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Chapter Goal
• Lewis structures do not show shape and 

size of molecules.

• Develop a relationship between two 
dimensional Lewis structure and three 
dimensional molecular shapes  

• Develop a sense of shapes and how those 
shapes are governed in large measure by 
the kind of bonds exist between the atoms 
making up the molecule
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Molecular geometry is the general shape of a 
molecule, as determined by the relative positions 
of the atomic nuclei.
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The valence-shell electron-pair repulsion (VSEPR) 
model predicts the shapes of molecules and ions 
by assuming that the valence-shell electron pairs 
are arranged about each atom so that electron 
pairs are kept as far away from one another as 
possible, thereby minimizing electron pair 
repulsions.

The diagram on the next slide illustrates this.
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Two electron pairs are 180° apart (a linear 
arrangement).

Three electron pairs are 120° apart  in one plane 
(a trigonal planar arrangement).

Four electron pairs are 109.5° apart in three 
dimensions (a tetrahedral arrangment).
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Five electron pairs are arranged with three pairs in 
a plane 120° apart and two pairs at 90°to the plane 
and 180° to each other (a trigonal bipyramidal 
arrangement).

Six electron pairs are 90° apart (an octahedral 
arrangement).

This is illustrated on the next slide.
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These arrangements are illustrated below with 
balloons and models of molecules for each.
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Electron Domains

• We can refer to the 
electron pairs as 
electron domains.

• In a double or triple bond, 
all electrons shared 
between those two atoms 
are on the same side of 
the central atom; 
therefore, they count as 
one electron domain.

• The central atom in 
this molecule, A, 
has four electron 
domains.
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Electron-Domain Geometries

• All one must do is count the number of electron 
domains in the Lewis structure.

• The geometry will be that which corresponds to 
the number of electron domains.
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Molecular Geometries

• The electron-domain geometry is often not 
the shape of the molecule, however.

• The molecular geometry is that defined by the 
positions of only the atoms in the molecules, 
not the nonbonding pairs.
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Molecular Geometries

Within each electron domain, then, there 
might be more than one molecular geometry.
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The diagrams below illustrate molecular geometry 
and the impact of lone pairs on it for linear and 
trigonal planar electron-pair arrangements.



Copyright © Cengage Learning. All rights reserved. 10 | 15

Molecular geometries with a tetrahedral electron-
pair arrangement are illustrated below.
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Molecular geometries for the trigonal bipyramidal 
electron-pair arrangement are shown on the next 
slide.
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Molecular geometries for the octahedral electron-
pair arrangement are shown below.
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Predicting Bond Angles

The angles 180°, 120°, 109.5°, and so on are the 
bond angles when the central atom has no lone 
pair and all bonds are with the same other atom.

When this is not the case, the bond angles deviate 
from these values in sometimes predictable ways.

Because a lone pair tends to require more space 
than a bonding pair, it tends to reduce the bond 
angles.
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The impact of lone pair(s) on bond angle for 
tetrahedral electron-pair arrangements has been 
experimentally determined.
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Multiple bonds require more space than single 
bonds and, therefore, constrict the bond angle. 
This situation is illustrated below, again with 
experimentally determined bond angles.



?
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Use the VSEPR model to predict the 
geometries of the following molecules:

a. AsF3

b. PH4+ 

c. BCl3
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AsF3 has 1(5) + 3(7) = 26 valence electrons; As is 
the central atom. The electron-dot formula is

There are four regions of electrons around As: three 
bonds and one lone pair. 

The electron regions are arranged tetrahedrally. 
One of these regions is a lone pair, so the molecular 
geometry is trigonal pyramidal.

AsF

F

F
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P

H

HH

H
+

PH4
+ has 1(5) + 4(1) – 1 = 8 valence electrons; P is 

the central atom. The electron-dot formula is

There are four regions of electrons around P: 
four bonding electron pairs.
The electron-pairs arrangement is tetrahedral. 
All regions are bonding, so the molecular geometry 
is tetrahedral.
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B

Cl

Cl

Cl

BCl3 has 1(3) + 3(7) = 24 valence electrons;
B is the central atom.
The electron-dot formula is

There are three regions of electrons around B; all 
are bonding.
The electron-pair arrangement is trigonal planar.
All of these regions are bonding, so the molecular 
geometry is trigonal planar.



?
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Using the VSEPR model, predict the 
geometry of the following species:

a. ICl3
b. ICl4-
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I

Cl

Cl

Cl

ICl3 has 1(7) + 3(7) = 28 valence electrons. I is the 
central atom. The electron-dot formula is

There are five regions: three bonding and two lone 
pairs. 
The electron-pair arrangement is trigonal 
bipyramidal. 
The geometry is T-shaped. 
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-

I

Cl

Cl

Cl

Cl

ICl4- has 1(7) + 4(7) + 1 = 36 valence electrons. I is 
the central element. The electron-dot formula is

There are six regions around I: four bonding and 
two lone pairs. 
The electron-pair arrangement is octahedral. 
The geometry is square planar.
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Larger Molecules

In larger molecules, 
it makes more 
sense to talk about 
the geometry about 
a particular atom 
rather than the 
geometry of the 
molecule as a 
whole.
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Sample Exercise 9.3 Predicting Bond Angles

Analyze We are given a Lewis structure and asked to determine two bond angles.
Plan To predict a bond angle,we determine the number of electron domains surrounding the middle 
atom in the bond. The ideal angle corresponds to the electron-domain geometry around the atom. 
The angle will be compressed somewhat by nonbonding electrons or multiple bonds.
Solve In H — O — C , the O atom has four electron domains (two bonding, two nonbonding). The 
electron-domain geometry around O is therefore tetrahedral, which gives an ideal angle of 109.5°. 
The H — O — C angle is compressed somewhat by the nonbonding pairs, so we expect this angle to 
be slightly less than 109.5° .
        To predict the O — C — C bond angle, we examine the middle atom in the angle. In the 
molecule, there are three atoms bonded to this C atom and no nonbonding pairs, and so it has three 
electron domains about it. The predicted electron-domain geometry is trigonal planar, resulting in an 
ideal bond angle of 120°. Because of the larger size of the C = C domain, the bond angle should be 
slightly greater than 120°.

Solution

Eyedrops for dry eyes usually contain a water-soluble polymer called poly(vinyl alcohol), which
is based on the unstable organic molecule vinyl alcohol:

Predict the approximate values for the H — O — C  and O — C — C  bond angles in vinyl alcohol.
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Polarity

• In Chapter 8, we 
discussed bond dipoles.

• But just because a 
molecule possesses 
polar bonds does not 
mean the molecule as a 
whole will be polar.
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Polarity

By adding the 
individual bond 
dipoles, one can 
determine the 
overall dipole 
moment for the 
molecule.
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Polarity
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Sample Exercise 9.4 Polarity of Molecules

Analyze We are given three molecular formulas and asked to predict whether the molecules are polar.
Plan A molecule containing only two atoms is polar if the atoms differ in electronegativity. The polarity of a 

molecule containing three or more atoms depends on both the molecular geometry and the individual bond 
polarities. Thus, we must draw a Lewis structure for each molecule containing three or more atoms and 
determine its molecular geometry.We then use electronegativity values to determine the direction of the 
bond dipoles. Finally, we see whether the bond dipoles cancel to give a nonpolar molecule or reinforce each 
other to give a polar one.

Solve 
(a) Chlorine is more electronegative than bromine. All diatomic molecules with polar bonds are polar 

molecules. Consequently, BrCl is polar, with chlorine carrying the partial negative charge:

The measured dipole moment of BrCl is  µ = 0.57 D.
(b) Because oxygen is more electronegative than sulfur, SO2 has polar bonds. Three resonance
forms can be written:

For each of these, the VSEPR model predicts a bent molecular geometry. Because the molecule is bent, the 
bond

dipoles do not cancel, and the molecule is polar:

Solution

Predict whether these molecules are polar or nonpolar: (a) BrCl, (b) SO2, (c) SF6.
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Sample Exercise 9.4 Polarity of Molecules

Experimentally, the dipole moment of SO2is µ = 1.63 D.

(c) Fluorine is more electronegative than sulfur, so the bond dipoles point toward fluorine. For clarity, only one
S — F dipole is shown. The six S — F bonds are arranged octahedrally around the central sulfur:

Because the octahedral molecular geometry is symmetrical, the bond dipoles cancel, and the molecule is
nonpolar, meaning that µ = 0.

Practice Exercise
Determine whether the following molecules are polar or nonpolar: (a) NF3, (b) BCl3.
Answers: (a) polar because polar bonds are arranged in a trigonal-pyramidal geometry, (b) nonpolar because
polar bonds are arranged in a trigonal-planar geometry

Continued
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Valence bond theory is an approximate theory 
put forth to explain the electron pair or covalent 
bond by quantum mechanics.
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A bond forms when

• An orbital on one atom comes to occupy a   
portion of the same region of space as an orbital 
on the other atom. The two orbitals are said to 
overlap.

• The total number of electrons in both orbitals is 
no more than two.
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The greater the orbital overlap, the stronger the 
bond.

Orbitals (except s orbitals) bond in the direction in 
which they protrude or point, so as to obtain 
maximum overlap.
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Overlap and Bonding

• We think of covalent 
bonds forming 
through the sharing 
of electrons by 
adjacent atoms.

• In such an approach 
this can only occur 
when orbitals on the 
two atoms overlap.
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Overlap and Bonding

• Increased overlap brings 
the electrons and nuclei 
closer together while 
simultaneously 
decreasing electron– 
electron repulsion.

• However, if atoms get too 
close, the internuclear 
repulsion greatly raises 
the energy.
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Hybrid orbitals are orbitals used to describe the 
bonding that is obtained by taking combinations of 
the atomic orbitals of the isolated atoms.

The number of hybrid orbitals formed always 
equals the number of atomic orbitals used.
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Hybrid Orbitals

• Consider beryllium:
– In its ground electronic 

state, beryllium would 
not be able to form 
bonds, because it has 
no singly occupied 
orbitals.
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Hybrid Orbitals

But if it absorbs the 
small amount of 
energy needed to 
promote an electron 
from the 2s to the 2p 
orbital, it can form two 
bonds.
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Hybrid Orbitals

• Mixing the s and p orbitals yields two degenerate 
orbitals that are hybrids of the two orbitals.
– These sp hybrid orbitals have two lobes like a p orbital.
– One of the lobes is larger and more rounded, as is the 

s orbital.
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Hybrid Orbitals
• These two degenerate orbitals would align 

themselves 180 from each other.
• This is consistent with the observed geometry of 

beryllium compounds:  linear.
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Hybrid Orbitals

• With hybrid orbitals, the orbital diagram for 
beryllium would look like this (Fig. 9.15).

• The sp orbitals are higher in energy than the 
1s orbital, but lower than the 2p.
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Hybrid Orbitals

Using a similar model for boron leads to three 
degenerate sp2 orbitals.
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Hybrid Orbitals

With 
carbon, we 
get four 
degenerate 
sp3 orbitals.
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sp3d and sp3d2 Hybridization

• Examples:

• PCl5
• SF6
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Hybridization
• Some atoms hybridize their orbitals to 

maximize bonding.
– Hybridizing is mixing different types of orbitals 

to make a new set of degenerate orbitals.
– sp, sp2, sp3, sp3d, sp3d2

– more bonds = more full orbitals = more stability

• Same type of atom can have different 
hybridizations depending on the compound.
– C = sp, sp2, sp3
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Hybrid Orbitals
• The number of standard atomic orbitals 

combined equals the number of hybrid orbitals 
formed. 
– H cannot hybridize!

• Its valence shell only has one orbital.

• The number and type of standard atomic 
orbitals combined determine the shape of the 
hybrid orbitals.

• The particular kind of hybridization that occurs 
is the one that yields the lowest overall energy 
for the molecule.
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Carbon Hybridizations
Unhybridized

2s 2p

 

sp hybridized

2sp

 

sp2 hybridized

2p

sp3 hybridized







2p

2sp2

   

2sp3

   
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Valence Bond Theory

• Hybridization is a major player in this 
approach to bonding.

• There are two ways orbitals can overlap 
to form bonds between atoms.
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Sigma () Bonds

• Sigma bonds are characterized by
– Head-to-head overlap.
– Cylindrical symmetry of electron density about the 

internuclear axis.
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Pi () Bonds

• Pi bonds are characterized by
– Side-to-side overlap.
– Electron density above and below the internuclear 

axis.
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Single Bonds
Single bonds are always  bonds, because  
overlap is greater, resulting in a stronger bond 
and more energy lowering.
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Multiple Bonds

In a multiple bond, one of the bonds is a  bond 
and the rest are  bonds.
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Multiple Bonds

• In a molecule like formaldehyde (shown at 
left), an sp2 orbital on carbon overlaps in  
fashion with the corresponding orbital on the 
oxygen.

• The unhybridized p orbitals overlap in  
fashion.
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Multiple Bonds

In triple bonds, as in 
acetylene, two sp orbitals 
form a  bond between 
the carbons, and two 
pairs of p orbitals overlap 
in  fashion to form the 
two  bonds.
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Resonance
The organic molecule benzene has six  bonds 
and a p orbital on each carbon atom.
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Resonance
• In reality the  electrons in benzene are not 

localized, but delocalized.
• The even distribution of the electrons in benzene 

makes the molecule unusually stable.
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Molecular Orbital Theory
• In MO theory, we apply Schrödinger’s wave 

equation to the molecule to calculate a set of 
molecular orbitals.

• In this treatment, the electrons belong to the 
whole molecule—so the orbitals belong to the 
whole molecule.
– delocalization
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LCAO
• The simplest assumption starts with the 

atomic orbitals of the atoms adding together 
to make molecular orbitals. This is called the 
linear combination of atomic orbitals 
method.

• Because the orbitals are wave functions, the 
waves can combine either constructively 
or destructively.
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Molecular Orbitals
• When the wave functions combine constructively, 

the resulting molecular orbital has less energy 
than the original atomic orbitals and is called a 
bonding molecular orbital.
 , 
– most of the electron density between the nuclei

• When the wave functions combine destructively, 
the resulting molecular orbital has more energy 
than the original atomic orbitals and is called an 
antibonding molecular orbital.
 *, *
– most of the electron density outside the nuclei 
– nodes between nuclei
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Interaction of 1s Orbitals
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Molecular Orbital Theory

• Electrons in bonding MOs are stabilizing.
– lower energy than the atomic orbitals

• Electrons in antibonding MOs are 
destabilizing.
– higher in energy than atomic orbitals
– electron density located outside the 

internuclear axis
– electrons in antibonding orbitals cancel 

stability gained by electrons in bonding orbitals
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MO and Properties
• Bond order is the difference between number of 

electrons in bonding and antibonding orbitals.
– only need to consider valence electrons

– may be a fraction
– higher bond order = stronger and shorter bonds
– if bond order = 0, then bond is unstable compared to 

individual atoms and no bond will form

• A substance will be paramagnetic if its MO 
diagram has unpaired electrons.
– If all electrons are paired, it is diamagnetic.
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1s 1s

*



hydrogen 
atomic
orbital

hydrogen 
atomic
orbital

Dihydrogen, H2 
molecular
orbitals

Since more electrons are in 
bonding orbitals than in antibonding orbitals,

there is a net bonding interaction.
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H2

* Antibonding MO
LUMO

 bonding MO
HOMO
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1s 1s

*



helium 
atomic
orbital

helium 
atomic
orbital

Dihelium, He2 
molecular

orbitals

Since there are as many electrons in 
antibonding orbitals as in bonding orbitals,

there is no net bonding interaction.

BO = ½(2 − 2) = 0
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1s 1s





lithium 
atomic
orbitals

lithium 
atomic
orbitals

Dilithium, Li2 
molecular

orbitals

Since more electrons are in 
bonding orbitals than in 

antibonding orbitals, there is a 
net bonding interaction.

2s 2s



 Any filled energy level will 
generate filled bonding 
and antibonding MOs;
therefore, only need to 

consider the valence shell.
BO = ½(4 − 2) = 1
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 bonding MO
HOMO

* Antibonding MO
LUMO

Li2
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Interaction of p Orbitals
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Interaction of p Orbitals
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MO Theory

• The smaller p-block elements in the second 
period have a sizable interaction between the 
s and p orbitals.

• This flips the order of the  and  molecular 
orbitals in these elements.
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Second-Row MO Diagrams
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