

CanvasDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
58

Drawing Methods
 (x1, y1)

(x2, y2)

canvas.create_rectangle(x1, y1,

 x2, y2)

(x1, y1)

(x2, y2)

canvas.create_oval(x1, y1, x2, y2)

(x1, y1)

(x2, y2)

canvas.create_arc(x1, y1, x2, y2, start, extent)

canvas.create_line(x1, y1, x2, y2)

canvas.create_oval(x1, y1, x2, y2, x3, y3)

(x, y)

canvas.create_text(x, y, text = "ABCDE")

(x1, y1)

(x2, y2)

(x1, y1)

(x3, y3)

(x2, y2)

ABCDE

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
59

Geometry Managers

Grid Manager

Pack Manager

Place Manager

Since each manager has its own style of placing

the widget, it is not a good practice to mix the

managers for the widgets in the same container.

You can use a frame as a subcontainer to achieve

desired layout.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
60

Grid Managers

GridManagerDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
61

Pack Managers

PackManagerDemo2 Run

PackManagerDemo1 Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
62

Place Managers

PlaceManagerDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
63

Case Study: Loan Calculator

LoanCalculator Run

equivalent

label

label

label

label

entry

entry

entry

label

label

label

button

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
64

Display Images

You can add an image in a label, button, check

button, and radio button. To create an image, use

the PhotoImage class as follows:

photo = PhotoImage(file = imagefilename)

The image file must be GIF. You can use a

conversion utility to convert image files in other

format into GIF.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
65

Image Example

ImageDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
66

Menus

Tkinter provides a comprehensive solution for
building graphical user interfaces.

MenuDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
67

Popup Menus

PopupMenuDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
68

Mouse and Key Events

widget.bind(event, handler)

def popup(event):

menu.post(event.x_root, event.y_root)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
69

Events

Event Description

 <Button-i> Button-1, Button-2, and Button-3 are for left, middle, or

right buttons. When a mouse button is pressed over the

widget, Tkinter automatically grabs the mouse pointer

location. ButtonPressed-i is synonymous to Button-i.

<Bi-Motion> An event occurs, when a mouse button is moved while being

held down on the widget.

<ButtonReleased-i> An event occurs, when a mouse button is released.

<Double-Button-i> An event occurs, when a mouse button is double-clicked.

<Triple-Button-i> An event occurs, when a mouse button is triple-clicked.

<Enter> An event occurs, when a mouse pointer enters the widget.

<Leave> An event occurs, when a mouse pointer leaves the widget.

<Return> An event occurs, when the Enter key is pressed. You can

bind any key such as <A>, , <Up>, <Down>, <Left>,

<Right> in the keyboard with an event.

<Key> An event occurs, when a key is pressed.

<Shift-A> An event occurs, when the Shift+A keys are pressed. You

use Alt, Shift, and Control to combine with other keys.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
70

Event Properties

Event Description

widget The widget object that fires this event.

x and y The current mouse location in the widget pixels.

x__root and y_root The current mouse position relative to the upper left

corner of the screen, in pixels.

num The button number (1, 2, 3), indicating which mouse

button was clicked.

char The char entered from the keyboard for key events.

keysym The key symbol for the key entered from the keyboard for

key events.

keycode The key code for the key entered from the keyboard for

key events.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
71

Mouse Key Event Demo

MouseKeyEventDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
72

Control Circle Demo

ControlCircle Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
73

Animations

Animation Demo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
74

Control Animations

ControlAnimation Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
75

Scrollbar

ScrollText Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
76

Standard Dialogs

DialogDemo Run

