Chapter 9 Lipid Metabolism

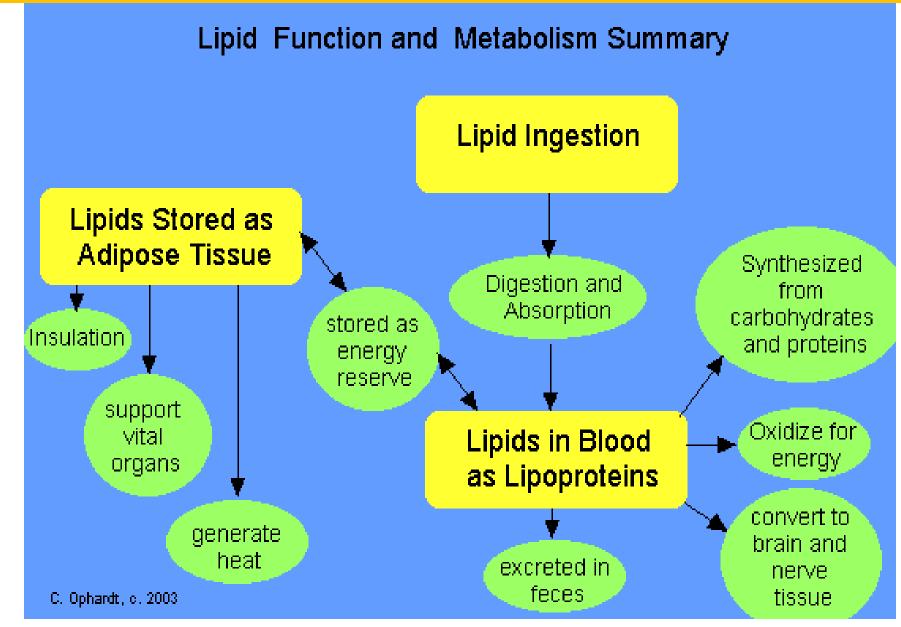
Introduction

Lipids are biological molecules which dissolve well in organic solvents but they are insoluble in water.

- ✤ Generally include
 - >Triacylglycerols TAG (fats &)
 - ≻Waxes
 - Glycerophospholipids
 - Sphingolipids
 - Isoprenoids: terpenoids, lipid vitamins, carotenoids
 - Steroids: sterols, bile acids, steroid hormones
 - > Eicosanoids etc...

Introduction

<u>Biological roles of lipids</u>


Source of energy/metabolic fuel

Triacylglycerides can provide 40% or more of daily energy requirements

Compared to carbohydrates, fats provide twice as much higher energy
 About 9 kcal/g(for fats) Vs 4 kcal/g(for carbohydrates)

Building blocks of cellular membranes (amphipathic lipids)
 Substrates for synthesis of other compounds (eicosanoids, bile acids)
 Thermal insulation

Introduction

- Digestion of lipids are enhanced if they are converted into finely dispersed microscopic state called emulsion/micelles.
 - > By process called **emulsification**

- Emulsification is carried in the small intestine
 - > Aided by detergent property of **bile salt** and **peristalsis**

Emulsification increase surface area for lipase activity (digestion)

- Digestion of various types of lipids give different products
 <u>Triacyglycerol hydrolysis (TAG)</u>
 - ➤Are degraded by pancreatic lipase to give FA's attached to C-1 and C-3 as well as a 2-monoacylglycerol

Cholesteryl ester

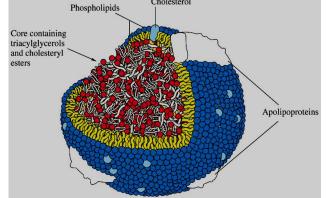
➤ Are degraded by <u>cholesterol esterase</u> producing cholesterol and FA

Phospholipids

- > Are degraded by Phospholipase A_2 producting lysophospholipid and FA
- The FFA, free cholesterol, 2-monoacylglycerol, lysophospholipid and bile salts form mixed micelles

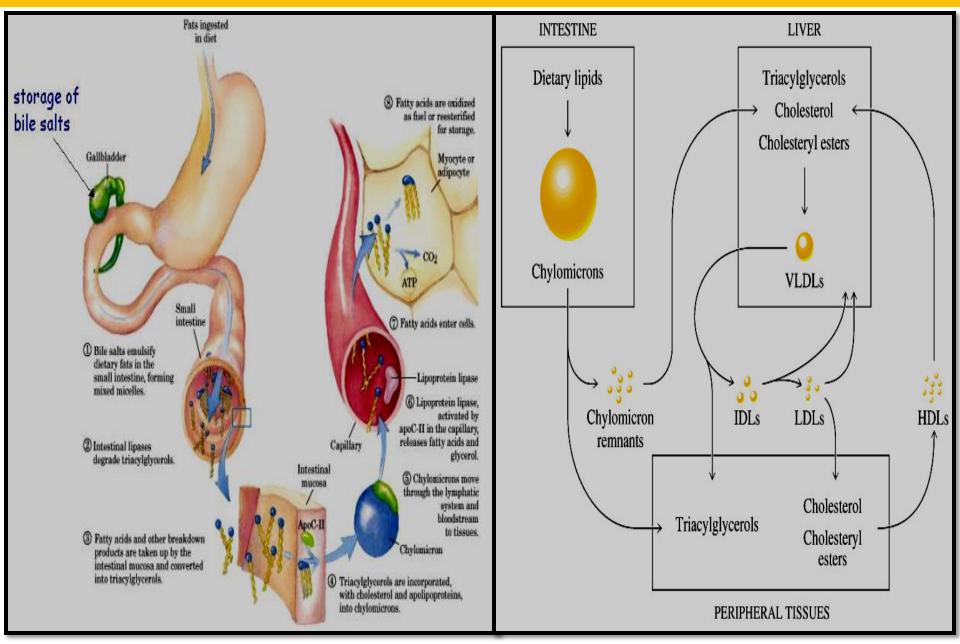
Absorption of Lipids by intestinal mucosal cells

FFA, free cholesterol, 2-monoacylglycerol, lysophospholipid together


with bile salts are absorbed at the brush border membrane of SI

Short and medium chain FA are directly absorbed

Resynthesis of TAG, CE and PL


✤ Different lipids in intestinal mucosa are resynthesized again
2-monoacylglycerol + fatty acyl-CoA $\xrightarrow{7}$ TAG
Cholesterol + FA → CE
Lysophospholipid + FA → Phospholipid

- In intestinal mucosa the different lipids (FFA, dietary cholesterol, phospholipids) are packaged with specific proteins forming lipoprotein aggregates
 Called chylomicrons
- Chylomicrons are spherical aggregates with
 - Hydrophobic lipids at the core
 - Hydrophilic protein side chains and
 - Lipid head groups at the surface

- Chylomicrons move into the lymphatic system
 - Then enter the blood to deliver dietary fats to tissues (muscle and adipose tissue)
 - ➤ In the capillaries- the extracellular enzyme lipoprotein lipase, hydrolyzes TAG to fatty acids and glycerol, which are taken up by cells in the target tissues
 - ➢ In muscle- fatty acids are oxidized for energy
 - ➤ In adipose tissue- they are re-esterified for storage as triacylglycerols

- Various combinations of lipid and protein produce particles of different densities (lipoproteins)
- Following high fatty acids diet consumption liver converts them to triacylglycerols and package them with specific apolipoproteins into very low-density lipoproteins (VLDLs)
- VLDLs are transported in the blood where hydrolytic enzymes convert them into : Triacylglycerols stored in lipid droplets within adipocytes
 VLDL remnants (also called intermediate-density lipoprotein, IDL)
- Removal of TAG from VLDL remnants give low-density lipoprotein (LDL)
- The high-density lipoprotein (HDL) originates in the liver and small intestine as small, protein-rich particles that contain relatively low cholesterol Note
- Lipoproteins are responsible for transport of lipids b/n organs
- Which can be separated by ultracentrifugation

- Occur in several tissues, including liver, muscle, and adipose tissue as sources of energy (in mitochondria)
- The process of FA oxidation is called β-oxidation
 Although less common pathways (α & ω oxidation) exist
- β-oxidation reverses the process of fatty acid synthesis (will be discussed later)

Note

Beta-Oxidation do not occur in erythrocytes and brain (even during fasting they rely on glucose)

- Catabolism of FFA's require prior activation and transport of FFA's (long chain) into mitochondria
- Fatty acids are transported across outer membrane after being acetylated ,driven by Acyl CoA Synthetase

 $FA + CoASH + ATP \rightarrow FA - SCoA + AMP + Ppi$

★ Transport through inner mitochondrial membrane is possible via carnitine (a □-amino acid)
 > uses specific acyl carnitine transporter

$$H_{3}C \xrightarrow{\mathsf{CH}_{3}}{\mathsf{N}_{-}^{+}}CH_{2}\xrightarrow{\mathsf{CH}_{-}}CH_{2}\xrightarrow{\mathsf{CH}_{2}}C\xrightarrow{\mathsf{O}}{\mathsf{O}_{-}}$$

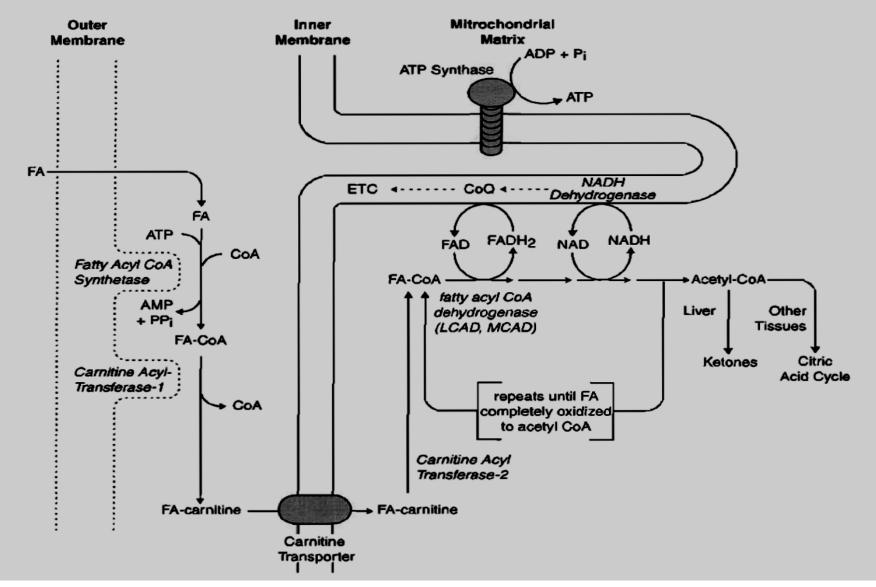
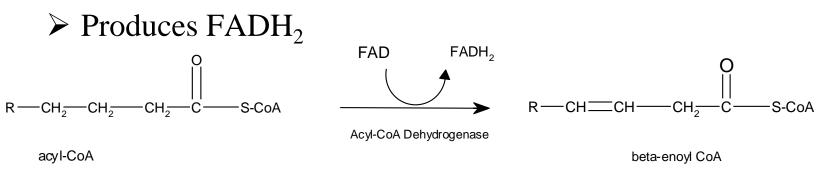


Fig: Fatty acid activation, transport and β -oxidation

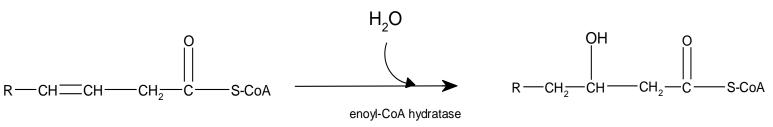
Beta-Oxidation


Breakdown of FFA's into

- Acetyl coenzyme A :- to join Kreb's Cycle
 FADH, & NADH:- to join Oxidative Phosphorylation
- Involve removal of two carbon fragments successively from the carboxyl end of the fatty acylCoA
 Producing acetylCoA
- The remaining fatty acid goes another round
- Consists of four reactions: shortening of FA by 2 carbons
 - Oxidation: produces FADH₂
 - Hydration: produces NADH
 - Thiolytic cleavage: produces 2 acetylCoA

Steps in Beta-Oxidation

<u>Step 1</u> > Catalysed by acyl-CoA Dehydrogenase

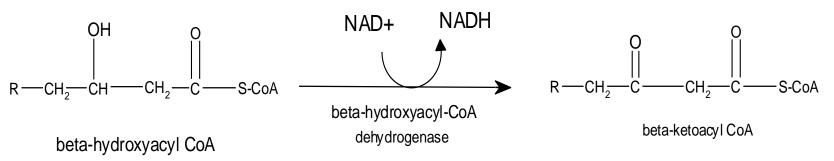

Puts in a ß double bond (Oxidizes C-C bond to double bond)

<u>Step 2</u>

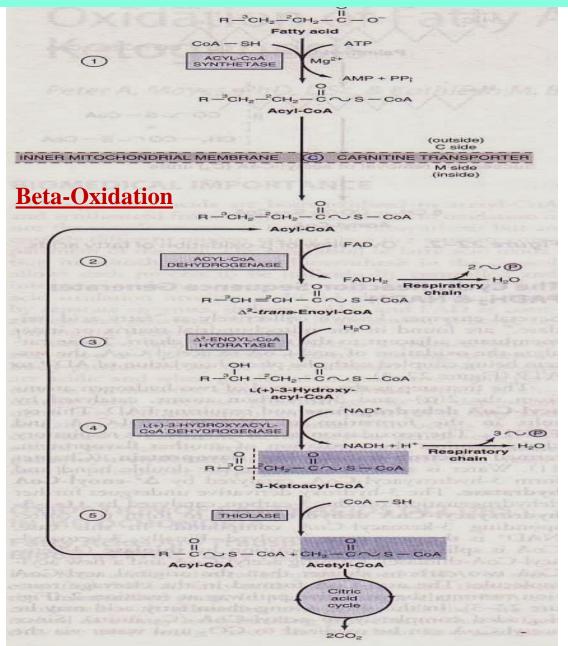
Catalysed by enoyl CoA Hydratase

► Adds water to form β-hydroxy product

beta-enoyl CoA


beta-hydroxyacyl CoA

Steps in Beta-Oxidation


<u>Step 3</u> \succ Catalysed by β -hydroxylacyl-CoA dehydrogenase

> Oxidizes secondary alcohol to ketone

- Oxygen-containing group
- Produces NADH

<u>Note</u>:- Metabolism of unsaturated fat require special enzymes to convert cis bonds in fatty acids to trans bonds

Beta Oxidation on 16 C fatty Acid

✤ 7 rounds of Beta oxidation (bottom numbers)

7NADH x 3 ATP by ETC oxidation	21
7 FADH ₂ x 2 ATP by ETC oxidation	14
8 Acetyl CoA x 12 ATP via Krebs CAC	96
Total (Gross)	131 ATP
Less	2 ATP
NET	129 ATP

ATP Yield

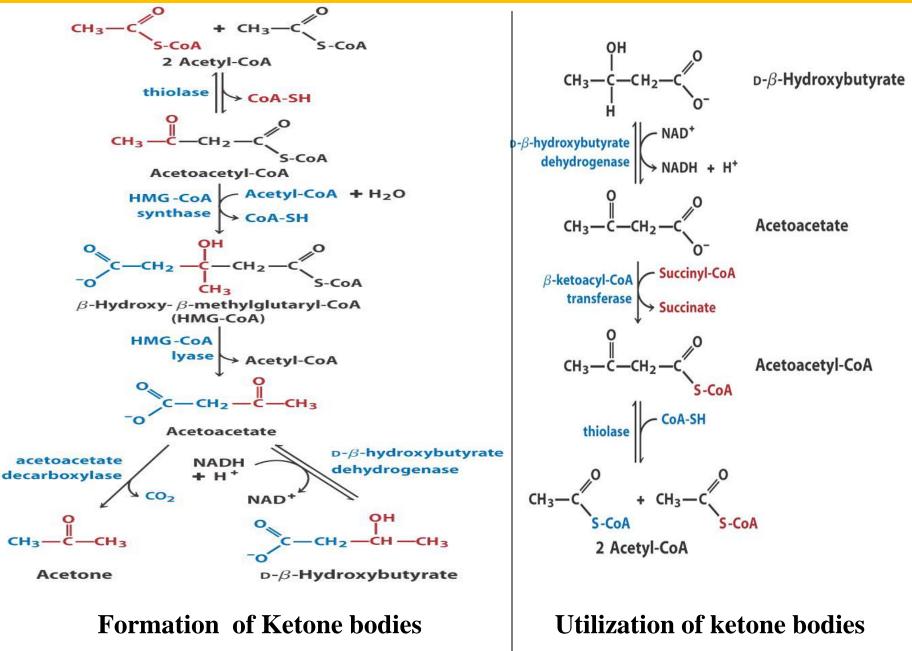
Regulation of Fat Metabolism

Regulation of beta oxidation

- Transport is rate-limiting
- Regulation of carnitine acyl transferase
 - off by fat synth products
 - high NADH

Formation of ketone bodies:-Ketogenesis

- Starvation and diabetics cause break down of fat for energy
 - ➢ Which leads to accumulation of acetyl CoA
 - not enough carbohydrates to keep Kreb's Cycle going
- High acetyl CoA leads to formation of ketone bodies
 - ➢ Viz. acetoacetate, β-hydroxybutyrate & acetone
- <u>NB</u>:-Acetone is a spontaneous breakdown product of acetoacetate (decarboxylation), or is formed by enzymatic cleavage of acetoacetate by the enzyme **acetoacetate decarboxylase**
- Ketone bodies are special source of energy
 - ➢ For certain tissues (brain, heart, kidney and muscle)


✓ Particularly during starvation

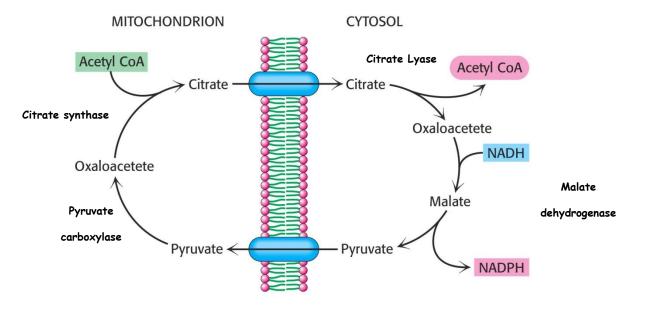
Formation of ketone bodies:-Ketogenesis

In diabetic patients

- Ketones build up in the blood and then spill over into the urine so that the body can get rid of them.
- \triangleright Acetone can be exhaled through the lungs.
 - \checkmark This gives the breath a fruity odor.
- Ketones that build up in the body for a long time lead to serious illness and coma.
 - ✓ Diabetic ketoacidosis

Formation of ketone bodies:-Ketogenesis

- ✤ In mammals fatty acid synthesis occurs in
 - Liver and adipose tissues (primarily)
 - > Mammary glands during lactation


- Synthesis occurs in the cytosol (Where acetyl-CoA is deficient)
 - ✓ From acetyl CoA units

Synthesis short chain fatty Acid (palmitic acid)

Step 1:- Translocation of mitochondrial acetate in to cytosol

- >Acetyl-CoA is deficient in cytosol
- > Hence supplied by from mitochondria through Citrate-

malate-pyruvate shuttle

Synthesis short chain fatty Acid (palmitic acid)

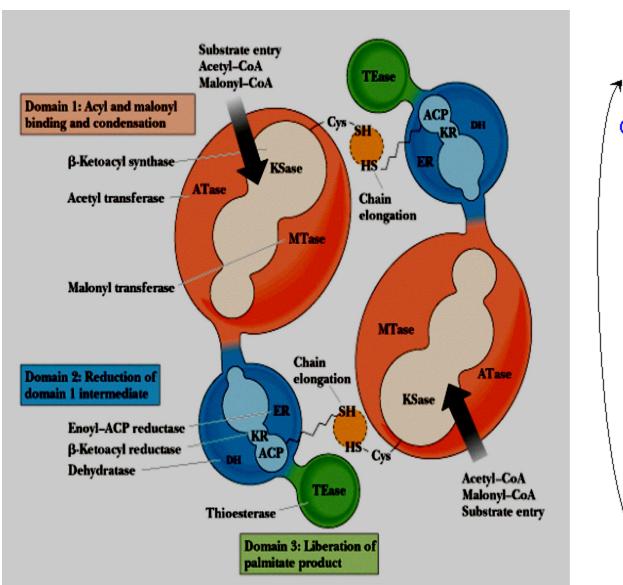
Step 2:- Activation of acetyl CoA

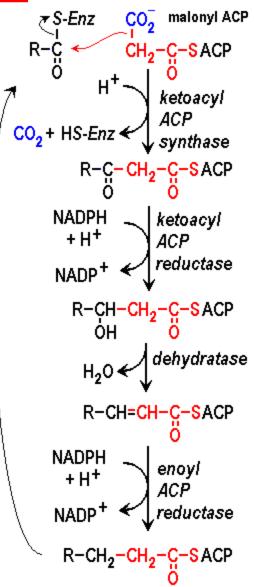
➢ By carboxylation of acetyl CoA to malonyl CoA by <u>acetylCoA</u> <u>carboxylase (ACC'se)</u>

- ≻ Is a rate limiting step in fatty acid synthesis
- > ACC'se can be regulated
 - ✓ Activators: insulin,Inc. CHO intake, fat-free diet
 - ✓ Inhibitors: malonyl CoA, palmitoyl CoA, epinephrine, fasting, high fat diet

Synthesis short chain fatty Acid (palmitic acid)

- **<u>Step 3</u>**:- fatty acid synthesis
- ≻By a Fatty acid synthase-a homodimerenzyme composed of
 - \checkmark seven catalytic centres arranged around a central acyl carrier protein


(ACP) bound pantetheine chain

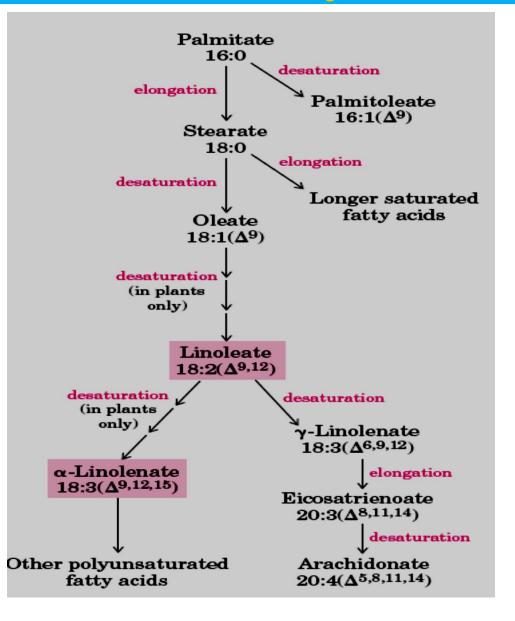

- \checkmark The catalytic cycle involve the following enzymes
 - \checkmark ketoacylACP synthase (KS)
 - \checkmark ketoacyl ACP reductase (KR)
 - ✓ AcetylCoA-ACP transacylase
 - ✓ MalonylCoA-ACP transacylase
 - ✓ β-ketoacyl-ACO synthase
 - ✓ Palmitoyl thioesterase

Overall reaction

Acetyl-CoA + 7 malonyl-CoA + 14 NADPH + 14 H+ -----> palmitate + 7 CO2 + 8 HSCoA + 14 NADP+ + 6 H2O

Synthesis short chain fatty Acid (palmitic acid)

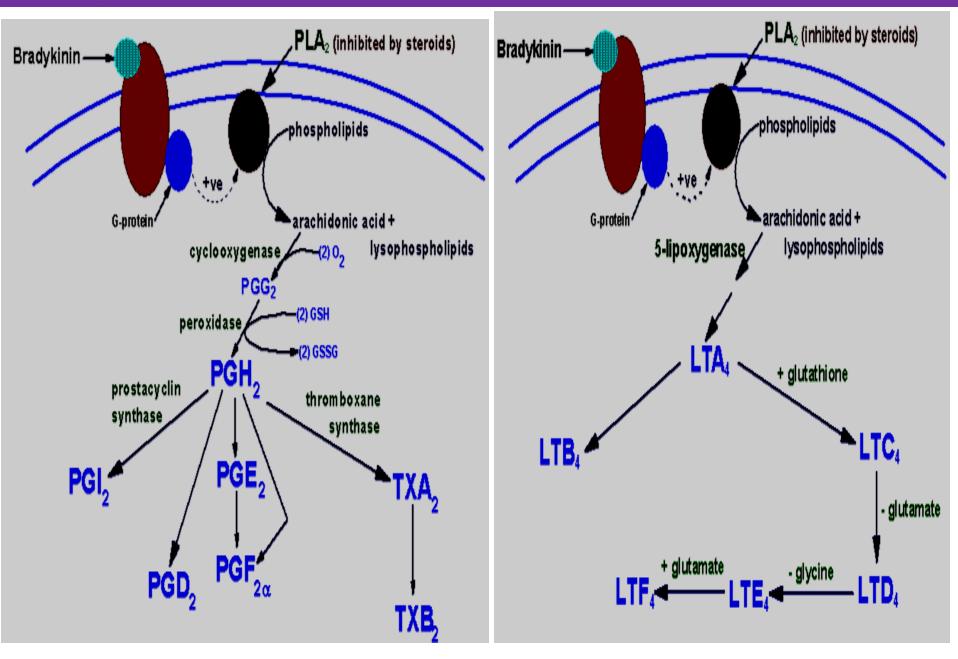
Synthesis long chain fatty Acid


- <u>**Precursor(s)**</u>:- Palmitic acid
- <u>Site</u>:- Mitochondria and EPR (microsomal membranes)
- <u>Mechanism</u>:-
 - ✓ First acyl-CoA /malonyl-CoA conjugate is formed
 - ✓ Results in product with **two carbons longer**
 - ✓ Which undergoes reduction, dehydration and reduction yielding longer saturated FA's

Synthesis long chain unsaturated fatty Acid

Desaturation of fatty acid side chain

- > Occurs in the ER membranes of mammalian cells
- > Involves four broad specificity fatty *acyl-CoA desaturases*
- Enzymes introduce unsaturation at C_4 , C_5 , C_6 or C_9


 \checkmark but not beyond c₉

Biosynthesis of Eicosanoids

- •<u>Physiological role</u>:- mediators of local cellular changes (local hormones) e.g cell damage
- •<u>Triggers(s)</u>:- Arachidonic acid is released response to in numerous stimuli (e.g. epinephrine, thrombin and bradykinin)
- •<u>**Precursor(s)**</u>:- C-20 unsaturated membrane fatty acids (arachidonic acid, 20:4 ($\Delta^{5,8,11,14}$))
- •<u>Site</u>:- Cell interior (cytoplasm of all cells)
- Mechanism :- Two main pathways are involved
 - i) The *cyclo-oxygenase pathway* (cyclic pathway):-For *PG* and *TX* synthesis
 - Catalyzed by prostaglandin G/H synthase (PGS)
 - COX-1:- In gastric mucosa, kidney, platelets, and vascular endothelial cells (constitutive)
 - **COX-2**:- In macrophages and monocytes in response to inflammation (Inducible)
 - ii) The *lipoxygenase pathway* (linear pathway):-For *LT* synthesis
 - Catalyzed by 5-lipoxygenase (5-LOX) enzyme

Biosynthesis of Eicosanoids

