
Chapter 9 
More ANOVA: Repeated measures 

 
James Myers 

2022/5/14 draft 
 

1. Introduction 
 
 Despite the cleverness and usefulness of independent-measures ANOVA, it’s not the most 
commonly used type of ANOVA. This is because independent-measures ANOVA is designed 
for between-group study designs, where you compare independent samples, and researchers 
generally try to use within-group designs whenever they can. This kind of design is more 
powerful because each unit (e.g., experimental participants, speakers in a corpus study, 
experimental test items, and so on) acts as its own control. For example, if one group of people 
responds to nouns and another responds to verbs, it’s hard to tell whether any noun-verb 
difference is due to the words or to the people, but if the same group of people responds to both 
nouns and verbs, then any difference must really be due to the words. 
 When each unit provides exactly two values, then we could do a paired t test. Just as the 
independent-measures ANOVA generalizes the unpaired t test, the repeated-measures 
ANOVA generalizes the paired t test. As you surely remember, the paired t test works by 
analyzing the paired differences within units instead of the raw data points themselves. The 
repeated-measures ANOVA just generalizes this logic to multi-level factors. 
 This chapter explains how to run repeated-measures ANOVA, mostly focusing on R, since 
Excel can only do one simple type. In particular, if you want to do a two-way repeated-measures 
ANOVA, which is quite common in experimental linguistics, Excel can’t do it. On top of the 
increased complexity of using R compared with Excel (at least if you’re still scared of R’s 
command-based interface, and prefer Excel’s GUI-based interface), ANOVA deserves a 
second chapter because ANOVA itself raises certain complexities that have to be dealt with. 
One concerns an issue related to the homoscedasticity issue we encountered when we were 
looking at unpaired t tests and correlation. Another is that in the typical linguistic experiment, 
we actually have two grouping units: speakers (experimental participants) and items (linguistic 
materials, like words or sentences). This means we have to build two separate ANOVA models, 
one for participants and one for items, and then somehow combine them again into one grand 
model, so we can conclude whether our overall results are or are not statistically significant. 
On top of all this, I still haven’t told you how to estimate effect sizes for ANOVA. As we’ve 
seen, p values only say something about probability, not about real-life “significance”. It turns 
out the most common effect size measure for ANOVA is closely related to the coefficient of 
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determination (r2) that we saw with correlation. This will then lead us into the next chapter, 
when we see that ANOVA is just a special case of multiple regression. 
 
2. Repeated-measures (and mixed) ANOVA 
 
 Whether our within-group study involves one multi-level factor or two or more factors 
and their interaction(s), using repeated-measures ANOVA feels very much like the 
independent-measures ANOVA that we discussed in the previous chapter. As usual we’ll start 
by trying it out in Excel, then going further with R, and save the mathematical details for later.  
The underlying math has some new twists, however, which affects how you run it in Excel or 
R. Thus you do need to start with a vague sense of the math just to understand how to tell the 
programs what you want them to do, and to understand the results they give you. 
 As we saw in the previous chapter, the brilliant idea behind ANOVA is that it treats 
everything in terms of variance, comparing “interesting” (the fixed factors that we are trying 
to test) with “boring” (the random variables that are just noise to us). In technical terms, 
ANOVA partitions the variance into separate components so we can see which component 
is having a “significant” effect on the observed data. For example, if we are doing a two-way 
independent-measures ANOVA, with two independent variables A and B and their interaction, 
the variance is partitioned like so, with the interesting part (the A and B stuff) split off from 
the boring part (the “Error”, i.e., the residuals: the variation that’s in the observed data but not 
explained by the interesting part of the model): 
 
Dependent variable  =  A  +  B  +  A × B  + Residual error 
 
 But what if the levels (conditions, treatments) of A and B aren’t sampled independently, 
but instead come grouped into units (like people or words)? This may make the math seem 
more annoying, but it actually has a wonderful advantage too: it allows us to partition the “Error” 
component itself, and get more information out of the whole analysis. For example, if our data 
come from an experiment where every participant gave us a response for all combinations of 
the A and B levels, we can write an equation more like this: 
 
Dependent variable  =  A  +  B  +  A × B  + Participant error   +  Residual error 
 
 Note that the box of randomness in the second equation isn’t simply splitting up the one 
in the earlier equation, since if we don’t factor out participant error we might accidentally 
confuse it for part of the effect of the fixed factors A and B (recall that similar bad things can 
happen if we run an unpaired t test on paired data). 
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 To make this a bit more concrete, imagine that this is a priming experiment looking at the 
effects of phonology and semantics on reaction time (RT), so A = Homophone (i.e., the prime 
word and target word do or do not sound the same), and B = Synonym (i.e., the prime word 
and target word do or do not have similar meanings). Now suppose we randomly pull out two 
different RT values from the results. How might we explain the difference between these two 
values? Well, any specific RT in this experiment might have come from an experimental trial 
with a homophonous but non-synonymous prime-target pair from participant #23, or maybe 
from a trial with a prime-target pair that’s both homophonous and synonymous from participant 
#12, or many other possibilities. But since the experiment is designed in a logical way, the only 
ways the two RTs could differ would be if they differed in the Homophone factor, or in the 
Synonym factor, or in the interaction of Homophone and Synonym (remember that an 
interaction is literally a product of two numbers), or if the two RTs come from the same 
ANOVA cell for two different participants (what I labeled “Participant error” in the above 
equation), or, finally, if they differed in some other totally random way that isn’t captured by 
the model at all (residual error). 
 In this example, our research hypotheses relate to phonology and semantics, not cross-
participant differences, but by including the random grouping variable of Participants, we can 
now partial out this bit of noisy variance, thereby reducing the size of the totally unexplained 
error (residuals). For example, maybe homophone priming speeds up the RT overall, but the 
participants probably also vary in their individual speeds, so unless we can pull out this “boring” 
influence on RT, we might not be able to see the homophone effect. Thus by shrinking the 
totally unexplained error, we explain more, and our repeated-measures ANOVA becomes more 
powerful than an independent-measures ANOVA would be. 
 This basic idea is not only clever, but as I said, it also affects the output reports given by 
Excel and R, and even R’s command syntax. So let’s make things even more concrete, and run 
some repeated-measures ANOVA models in Excel and R. 
 
2.1 Four word types 
 
 Once upon a time, I saw an example in Gravetter & Wallnau (2004, p. 449), and decided 
to keep their numbers but change their description to something linguistic. So a wise old 
Chinese teacher wondered if syntactic category affects how easy it is for foreign students to 
learn Chinese words. She gave each of the five foreign students in one of her (tiny) classes four 
types of words to learn: nouns, verbs, adjectives, and adverbs. That is, each of those five 
students got all four types of words: this was a within-groups design, which the Chinese teacher 
(being wise) knew would give her greater statistical power than a between-groups design. 
 When she counted up how many words of each type that each student learned, she got the 
results shown in Table 1 (also available in the file NVAA.txt). Note that the numbers in the 
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Student column are just each person’s arbitrary identification [ID] number, and each row of 
numbers for the four syntactic categories show how many words were learned by the student 
with that ID number. 
 
Table 1. Results of a within-group experiment on word learning 
 

Students Nouns Verbs Adjectives Adverbs 
1 3 4 6 7 
2 0 3 3 6 
3 2 1 4 5 
4 0 1 3 4 
5 0 1 4 3 

 
 The wise old Chinese teacher thought that her sample was large enough (probably not, in 
real life, but let’s ignore this for our demo), and the dependent variable (number of learned 
words) was continuous and normal enough (ditto), in order for her to run a parametric statistical 
test, and since she has one factor (word type) with four levels, and since each row counting 
learned words is grouped within a student, she also knows the particular type of parametric 
statistical test to use: a one-way repeated-measures ANOVA. 
 
2.1.1 One-way repeated-measures ANOVA in Excel 
 
 As we saw in the previous chapter, Excel calls this test Anova: Two-Factor Without 
Replication (雙因子變異數分析：無重複試驗). Now at last I can reveal where this weird 
name comes from: Excel calls it a “two-factor” ANOVA because one of the factors is the 
grouping units (here, students). That is, although there is just one fixed variable (word type, 
in our case), there is also one random variable (the students, in our case). Each quartet of 
word counts, on each row in Table 1, is associated with a specific student, so these values are 
not independent (e.g., maybe some students are better at learning all types of words than some 
other students). Excel refers to these rows, grouped by grouping units, as blocks (列), and since 
there’s only one unit (student) per block, there’s no “repetition”. 
 Yes, the terminology is still confusing, but don’t blame the linguists; blame Excel for 
using a different type of terminology (statistical terminology often varies across different 
disciplines, and maybe Excel is using terms more common in business or engineering). 
 So let’s play along with the wise old Chinese teacher: put the above table into Excel, find 
the appropriate ANOVA tool in the Analysis ToolPak, select the entire table (you have to select 
the column for the grouping variable too, i.e. Students), and if you selected the column labels, 
you have to tell ANOVA that you included the labels too. 
 If you did it right, Excel should give you two tables. The first is a table of summary 
statistics, showing not just the means and standard deviations for each of the four levels of the 
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fixed word type factor, but also the means and variances for each of the five students (the 
random grouping variable). The second table is the ANOVA table shown in Table 2, showing 
the results for 列 (i.e., Students) and for 欄 (i.e., the columns, i.e., the word types). 
 
Table 2. Excel’s results for the one-way repeated-measures ANOVA 
 

ANOVA       
變源 SS 自由度 MS F P-值 臨界值 
列 24 4 6 9 0.001343 3.25916 
欄 50 3 16.66667 25 1.9E-05 3.4903 
錯誤 8 12 0.666667    
總和 82 19     

 
 Before we discuss how to report this result, imagine that the wise old Chinese teacher’s 
slightly less wise colleague ran a very similar experiment, but gave each of the four word types 
to a separate group of five participants (i.e., she tested 5 × 4 = 20 independent participants), 
and through an amazing coincidence, got the exact same numerical results, as shown in Table 
3 (note that in this table, the rows do not represent grouped values; I could just as well have 
reordered the values within each column some other way). 
 
Table 3. Results of a between-group experiment on word learning (Excel style arrangement) 
 

Nouns Verbs Adjectives Adverbs 
3 4 6 7 
0 3 3 6 
2 1 4 5 
0 1 3 4 
0 1 4 3 

 
 Then the less-wise colleague used Excel to run a one-way independent-measures ANOVA 
(correctly using the Analysis ToolPak tool ANOVA: One-Factor 單因子變異數分析), and 
got the ANOVA table shown in Table 4. 
 
Table 4. Excel’s results for the one-way independent-measures ANOVA 
 

ANOVA       

變源 SS 自由度 MS F P-值 臨界值 
組間 50 3 16.66667 8.333333 0.001451 3.238872 
組內 32 16 2    
       

總和 82 19     
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 Can you figure out how these two analyses relate to, and differ from, each other? Let’s 
focus on the similarities first. First, both tables end with a row called 總和 (total), and the 
values on this row are identical for both types of ANOVA: total SS = 80 and total df = 19. This 
reflects the fact that both models are describing exactly the same total variance; the models 
differ only in how they partition this variance. 
 Second, both models have exactly the same fixed variable, namely the four-level word 
type factor. In the repeated-measures ANOVA table (Table 2), the information about this fixed 
variable is on the row called 欄 (column, for the word types), because the factor levels are 
listed in columns. In the independent-measures ANOVA table (Table 4), the information about 
this fixed variable is on the row called 組間 (between), because the variance here is between 
the factor levels. But the next three values on each of these rows are exactly the same: SS = 50, 
df = 3, MS = 16.66667. Moreover, you can probably guess where the df and MS values come 
from. Namely, df = k-1 (where k = 4, the number of levels) and MS = SS/df = 50/3 (try it!). So 
we can say that in a sense, a repeated-measures ANOVA actually contains a kind of 
independent-measures ANOVA inside of it. 
 However, something new happens with the random variation. There are only three rows 
in the independent-measures ANOVA table: the between-cell variance (組間, here the word 
types), and the within-cell variance (組內), and total (總和), which is just the sum of the first 
two. In other words, there is only one row for the random variation. By contrast, in the repeated-
measures ANOVA table, there are two rows for random variation, namely that relating to the 
blocks (列, i.e., the grouping units, which here are the students), and the residual unexplained 
variation (錯誤: error). 
 In both tables, the SS and df values add up to the totals in the bottom row, but the “within” 
SS and df values in the independent-measures ANOVA table are split up (partitioned) into 
separate grouping-unit and unexplained error values in the repeated-measures ANOVA table. 
Check it yourself: in the independent-measures table, 組內 SS = 32, and in the repeated-
measures table, 列 SS = 24 and 錯誤 SS = 8, and 24 + 8 = 32. Likewise for the df values: 
dfwithin = 16 = dfunit + dferror = 4 + 12. 
 This difference affects the statistical power, because it makes the repeated-measures F 
value bigger than the independent-measures F value. You already know where the F value 
comes from in the independent-measures ANOVA table: it’s the MS for the fixed variable 
divided by the MS for the within-group variation (i.e., MSE). Check yourself: 16.66667/2 = 
8.333333. The exact same logic applies in the repeated-measures ANOVA table, except now 
that we’ve also partialed out the variability due to random cross-student differences, the MSE 
value is lower: it’s only 0.666667. Since the MS for the fixed variable is the same, the ratio 
ends up bigger: MS/MSE = 16.66667/0.666667 = 25 (if you don’t round the two divisors mid-
computation). As before, getting the p value for this higher F value requires two df values, the 
first for the fixed factor (so here df = 3 for both types of ANOVA) and the second for the error 
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(df = 16 for the independent-measures ANOVA but only df = 12 for the repeated-measures 
ANOVA, since this type of ANOVA shrinks the residual error). Putting all this together, we 
can therefore confirm the p values in both ANOVA tables: 
 
Independent-measures p value: =FDIST(8.333333, 3, 16) = 0.0014506 
Repeated-measures p value:  =FDIST(25, 3, 12) = 1.89621E-05 
 
 Unsurprisingly, given how much bigger the repeated-measures F value is, there’s a big 
difference in statistical significance too: this type of ANOVA is truly more powerful. 
 The wise old Chinese teacher, I mean the one who wisely ran the within-group experiment 
and the repeated-measures ANOVA, can thus report her results like so: “There was a 
significant effect of word type on learning (F(3,12) = 25, MSE = 0.67, p < .0001).” 
 You may have noticed that I said nothing about the first row of Excel’s repeated-measures 
ANOVA table for the random grouping variable (students) also gives F and p values, computed 
exactly as for the fixed variable. Namely, you divide this row’s MS value of 6 by the overall 
model’s MSE value of 0.66666667, to get this row’s F value of 9, and then you use this row’s 
df value of 4 and the error row’s df value of 12 to get the p value of 0.001343. Try it yourself! 
 It should make perfect sense to you that a repeated-measures ANOVA can give you a p 
value even for a random variable, since this is just a side-effect of partitioning the total variance, 
but I’m not sure why we would ever need to know this p value. Sure, we now know that these 
five participants are significantly different from each other in their overall word learning results, 
but in a realistic experiment, we don’t really care about random cross-participant differences 
(though we might care about cross-participant differences as a fixed factor, like females vs. 
males). I’ll ignore this line in the rest of this chapter, though in later chapters we will come 
back to random variables when we get to a fancy generalization of regression called mixed-
effects modeling (which mix the fixed and random variables rather than partitioning them). 
 Before we leave Excel, let’s quickly discuss a claim I’ve made a few times already, 
namely that t tests are just a special case of ANOVA. Does that mean that the paired t test is a 
special case of repeated-measures ANOVA? Why yes, that’s exactly what it means. 
 You can confirm this yourself. Go back to the four-word-types data, but this time only 
select the columns for Subjects, Nouns, and Verbs, and run a one-way repeated-measures 
ANOVA using Excel’s misleadingly named “two-way ANOVA without replication”. If you 
do it right, your ANOVA table will appear as in Table 5: 
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Table 5. Excel’s results for a one-way repeated-measures ANOVA for a two-level factor 
 
ANOVA       

變源 SS 自由度 MS F P-值 臨界值 
列 12 4 3 3 0.15625 6.388233 
欄 2.5 1 2.5 2.5 0.189004 7.708647 
錯誤 4 4 1    

 
 Now analyze the same two columns using Excel’s paired t test tool. If you do this right, 
your results will look like that in Table 6: 
 
Table 6. Excel’s results for a paired t test for the same two-level factor 
 
t 檢定：成對母體平均數差異檢定 
   

  Nouns Verbs 
平均數 1 2 
變異數 2 2 
觀察值個數 5 5 
皮耳森相關係

數 0.5  

假設的均數差 0  

自由度 4  
t 統計 -1.58114  
P(T<=t) 單尾 0.094502  
臨界值：單尾 2.131847  
P(T<=t) 雙尾 0.189004  

臨界值：雙尾 2.776445   
 
 Study the two tables carefully. Do they really give the same p values? How are the other 
values related, like df, t, and F? 
 
2.1.2 One-way repeated-measures ANOVA in R 
 
 We can do all of this in R too, of course, plus a lot more. As we saw in the previous 
chapter, the aov() function allows us to do all sorts of ANOVA-specific tricks (e.g., computing 
the post hoc Tukey test). It is also designed to indicate which variables are within-unit in a 
repeated-measures ANOVA or even in a mixed ANOVA, where some variables are between-
group and others are within-group. 
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 As usual, remember that R expects that each row in your data frame represents a single 
data point. So in the case of the wise old Chinese teacher’s experiment, the data should be 
arranged as in Table 7 (I won’t show the whole table, since there are 20 data points). 
 
Table 7. Results of a within-group experiment on word learning (top of R style arrangement) 
 

Student WordType Learning 
1 Noun 3 
… … ... 

 
 Here’s a bit of R code to create the data frame for you: 
 
wordexp = data.frame(Student = rep(1:5,4), 
 WordType=c(rep("Noun",5), rep("Verb",5), rep("Adj",5), rep("Adv",5)), 
 Learning =c(c(3,0,2,0,0),c(4,3,1,1,1),c(6,3,4,3,4),c(7,6,5,4,3))) 
wordexp # See what it looks like 
 
 The above R code arranges the data kind of weirdly, since to avoid making a mistake I 
kept the word types together (e.g., five Noun values in a row) and cycled through the student 
ID numbers (1, 2, 3, 4, 5, and then 1, 2, 3, 4, 5 again). In a real experiment, your experimental 
control program will actually group your data by participants, since when you run each person, 
you get a separate data file for that person, and then you need to stick them all together. R 
doesn’t care about the order of rows, but if you want to reorder them for your human eyes, you 
can use the order() function to resort the rows by participants (Student): 
 
wordexp.sort = wordexp[order(wordexp$Student),] # Sort wordexp (optional) 
wordexp.sort # See what you did 
 
 Note the syntax: order(Fact) gives you the original row labels (numbers) sorted by factor 
Fact, and by putting this vector V of row numbers inside the square brackets with a data frame 
Data as Data[V,], R knows to sort the rows of Data (remember R’s rule that rows come before 
columns. Obviously it’s much easier to arrange your data in Excel, and then just loading it into 
R the way you want.... 
 Before we can run our repeated-measures ANOVA in R, however, we still have one more 
job to do. If your grouping units are identified by numbers, as they are here (with our student 
ID numbers), then we need to tell R to treat these as separate categorical levels of a random 
variable, instead of treating them as numbers. R has no problem building models with 
numerical random variables (one of the many things that Excel cannot do), but that’s not what 
we want for a repeated-measures ANOVA. Since it’s legal to do so, however, if we forget to 
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convert the Student vector into a categorical factor, R won’t give us any error message to 
inform us of our mistake. Instead, we’ll simply get a result that isn’t the one we want. 
 So before we run the analysis, we need to convert the unit variable Student into a 
categorical factor. A factor is of course a very important type of object in R (since it’s a 
programming language for statistics), so there’s a function designed just for this job: 
 
wordexp$Student = as.factor(wordexp$Student) 
 
 Now, here’s one more thing to learn before we can run the actual analysis. In R, the syntax 
for creating the one-way repeated-measures ANOVA object for our data is as follows: 
 
aov(Learning ~ WordType + Error(Student/WordType), data=wordexp) 
 
 Some parts of this syntax are exactly the same as for independent-measures ANOVA, 
namely the Dependent ~ Independent formula (here, Learning ~ WordType), but there’s a 
new element too: the Error() argument. This element should make some sense to you, now 
that you understand that a repeated-measures ANOVA partitions the error variance into the 
portion related to some random grouping unit and the portion related to unexplained, residual 
error. The Error(Student/WordType) syntax tells R that Student is a random grouping 
variable of units (students), and that WordType is a fixed variable that is “nested within” this 
unit (i.e., each student gave data for each level of the WordType factor). 
 We could also have combined the last two steps like so: 
 
aov(Learning ~ WordType + Error(as.factor(Student)/WordType), data=wordexp) 
 
 As always with the aov() function, merely creating an aov object doesn’t tell us much; we 
need to put it inside the summary() function to see our ANOVA tables. So here’s a one-line 
way to analyze and view our results: 
 
summary(aov(Learning ~ WordType + Error(as.factor(Student)/WordType), 
 data=wordexp)) 
 
 Running this gives the output text shown below, which contains the same information as 
in Excel’s ANOVA table, except that it splits the random variable (Student) from the fixed 
variable (WordType, nested within Student) into two tables. R also doesn’t bother giving you 
the F and p values for the random variable (or the total values, or the critical values used for 
computing confidence intervals). This makes R a bit more practical than Excel, since we don’t 
really need any of the information in the first table (for the random variable Student); all of 
the information we need for the report (F(3,12) = 25, MSE = 0.67, p < .05) is given in the 
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second table (for the interaction of the random variable Student with the fixed variable 
WordType, symbolized with the colon “:”, just as with other types of interactions in R). 
 
Error: Student 
 Df Sum Sq Mean Sq F value Pr(>F)  
Residuals 4 24 6    

 
Error: Student:WordType 
 Df Sum Sq Mean Sq F value Pr(>F)  
WordType 3 50 16.667 25 1.9e-05 *** 
Residuals 12 8 0.667    

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
 
 By the way, how can we be sure that we’ve reported the degrees of freedom correctly? In 
particular, how do we know that we should report F(3,12) for WordType? As we discussed in 
the previous chapter (and will review below), the first df value is based on the number of levels 
in the factor (4 levels, and df = 3). We might think that the other df value should relate to the 
number of random grouping units (i.e., the students): since we have 5 students, so shouldn’t 
the other df be related to that, and thus be 4, which is the df value shown in the first row of the 
ANOVA table (in Excel) or the first mini-table (in R)? 
 No, F(3,12) is indeed the correct way to report it. We can see this by seeing what p value 
we get with different df values, though for that we need new fake data so the p values don’t 
have so many zeroes, in order to look for subtle changes in value: 
 
wordexp2 = data.frame(Student = rep(1:5,4), 
 WordType=c(rep("Noun",5), rep("Verb",5), rep("Adj",5), rep("Adv",5)), 
 Learning =c(c(3,3,2,3,5),c(4,3,3,3,5),c(6,3,4,3,4),c(7,6,5,4,3))) 
summary(aov(Learning~WordType+Error(as.factor(Student)/WordType), 
 data=wordexp2)) 
 
Error: Student 
 Df Sum Sq Mean Sq F value Pr(>F)  
Residuals 4 7.7 1.925    

 
Error: Student:WordType 
 Df Sum Sq Mean Sq F value Pr(>F) 
WordType 3 8.95 2.983 2.196 0.141 
Residuals 12 16.30 1.358   

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
 
 Here’s the p value we get for WordType when we plug in the given F value (2.196) and 
the two df values in the main table (3, 12): 
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pf(2.196, 3, 12, lower.tail=F) 
# [1] 0.1413609      ... right! 
 
 That’s the same p value as shown in the table. But we get the wrong p value when use the 
other df: 
 
pf(2.196, 3, 4, lower.tail=F) 
# [1] 0.2310651      ... wrong! 
 
 We’ll come back to df issues when we discuss math later in the chapter, but it’s nice to 
know that when you run repeated-measures ANOVA in R, the two df values that you need for 
your report are displayed right next to each other. 
 
2.2 Other types of ANOVA in R 
 
 Since R is a command-based statistics package, we can build on the above syntax to test 
all sorts of other ANOVA models, far more complicated than the three types that are built into 
Excel. 
 For example, what if we want to do a two-way repeated-measures ANOVA, one of the 
most common type in experimental linguistics? No problem. Just be careful with the formula 
syntax. So if your ANOVA model has the factors Fact1 and Fact2 as main effects, and also 
their interaction Fact1:Fact2, then your fixed part of the model can be written as Fact1 * Fact2. 
But to tell R that it’s nested within your grouping unit Unit, you have to make sure that you 
write Error(Unit/(Fact1*Fact2)), not Error(Unit/Fact1*Fact2), just as 2/(3*4) isn’t the 
same as 2/3*4 (try it!). Like the as.factor(Unit) business (where Unit is a vector of ID 
numbers), R will not give you an error message if you forget the parentheses inside Error(), 
since the model will still make mathematical sense; it just won’t make real-world sense! 
 So running a two-way repeated-measures ANOVA, predicting the dependent variable 
Dep from Fact1 and Fact2 and their interaction, where they’re grouped within categorical 
factor Unit, all in the data frame Data, would look like this: 
 
summary(aov(Dep ~ Fact1*Fact2 + Error(Unit/(Fact1*Fact2)),data=Data)) 
 
 Similarly, a three-way repeated-measures ANOVA would look like this: 
 
summary(aov(Dep ~ Fact1*Fact2*Fact3 + Error(Unit/(Fact1*Fact2*Fact3)),data=Data)) 
 
 What if you want to run a mixed ANOVA, where one factor is between-groups while 
another is within-groups? For example, suppose the wise old Chinese teacher suspects that men 
and women differ in their abilities to learn nouns and verbs. Each person is just one gender or 
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the other (so Gender is between-groups) but to increase statistical power, each person in this 
experiment could get both word types (WordType is within-groups). In that case, the wise old 
Chinese teacher could test for main effects of Gender and WordType, and also their 
interaction, by putting only the within-unit factor inside the Error component: 
 
summary(aov(Learning ~ Gender*WordType + Error(Student/WordType)) 
 
 Let’s try a concrete example. Dorami (the sister of Doraemon) decides to run an 
experiment to test her hypothesis that education level, syntactic category, and lexical frequency 
all affect reaction time in some sort of processing experiment on Martians, possibly with 
various interactions among these factors (she treats them all as categorical variables, even 
frequency). Later on we’ll play with her entire data set, but for now we’ll just look at the by-
participant mean reaction times derived from the whole set: dorami_part.txt. 
 Note that education is a between-group factor, since the participants are either high school 
graduates or college graduates, but syntactic category and lexical frequency are both within-
group factors, since each person gets both nouns and verbs and both high and low frequency 
words (i.e., words with frequencies above or below some point), themselves arranged in a 2 × 
2 material design. Putting this all together, we have a perfect situation for a mixed three-way 
(2 ×2 × 2) ANOVA, which we can analyze with the following R code: 
 
ddat = read.delim("dorami_part.txt") 
ddat$Participant = as.factor(ddat$Participant) # Don't forget!!! 
summary(aov(RT~Education*SynCat*Freq 
 +Error(Participant/(SynCat*Freq)), data = ddat)) # Watch the parentheses! 
 
 Because the variance is being partitioned in various ways, R splits up the results into four 
ANOVA tables: one for the between-groups factor alone (Education), one each for the 
interaction of this factor with the within-groups factors (SynCat and Freq), and one for the 
two within-groups factors. Here they are: 
 
 Df Sum Sq Mean Sq F value Pr(>F)  
Education 1 58 58 0.008 0.929  
Residuals 18 127079 7060    
       
 Df Sum Sq Mean Sq F value Pr(>F)  
SynCat 1 26863 26863 5.818 0.0268 * 
Education:SynCat 1 166 166 0.036 0.8516  
Residuals 18 83111 4617    
       
 Df Sum Sq Mean Sq F value Pr(>F)  
Freq 1 72381 72381 13.825 0.00157 ** 
Education:Freq 1 26639 26639 5.088 0.03677 * 
Residuals 18 94240 5236    
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 Df Sum Sq Mean Sq F value Pr(>F)  
SynCat:Freq 1 2168 2168 0.214 0.649  
Education:SynCat:Freq 1 740 740 0.073 0.790  
Residuals 18 182374 10132    

  
Dorami reported these results like so. Compare the following with the above table to see where 
all of the values come from, and note that she uses the full factor names (for human eyes), not 
the abbreviations that she used to run the statistics (for R’s convenience).: 
 

“We analyzed the by-participant RTs using a three-way mixed ANOVA with one 
between-group factor (education) and two within-group factors (syntactic category and 
frequency). There were significant main effects of syntactic category (F(1,18) = 5.82, 
MSE = 4617, p < .05) and frequency (F(1,18) = 13.83, MSE = 5236, p < .05), but not of 
education (F < 1). There was also a significant two-way interaction between education 
and frequency (F(1,18) = 5.09, MSE = 5236, p < .05), but no other significant 
interactions. Moreover, my brother is annoying.” 

 
2.3 Plotting interactions 
 
 As usual with interactions, you would also have to explain what the interactions looked 
like by showing a graph or describing it in words. Let’s start by looking at the means: 
 
hs.hi = mean(ddat$RT[ddat$Education=="HighSchool"&ddat$Freq=="High"]) 
hs.lo = mean(ddat$RT[ddat$Education=="HighSchool"&ddat$Freq=="Low"]) 
co.hi = mean(ddat$RT[ddat$Education=="College"&ddat$Freq=="High"]) 
co.lo = mean(ddat$RT[ddat$Education=="College"&ddat$Freq=="Low"]) 
hs.lo - hs.hi # 96.65417: big effect of frequency for those with high school education 
co.lo - co.hi # 23.6625: smaller effect of frequency for those with college education 
 
 In other words, although frequency sped up RT for everybody, the frequency effect was 
greater for those with a high school education (hs.lo - hs.hi) than for those with a college 
education (co.lo - co.hi). 
 Since Dorami’s model implies that there could be up to three main effects and four 
interactions (two two-way interactions and one three-way interaction), you’ll need a lot of plots 
to plot them all. I would suggest focusing on the plots that are most relevant for showing your 
reader whether or not your research hypotheses were supported by the data. For this demo, let’s 
just focus on the interaction between education and frequency. 
 Since our independent variables are all categorical, the best type of plot would be a bar 
plot, though since we’re also trying to display interactions, a line plot could make sense too, so 
the reader can see whether the lines are parallel (no interaction) or not parallel (interaction), 
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and if they’re not parallel, whether the lines cross (opposite effects) or meet at one end (effect 
only in one sub-condition). 
 
2.3.1 Plotting ANOVA results in Excel 
 
 Let’s start in Excel, and make a bar plot. We first have to get the mean RT values for all 
four conditions defined by crossing Education and Freq. One way to do this would be to sort 
dorami_part.txt in Excel by the Education and Freq columns, so that they form four blocks 
of RT values, as in Table 8 (note that the SynCat column gets all jumbled, but we don’t need 
it for our computations). 
 
Table 8. Dorami’s re-sorted data 
 
Participant Education SynCat Freq RT 

11 College Noun High 910.5 
11 College Verb High 701 
12 College Noun High 841.8 

... ... ... ... ... 
11 College Noun Low 722.4 
11 College Verb Low 756.4 
12 College Noun Low 858.8 

... ... ... ... ... 
1 HighSchool Noun High 656.8 
1 HighSchool Verb High 647 
2 HighSchool Noun High 759.75 
1 HighSchool Noun Low 673.2 
1 HighSchool Verb Low 809.3333 
2 HighSchool Noun Low 867.4 

... ... ... ... ... 
 
 Then we can select the four ranges of RT values, and apply =AVERAGE() to each one. 
In this case, the size of each range is the same (20 cells), so we only have to write the cell 
function once, and then copy/paste it. 
 A way to do this that doesn’t require resorting the data (and works even if the cell sizes 
are different) is to use Excel’s “database average” function =DAVERAGE(database, field, 
criteria). This takes three arguments: database is a table of data arranged in columns (as we 
have here), field is a string naming one of the columns that we want to compute the averages 
for (here, “RT”), and criteria indicate which columns define the specific cell we want to look 
at, also arranged as a minitable with named columns, with the name of the desired level under 



Ch. 9: More ANOVA 
 

16 

each column label. For example, if we want to look at the cell where Education = College and 
Freq = High, we use the minitable in Table 9: 
 
Table 9. Minitable defining some of the criteria for =DAVERAGE() 
 
Education Freq 
College High 
 
 Try it yourself! Get dorami_part.txt into Excel, then create four minitables, one for each 
of the four cells in the Education × Freq interaction, and select the relevant cells and cell ranges 
to enter into =DAVERAGE(). If you do it right, you should end up with the four cell means 
in Table 10. 
 
Table 10. The four cell means for the education × frequency interaction 
 
Education Freq  

College High 732.5 
Education Freq  

College Low 756.1625 
Education Freq  

HighSchool High 694.3 
Education Freq  

HighSchool Low 790.9542 
 
 Now that you have the cell means, rearrange them into a labeled matrix, as in Table 11. 
 
Table 11. The four cell means in a matrix format 
 
 High Low 

College 732.5 756.163 
HighSchool 694.3 790.954 
 
 A bit more playing around with Excel’s bar plot tool then gives you Figure 1. Note that I 
put Education on the bottom and marked Freq using colors because the first variable is between 
groups while the latter is within groups, and this conceptual difference is now reflected by 
grouping the pairs of bars together within each education level. This allows us to express a 
natural interpretation for the interaction: college educated Martians show a smaller frequency 
effect than Martians with only a high school education. 
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Figure 1. Interaction between education and frequency (bar plot in Excel) 
 
2.3.2 Plotting ANOVA results in R 
 
 What about R? In the last chapter we used the effects package to make fancy plots of 
interactions, but unfortunately we can’t use it for between-group variables analyzed using the 
aov() function, since the effects package is designed for linear models with regression-style 
formula syntax. Since the aov() includes that ANOVA-only Error() term for repeated-
measures variables, the effects package gets all confused and can’t run. In a later chapter we’ll 
learn how to model Dorami’s data in a more regression-style way, so the effects package can 
again be used to help with plotting. 
 However, R’s interaction.plot() function still works, creating Figure 2. This function 
expresses the interaction with lines, to help see whether they are parallel or not (here, they’re 
not, consistent with the statistical significance of the interaction). 
 
interaction.plot(ddat$Education, # Variable on x-axis 
 ddat$Freq, # Variable in the legend 
 ddat$RT, # Variable on y-axis 
 main = "Education x Frequency", 
 xlab="Education", ylab="RT", # Default labels are ugly 
 ylim=c(0,900), # It's more honest to put 0 on the bottom, to show the actual effect size 
 legend=F, # Default legend style for interaction.plot is ugly, so I turned it off 
 lwd=2) # Makes the lines thicker 
 legend("bottomright",lty=c(1,2),lwd=c(2,2), 
  legend=c("Low freq","High freq")) # Prettier legend 
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Figure 2. Interaction between education and frequency (ugly line interaction plot in R) 
 
 What if we wanted to make a bar plot in R? As in Excel, the first step is to compute the 
four cell means. Some earlier R code in this chapter does it manually, selecting the cells with 
the general-purpose function for extracting subsets of vectors, but we can make our lives a bit 
easier if we use a function in the apply() family, specifically designed for tables: tapply(). This 
acts like Excel’s =DAVERAGE() function, except that it can applied to a wide variety of 
functions, not just mean() (though most of the time we’ll just use it for means). If you’re a fan 
of the tidyverse (https://www.tidyverse.org/), you could also use summarize(group_by(...)). 
 This function takes a table (here, our data frame), looks at one vector in it (in our case, the 
dependent variable RT, since that’s what we’ll be plotting), divides it up according to other 
variables (in our case, those defined by crossing Education and Freq), and then computes a 
function across it (in our case, mean()). So the following will create a table of mean RTs, where 
each mean is computed for each of the four cells defined by crossing Education and Freq 
(grouped together in a list object, which you may remember is like a vector created with c(), 
except that it permits any element type, not just elements all of one type). Since Education is 
listed first, this factor defines the rows, due to R’s “rows first” rule. In any case, it gives us the 
same four means that we got with Excel. 
 
tapply(ddat$RT, list(ddat$Education, ddat$Freq), mean) # Education on rows 
 
 

https://www.tidyverse.org/
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 High Low 
College 732.5 756.1625 

HighSchool 694.3 790.9542 
 
 Since the output is arranged like a matrix, it’s not too hard to plot these means using the 
barplot() function (though harder than Excel, of course). The first thing to remember is how 
the arrangement of matrix cell values correspond to the bars that we want to plot. Suppose your 
matrix of means is arranged as in Table 12 (with the cells coded as for our contingency tables). 
 
Table 12. Schematic matrix of cell means 
 

  Factor F 
  Level F1 Level F2 

Factor G Level G1 A B 
Level G2 C D 

 
 Then barplot() will arrange your four bars as in Figure 3 (pay close attention to how the 
bars correspond to the table cells). 
 
 Bars:           Legend: 
 
              G1 
 A  C   B  D      G2 
  F1     F2 
 
Figure 3. How barplot() arranges the bars for the cell means in the above matrix 
 
 Currently, our matrix is arranged with Freq defining the columns, so if we just use 
barplot() on it, it will put Freq at the bottom. But we want Education there, for the reasons I 
mentioned earlier. So the first we need to do is to transpose the matrix of cell means, using the 
t() function, or more reasonably, just doing tapply() with the factors in the other order: 
 
tapply(ddat$RT, list(ddat$Freq, ddat$Education), mean) # Freq on rows 
 
 College HighSchool 
High 732.5000 694.3000 

Low 756.1625 790.9542 

 
 Note also that R sorts the levels alphabetically (“College” before “HighSchool”, “High” 
before “Low”), both exactly backwards from what we logically would like them to be (as 
rearranged in my Excel plot in Figure 1). To make a really nice R plot, then, we’d have to do 
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a bit more work, but I’ll just skip this part (just as I skipped it with the interaction line plot in 
Figure 2). 
 Finally, you have to remember (or look up) all of the extra arguments needed to make the 
plot look nice (Figure 4 doesn’t look as nice as Figure 1): 
 
barplot(tapply(ddat$RT, list(ddat$Freq, ddat$Education), mean),   # matrix of values 
 beside=T,     # draw bars next to each other, not on top 
 names.arg=c("College","High school"), # names at the bottom (in matrix order) 
 legend.text=c("High freq","Low freq"), # names in the legend box (in matrix order) 
 ylim = c(0,1100),    # min & max y-axis (so legend doesn't cover bars) 
 ylab = "RT (ms)"    # y-axis label 
) 

 
Figure 4. Interaction between education and frequency (ugly R bar plot) 
 
2.4 More about the math of repeated-measures ANOVA 
 
 How does a repeated-measures ANOVA actually work? I’ve already sketched out the core 
ideas, but let’s review them in mathematical terms (though we won’t ever use this math). 
 Remember that the basic idea is that we want to understand as much of the variability in 
our data as possible, and so we want the “pure error” part (total residuals) to be as small as 
possible. Remember also that the independent-measures ANOVA partitions the variance into 
two parts: the variance between and within factor levels (treatments). Doing this lets us 
compute a single F ratio: variabilitybetween / variabilitywithin. 
 If the data are repeated-measures, variabilitywithin itself has two parts: 
variabilitybetween_treatments (e.g., nouns vs. verbs for one group of people) and “pure error” (e.g., 
random differences across people in this group). Since we’ve pulled out some more of the non-



Ch. 9: More ANOVA 
 

21 

error variabilitybetween_treatments, the ratio of between-levels variability (in the numerator of the F 
ratio at the top) to error (in the denominator of the F ratio at the bottom) gets bigger than in an 
independent-measures ANOVA, increasing the power of the test. 
 Since the core logic is the same as for independent-measures ANOVA, the general 
formulas for F and MS don’t change: 
 

𝐹𝐹 = 𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑀𝑀𝑀𝑀𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  where 𝑀𝑀𝑀𝑀 = 𝑠𝑠2 = 𝑀𝑀𝑀𝑀
𝑑𝑑𝑑𝑑

 

 
 The partitioning of the variance starts with the total SS, computed just as before: 
 
SStotal = Σ(x – M)2 
 
 Moreover, because the extra partitioning step occurs in the “within treatments” part, the 
formulas for the “between treatments” part are also the same as the “between” parts for 
independent-measures ANOVA: 
 
dfbetween_treatments = k – 1, where k = the number of treatments (levels) of the factor 
SSbetween_treatments = n⋅SSM (again, this simple version assumes the cells have the same size n) 
 
 The formulas for the “between units” part are exactly parallel to the “between treatments” 
formulas: 
 
dfbetween_units = n – 1, where n = the number of units 
SSbetween_units = k⋅SSP (where SSP is computed across units) 
 
 The degrees of freedom for the residual, dferror, is calculated by multiplying the other two 
df values: 
 
dferror = dfbetween_treatments × dfbetween_units = (k – 1) ⋅ (n – 1) 
 
 Finally (for our purposes anyway), the value of SSerror, for residual error, is found by 
subtracting all the “known” variability from the total variability: 
 
SSerror = SStotal – SSbetween_treatments – SSbetween_units 
 
 And that’s basically it! There only two bits of this that you might need in real life. First, 
it’s useful to know that the core trick underlying repeated-measures ANOVA is that it partitions 



Ch. 9: More ANOVA 
 

22 

up the “noisy” variance into two types of noise: the noise due to the grouping units (e.g., 
participants) and the “pure” noise of the residuals. More generally, an ANOVA model, like 
any statistical model, “explains” some of the data (e.g., the part captured by SSbetween_treatments) 
and doesn’t explain the rest (the residuals). Since we can also compute the total amount of 
variability in the data as a whole, we can therefore also compute what proportion of the data is 
“explained” by our model. This is just like in correlation, where the regression line reflects 
how much of the dependent variable is “explained” by the independent variable (though 
“explains” doesn’t have all the implications of this word in ordinary life, here referring only to 
how noisy the data are around the regression line). We’ll come back to these ideas in the next 
section. 
 Second, the df values that you report in your ANOVA report are dfbetween_treatments and dferror, 
both because of the logic just sketched in the previous paragraph, and also because, as we saw 
earlier when we analyzed the fake wordexp2 results, those are indeed the df values used by 
Excel and R to derive each p value from its associated F value. 
 
3. ANOVA complexities 
 
 Though I’ve tried to keep the basic ideas simple, when you start to use ANOVA for real-
life data, you come across a variety of tricky issues. In this section I focus on just four of them, 
all of which can only be dealt with in R, not Excel. The first is a concept called sphericity, 
which is like homoscedasticity, but is relevant for within-group analyses like repeated-
measures ANOVA rather than between-group analyses like the unpaired t test. The second is 
a concept called minF', which is related to our old friend the F value, but designed to make it 
possible to combine by-participant analyses and by-item analyses together, since language 
experiments usually give us both. The third is a concept called eta-squared, which is a measure 
of effect size that follows from the mathematical relationship between ANOVA and regression. 
Finally, the fourth relates to a subtle difference between ANOVA and regression that can 
confuse people: the usual way ANOVA is calculated depends on the order of the variables, 
unlike what we’ll see for multiple regression in the next chapter. 
 
3.1 Sphericity 
 
 It turns out that despite its incredible usefulness for linguistic research, repeated-measures 
ANOVA has a weakness, one that some linguists worry enough about to try to fix (e.g., Zhang 
& Lai, 2010), but which many textbooks (e.g., Baayen, 2008, Johnson, 2008) ignore, and which 
is not even handled very easily in the base package of R (maybe because it really is a problem 
that can safely be ignored). This is the problem of sphericity, or more intuitively: homogeneity 



Ch. 9: More ANOVA 
 

23 

of covariance. (Perhaps the term “sphericity” is meant to apply that the variance is “the same 
in all directions”, like the radius of a sphere?) 
 The homogeneity of covariance is a generalization of the assumption of equal variance 
made in the ordinary unpaired t test. Namely, in repeated-measures ANOVA, the variances of 
the differences between any two factor levels are assumed to be statistically equal (that is, come 
from the same population values). If this assumption is violated (i.e., if your data show a 
statistically significant difference in sphericity), then the p values you get in your ANOVA will 
be too low, and so you’ll make Type I errors, mistaking randomness for a real pattern (i.e., 
rejecting the null hypothesis when it’s actually true). 
 Fortunately, since sphericity involves comparing differences across factor levels, it’s not 
an issue if your factor only has two levels. So the problem doesn’t come up in the paired t test, 
nor does it arise if you have a two-way or three-way or any-way ANOVA where none of the 
within-group variables has more than two levels. For example, if the wise old Chinese teacher 
tests three of her classes (Beginner, Intermediate, and Advanced) and gives everybody only 
two word types (nouns vs. verbs), then she could run a two-way mixed ANOVA with one 
between-group variable (the three-level factor of Class) and one within-group variable (the 
two-level factor of Word Type), and wouldn’t have to worry about sphericity violations. 
 This gives you another reason to avoid multi-level factors when you design an experiment 
(if you can manage it). Not only are multi-level factors hard to interpret (at a minimum, you 
have to use planned comparisons or post-hoc tests like the Tukey test), but they raise this 
annoying problem of sphericity as well. 
 Even more annoyingly, statistical tests for sphericity aren’t reliable, so some people (e.g., 
Max & Onghena, 1999) say that you should always assume that it’s violated, and always correct 
for it, to be extra-sure that you’re not committing a Type I error (though of course, the more 
you try to avoid Type I errors, the greater the risk of Type II errors: missing real patterns). 
 Just as with the unpaired t test heteroscedicity problem, the most common solution to the 
repeated-measures ANOVA sphericity problem is to compute the test statistic as usual (here, 
the F ratio), but then to compute p with lowered df values (giving a higher p value). As with 
the Welch unpaired t test not assuming equal variance, the lowered df is computed in a really 
ugly way (you can see the equations in Baron & Li, 2006), but the basic idea is simple: you 
compute a ratio called epsilon (the Greek letter ε, for “error”, I guess) that takes the sphericity 
into account, and multiply both of your df values by it, to lower them and thereby reduce Type 
I error risk. The most popular correcting value seems to be the Huynh-Feldt epsilon factor. 
A common alternative is the Greenhouse-Geisser epsilon, but it is said that it doesn’t balance 
Type I and Type II errors quite as well. Most statistics programs, including R and SPSS, give 
you both values (and the adjusted p values that result) anyway. 
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 We can see how this works by looking at a toy example designed by Max & Onghena 
(1999, p. 264) to demonstrate the Type I error risk that arises when you commit the horrible 
sin of ignoring sphericity violations. As usual, I’ll change it into a linguistic example. 
 Table 13 shows yet another experiment by that wise old Chinese teacher. This time she 
gives three tests to each of five of her students, one testing their syntactic abilities, one testing 
their phonological abilities (pronunciation), and one testing their lexical abilities (vocabulary). 
This creates “responses” to three “conditions” that are within-group, so it seems to be an 
appropriate situation for running a one-way repeated-measures ANOVA (the simple kind that 
even Excel can run). 
 You can copy/paste Table 13 below into Excel to analyze it, or download maxongR.txt 
to analyze it in R. Either way, you end up getting F(2,8) = 4.73, p = .044: significant. Try it! 
 However, these data seem to violate sphericity: the variance for the Condition 1 minus 
Condition 2 differences is only 70, but for Condition 1 vs. Condition 3 it’s 191.3 and for 
Condition 2 vs. Condition 3 it’s 328.3. Try it! 
 So as Max & Onghena (1999) show, to correct for the sphericity violation we need a high 
Huynh-Feldt epsilon factor here, namely .795 (I’ll explain in a moment how to do this in R). 
We multiply each of our original df values (2, 8) by this factor, which gives us a new member 
of the F distribution family: F(1.59, 6.36) = 4.73, p = .060: not significant. You can confirm 
this part yourself: pf(4.73, 2*0.795, 8*0.795, lower.tail=F) == 0.06. 
 
Table 13. Scores on three within-group tests 
    

Subject Condition 1 Condition 2 Condition 3 
1 100 90 130 
2 90 100 100 
3 110 110 109 
4 100 90 109 
5 100 100 130 

 
 The base package of R can compute the Huynh-Feldt epsilon factor, but only in a complex 
and confusing way that I don’t recommend. Namely, you have to redo the ANOVA analysis 
as a MANOVA (Multiple Analysis of Variance), which is a generalization of ANOVA where 
the dependent variable is a vector instead of a number, so we can treat the rows in the above 
table as a dependent vector. In the unlikely event you want to try this, here’s some R code that 
works (you first have to download the file maxong.txt, which contains the values as a matrix): 
 
maxong.mat = matrix(scan("maxong.txt"),ncol=3,byrow=T,   # Must load as matrix 
 dimnames = list(Subject=1:5,Condition=c("Cond1","Cond2","Cond3"))) # Labels 
mlm1 = lm(maxong.mat ~1) # Base model (intercept only: see next regression chapter) 
mlm0= lm(maxong.mat ~0) # Random model (no predictors at all: ditto) 
anova(mlm1,mlm0, X=~1, test="Spherical") 
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 The last step uses the anova() function, which is that general-purpose function for running 
ANOVA-like analyses (we’ll see it again in later chapters in more useful applications). 
Running the above code gives the following text output: 
 
Greenhouse-Geisser epsilon: 0.6343 
Huynh-Feldt epsilon:  0.7951 
 

 Res.Df Df Gen.var. F num Df den Df Pr(>F) G-G Pr H-F Pr 
1 4  36.921       
2 5 1 47.633 4.7246 2 8 0.044 0.077 0.060 

 If you study this report, you will recognize several values from the ones we saw above 
from Max & Onghena (1999): the F value, the original df and p values, the Huynh-Feldt epsilon 
factor, and the adjusted p value, here called “H-F Pr” (and also the Greenhouse-Geisser epsilon 
and its p value [G-G Pr]). To get the adjusted df values, you have to multiply the epsilon factor 
by the original df values; that gives 2*0.7951 = 1.59 and 8*0.7951 = 6.36, just as Max & 
Onghena (1999) gave. 
 Fortunately, we can avoid all this mess by using a much more flexible and user-friendly 
function available in a happy little package (created by Lawrence, 2016) called ez, which is 
short for “easy” (get it?). 
 The ez function that we need is called ezANOVA(). If you like, you can just use this 
function for running all of your ANOVA models; check the help with ?ezANOVA to learn 
more about its syntax. For now, I’ll focus on one specific benefit of this function: it 
automatically corrects for sphericity violations. 
 Let’s start by analyzing the data contrary to what Max and Ongehena recommend: 
 
maxong = read.delim("maxongR.txt") # Download same data, now in a data frame 
summary(aov(Response~Condition+Error(as.factor(Subject)/Condition), 
 data=maxong)) # This ANOVA doesn't correct for the sphericity violation 
 
Error: as.factor(Subject) 
 Df Sum Sq Mean Sq F value Pr(>F) 
Residuals 4 439.1 109.8   
 
Error: as.factor(Subject):Condition 
 Df Sum Sq Mean Sq F value Pr(>F)  

Condition 2 928.5 464.3 4.725 0.0442 * 
Residuals 8 786.1 98.3    

 
 There’s that significant result. Now, let’s redo it with the sphericity correction: 
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library(ez) 
ezANOVA(data=maxong, dv = Response,   # dv = "dependent variable" 
 wid = Subject, # "within identifier" (converted to a factor with a warning) 
 within = Condition, # within-group factor (also warns you to make sure it's a factor) 
 # between = ... Not relevant here, but this is how to mark between-group factors 
) 
 
 Here are the results: 
 
Warning: Converting “Subject” to factor for ANOVA. 
Warning: Converting “Condition” to factor for ANOVA. 
$ANOVA 
 Effect DFn DFd F p p<.05 ges 
2 Condition 2 8 4.724559 0.0441841 * 0.4311273 

$`Mauchly’s Test for Sphericity` 
 Effect W p p<.05 
2 Condition 0.4235129 0.2756131  

 
$`Sphericity Corrections` 
 Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05 
2 Condition 0.6343217 0.07726439  0.7950659 0.06027022  

 
  Note that ezANOVA() automatically converts Subject to a factor (though it gives you a 
warning, to remind you to be more careful next time). Then it gives the ANOVA table (DFn = 
numerator df, DFd = denominator df, ges = generalized eta-squared, which we’ll explain soon). 
So among other nice things, it shows just the two df values that you need for your report (here, 
F(2,8)). 
 Then it gives a test for sphericity (a generalization of the F test that we used for preparing 
unpaired t tests); since p > .05, this test says that we can assume that the sphericity assumption 
isn’t violated. But Max & Onghena (1999) say that this test is unreliable, so we’ll ignore the 
results of this test as they recommend. 
 Finally, at the bottom of the results, we can see the Huynh-Feldt epsilon (HFe) and its p 
value (and also the Greenhouse-Geisser epsilon [GGe], and its p value). These are the same 
values as what we got with the complicated and confusing MANOVA, but the ezANOVA() 
makes it a lot easier to get them. 
 Is all of this trouble worth it? Well, on the one hand, most people who do repeated-
measures ANOVAs don’t do any of this; as with unpaired t tests, it usually doesn’t matter 
whether or not we correct for violations of homogeneous (co)variance, since often (usually?) 
the p value is far above or far below .05, instead of right on the edge as in Max & Onghena’s 
(1999) example. On the other hand, some people do worry about the “evils” of sphericity, and 
will criticize you if you don’t worry too. 
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3.2 minF' 
 
 And now things get more complicated. I’m sorry, but that’s how math works: we keep 
building on top of what we’ve already built. But in this case, it’s a much more serious issue, 
one that affects almost all experimentation in linguistics, and it’s definitely an issue that all 
linguists who know statistics will complain about if you do it wrong. 
 As we’ve seen, the typical experiment in an introductory statistics textbook (e.g., 
Gravetter & Wallnau, 2004, where I got a lot of the fake data for my two ANOVA chapters) 
involves a set of participants responding to two or more types of stimuli, arranged as one or 
more factors. In the case of the repeated-measures ANOVA, the participants are treated as the 
random variable, since we imagine that the participants are a random sample representing a 
population. The other factors (e.g., word types or frequencies) are fixed variables: their levels 
aren’t treated as a random sample, but are the things that we really do care about. 
 For example, if we ask twenty people to do some sort of experiment comparing one noun 
with one verb, the people are the random variable and the noun/verb variable is the fixed 
variable. Our experiment will allow us to generalize to the population of all people in how they 
respond to that specific noun and that specific verb. However, we can’t generalize to the whole 
populations of nouns and verbs, since we only tested one of each. 
 In a real experiment, of course, we would actually test multiple nouns and multiple verbs. 
But now we have two random variables: both the participants and the items. What can we do? 
All of the statistical analyzes that we’ve seen so far assumes there is only one random variable. 
 To see why this is a problem, remember that computing an ANOVA involves partitioning 
the variance in a series of steps. So in a one-way repeated-measures ANOVA, we first partition 
out the variance relating to the fixed factor. Whatever is left is the random part of the data. 
Within this random part, we then partition out the variance due to cross- participant differences. 
This leaves the residuals for the model. 
 However, if there are two sources of random variation, both participants and items, their 
effects will be mixed together: we won’t be able to partition out one from the other. Every trial 
in an experiment involves both a random participant and a random item; the response depends 
crucially on both at the same time. Thus we can’t compute the proper MSE, needed in the 
denominator (bottom) for the F ratio (for more information on this point, see Raaijmakers et 
al., 1999, p. 417). 
 Until the early 1970s, experimental linguists would only run a by-participant analysis. 
That is, people averaged the scores within each item cell (e.g., get an average noun score and 
an average verb score), separately for each participant, and then treated only the participants 
as a random variable. They didn’t do any by-item analysis at all. 
 But then along came Clark (1973), one of the most influential papers in the statistics of 
linguistic experiments. He pointed out that ignoring the by-item analysis falsely treats the items 
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as a fixed factor, just as in the unrealistic textbook experiments. He called this the language-
as-fixed-effect fallacy, and it causes an overly high Type I error rate. 
 Clark’s solution, described in detail below, involved conducting separate ANOVAs by 
participant (using participants as random variable, averaged across each type of item) and by 
item (using items as random variable, averaged across all participants), and then combining the 
two analyses together in a special way at the end. 
 Over the years, however, Clark’s advice was misinterpreted as meaning that we should 
do both by-participant and by-item analyses, and just stop there, without the crucial putting-
together-again step at the end. The convention came to be that we should only count an effect 
as significant if it’s significant both by participants and by items. This is mathematically 
problematic, but it remains a common way to do ANOVA. The F value for the by-participant 
analysis is often labeled F1, and F for the by-item analysis is labeled F2, so Raaijmakers et al. 
(1999) call this the F1 × F2 fallacy. 
 The problem is that the F1 × F2 method still has an overly high Type I rate: it is quite 
possible to get a significant result both by participant and by item, but not really have a 
significant effect if participants and items are treated as random at the same time, as they should 
be. Thus in the early 2000s psychology journals started to go back to Clark’s original advice. 
(More recently they’ve moved to another method, mixed-effects models, that we’ll learn in a 
later chapter.) 
 So how did Clark recommend that we recombine the by-participants and by-items 
analyses? Although no true F ratio exists with two random variables, it is often possible to 
compute something similar to an F ratio, called quasi F, or F' (pronounced “F-prime”). F' has 
a distribution approximately the same shape as a real F distribution. In the formulas below, 
something1 relates to the by-participant analysis and something2 to the by-item analysis; 
remember that dfnum is for the numerator (at the top of the ratio) and dfdenom is for the 
denominator (at the bottom of the ratio). 
 

𝐹𝐹′ =
𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑀𝑀𝑀𝑀𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡×𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡×𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑀𝑀𝑀𝑀𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

𝑑𝑑𝑑𝑑𝑡𝑡𝑛𝑛𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡 =
(𝐹𝐹1 + 𝐹𝐹2)2
𝐹𝐹12

𝑑𝑑𝑑𝑑2
+ 𝐹𝐹22

𝑑𝑑𝑑𝑑1

 

 
 Since the equation for F' is pretty hard to work with, Clark (1973) suggested simplifying 
the procedure by pretending that MSitems×participants = 0 (i.e., pretending that there is no 
interaction between items and participants). Through the magic of algebra, this gives the 
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minimum F', or minF', which is much easier to calculate, and still uses the same df values as 
shown above: 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹′ =
𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡×𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑀𝑀𝑀𝑀𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
=

𝐹𝐹1𝐹𝐹2
𝐹𝐹1 + 𝐹𝐹2

 

 
 If you think about it, you can see that minF' gives higher p values than the by-item or by-
subject analyses alone. Since minF' = (F1×F2)/(F1+F2), a bit of algebra shows that minF' = 
F1×(F2/(F1+F2)), and since F1 and F2 both must be greater than zero (since they’re ratios of 
variances, which are squares, remember?), then F2 < F1+F2, so therefore (F2/(F1+F2)) < 1, and 
that means that F1×(F2/(F1+F2)) = minF' < F1 (and likewise for F2). If the F is smaller, then the 
p must be bigger. Got it? 
 Using these formulas, it’s not difficult to invent a situation where both by-participant and 
by-item ANOVAs are significant, but minF' is not. For example, try out this code: 
 
F1 = 4.5; df1= 23; F2 = 4.5; df2 = 34; df = 1 
pf(F1,1,df1,lower.tail=F) # Significant by participants 
pf(F2,1,df2,lower.tail=F) # Significant by items 
minF = (F1*F2)/(F1+F2) 
df.minF = (F1+F2)^2/(F1^2/df2 + F2^2/df1) # Using the correct df formula 
pf(minF,1,df.minF,lower.tail=F) # Not significant by minF' 
 
 Thus when Clark recommended computing both by-participant and by-item ANOVAs, he 
meant that these values were supposed to be used as steps on the way to computing minF', 
which should be the real final step. 
 Let’s try doing it the right way with Dorami’s experiment, this time starting with the full 
data set so we can run not just the by-participants analysis, but also the by-items analysis, and 
then combine them together using minF'. 
 
3.2.1 Computing by-participant and by-item means 
 
 To play along at home, please download doramiR.txt. Let me start by explaining how I 
created the by-participant version in dorami_part.txt that we were using earlier. Since the data 
are in R-style columns, we can use the aggregate() function. Like tapply(), it does something 
similar to Excel’s =DAVERAGE() function, but more flexibly, but unlike tapply(), it creates 
a data frame rather than a matrix. Namely, aggregate() takes the vector that we want to process 
(here, RT), a list of variables defining the subsets we care about (here, everything except Item, 
since this is for the by-participants analysis, not the by-items analysis), and a one-argument 
function (here, mean), and then creates a new data frame with the means computed for those 
subsets. Best of all, we can define our dependent variable and crossed independent variables 
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using a formula, similar to what we’ll need when we run the ANOVA (except here we include 
the random variable Participant as the first variable): 
 
ddat.all = read.delim("doramiR.txt") 
ddat.all = na.omit(ddat.all) # Some data is missing, so let's clear out the NA's 
ddat.part = aggregate(RT~Participant*Education*SynCat*Freq, data=ddat.all, mean) 
head(ddat.part) # See what it looks like 
 
 Participant Education SynCat Freq RT 

1 11 College Noun High 910.5 
2 12 College Noun High 841.8 
3 13 College Noun High 794.6 
4 14 College Noun High 853.0 
5 15 College Noun High 602.8 
6 16 College Noun High 603.0 

 
 We already did the by-participants analysis above, using the data in dorami_part.txt, but 
let’s see if we come up with the same results with ddat.part. 
 
ddat.part$Participant = as.factor(ddat.part$Participant) # Don't forget!!! 
bypart.aov = summary(aov(RT~Education*SynCat*Freq 
 +Error(Participant/(SynCat*Freq)), data = ddat.part)) # Summary of aov object 
bypart.aov # Show summary: yes, it's the same as before! 
 
 We can create the by-item data frame the same way (you can compare this with 
dorami_item.txt, which I created like this): 
 
ddat.item = aggregate(RT~Item*Education*SynCat*Freq, data=ddat.all, mean) 
 
 Now it’s time to run the by-item analysis. Note that from the perspective of the items, 
Education is now a within-unit factor (each word is given to Martians with both education 
levels), while SynCat and Freq are now between-unit factors (since each word has its own 
syntactic category and frequency). 
 
ddat.item$Item = as.factor(ddat.item$Item) # Don't forget!!! 
byitem.aov = summary(aov(RT~Education*SynCat*Freq 
 +Error(Item/Education), data = ddat.item)) 
byitem.aov # What the results look like 
 
 The results of the by-item analysis come in two ANOVA tables: one for the between-
word factors SynCat and Freq, and one for the within-word factor Education and its 
interactions. I put all the results together below. 
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 If we compare these by-item results with the by-participant results we got earlier, the only 
effect that’s significant for both is Freq. So if we follow the common convention, we could 
write something like: “Only frequency had a significant effect in both the by-participant 
analysis (F1(1,18) = 13.83, MSE = 5236, p < .05) and the by-item analysis (F2(1,16) = 7.39, 
MSE = 5144, p < .05).” This is where most published papers stop, but technically it’s not 
enough. 
 

 Df Sum Sq Mean Sq F value Pr(>F)  
SynCat 1 13773 13773 2.677 0.1213  
Freq 1 38029 38029 7.393 0.0152 * 
SynCat:Freq 1 1828 1828 0.355 0.5594  
Residuals 16 82306 5144    
Education 1 29 29 0.006 0.938  
Education:SynCat 1 45 45 0.010 0.923  
Education:Freq 1 13428 13428 2.923 0.107  
Education:SynCat:Freq 1 396 396 0.086 0.773  
Residuals 16 73514 4595    

 
3.2.2 Combining the by-participant and by-item ANOVAs 
 
 As you now know, the F1 × F2 method has a high Type I error risk: there should be only 
one p value for Freq, namely the one we get from minF'. There’s no point computing minF' 
for the factors that aren’t significant in both analyses (since minF' can’t give lower p values 
than the original by-participant and by-item p values), so let’s just look at Freq. 
 For this we need the F1, df1, F2, df2 values for Freq. We could just copy and paste them 
from R’s output, but the values in these outputs have been rounded; it’s safer to extract the 
original values computed during the actual ANOVA. This is kind of hard to do, since as we’ve 
seen, summary(aov(...)) creates different sets of ANOVA tables depending on the model being 
tested. Technically, these tables are put together in a list object, since they are different sizes 
and only lists can combine elements of different types. Just as vectors created with the c() 
function indicate their elements with single square brackets like [...], list objects indicate their 
elements with double square brackets like [[...]]. So with that background, here’s how to extract 
the values we need to compute minF': 
 
F1.Freq = bypart.aov[[3]][[1]][1,4] # 3rd table, 1st part of it, 1st row, 4th column 
dfnum1 = bypart.aov[[3]][[1]][1,1] # 3rd table, 1st part of it, 1st row, 1st column 
dfdenom1 = bypart.aov[[3]][[1]][3,1] # 3rd table, 1st part of it, 3rd row, 1st column 
F2.Freq = byitem.aov[[1]][[1]][2,4] # 1st table, 1st part of it, 2nd row, 4th column 
dfnum2 = dfnum1 # They're the same, and we don't really need both of them 
dfdenom2 = byitem.aov[[1]][[1]][4,1] # 1st table, 1st part of it, 4th row, 1st column 
minF = (F1.Freq*F2.Freq)/(F1.Freq+F2.Freq) # Apply minF' formula (can't use ' symbol) 
dfnum.minF = dfnum1 # df for treatments (here, High vs. Low minus 1 = 1) 
dfdenom.minF = (F1.Freq+F2.Freq)^2/(F1.Freq^2/dfdenom2 + F2.Freq^2/dfdenom1) 
pf(minF,dfnum.minF,dfdenom.minF,lower.tail=F) # p = .03604612 
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 After running this horrible-looking code, we can now add the following to the end of our 
report: “Frequency was also significant by a minF' analysis (minF'(1,30.05) = 4.82, p < .05).” 
(We can’t include MSE here, since minF' doesn’t give a single MSE value, as far as I know.) 
 As usual for these special kinds of analyses, we have to ask: Is all of that extra work worth 
it? 
 It partly depends on how our data are structured. As Raaijmakers et al. (1999) point out, 
Clark’s approach is only relevant if the item-based variable represents independent samples, 
such as separate random collections of nouns vs. verbs. In many linguistic experiments, 
however, the items are actually matched in some way. For example, we might select nouns 
randomly, but for each noun we choose a verb identical to it in every psychologically relevant 
way: same length, same frequency, etc. Thus if we find any effect of the noun vs. verb treatment, 
it must really be due to the treatment, not some hidden random effect of the items. 
 Matching items like this has the effect of making MSitems and MSitems×participants very small, 
so the F' becomes the same as the usual F ratio for the by-participant analysis. So in this kind 
of experiment, there’s no point in doing a by-item analysis at all, just as in the pre-Clark 
tradition! 
 

𝐹𝐹′ ≈ 𝐹𝐹1 = 𝑀𝑀𝑀𝑀𝑏𝑏𝑒𝑒𝑏𝑏𝑡𝑡𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡
𝑀𝑀𝑀𝑀𝑏𝑏𝑒𝑒𝑏𝑏𝑡𝑡𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡×𝑝𝑝𝑡𝑡𝑒𝑒𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡

  for a matched-item experiment 

 
 Besides the extra effort, there is also another cost to using minF': it reduces the risk of 
Type I errors only by increasing the risk of Type II errors! It also doesn’t do anything to solve 
our two other big problems with ANOVA, namely how to compare levels within a factor, and 
how to deal with violations of sphericity in repeated-measures analyses. 
 Hence in the past ten years or so, experimental linguists (starting with Baayen, 2004) have 
advocated a newly invented regression-based approach that solves all of these problems 
(mixed-effects modeling, which we’ll learn about in a later chapter). Clark’s problem doesn’t 
disappear entirely, but it becomes much easier to deal with it. For this reason, I know of no R 
package that computes minF' for you: you have to write your own code, as I did above. 
 
3.3 Effect sizes for ANOVA 
 
 Just as with statistical hypothesis test, the p values given by ANOVA only represent 
“significance” in a narrow technical sense, namely the probability that your results are due to 
chance (well, the probability that your sample comes from the null hypothesis population). If 
you want to estimate how “significant” your results are in the normal meaning of the word, you 
need to measure effect size: how much effect do the independent variables have on the 
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dependent variable? As with t tests, there are two general ways to do this: with a point estimate 
(a single number) and with a confidence interval. 
 
3.3.1 A point-estimate for ANOVA effect size: eta-squared 
 
 Because an ANOVA is a kind of regression, you can measure the overall fit of an ANOVA 
model using something related to the coefficient of determination r2 that we looked at with 
simple regression. For some reason, when the r2 logic is applied to ANOVA, it’s called eta-
squared (η2: yes, that Greek letter is actually a kind of “e”, even though it looks like a velar 
nasal ŋ). Similar to r2, eta-squared represents the proportion of the variance in the dependent 
variable that is predicted by the independent variable(s) (that is, the proportion of the variance 
that isn’t dumped into the garbage-can category of the residuals). 
 For independent-measures one-way ANOVA, η2 is the variance predicted by your 
independent variables divided by the total amount of variance. Because variance is MS, which 
is closely related to SS, you can compute eta-squared directly from the SS values reported in 
the ANOVA table: 
 

𝜂𝜂2 = 𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑀𝑀𝑀𝑀𝑏𝑏𝑒𝑒𝑏𝑏𝑡𝑡𝑡𝑡

= 𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑀𝑀𝑀𝑀𝑏𝑏𝑝𝑝𝑏𝑏ℎ𝑝𝑝𝑏𝑏

= 𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑀𝑀𝑀𝑀𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  

 
 Earlier in this chapter we already saw one way we can calculate this automatically in R. 
Remember? No? You just run your ANOVA using the ezANOVA() function in the ez package, 
and that will automatically give you a value called “ges”, which stands for generalized eta-
squared (an adjusted η2 that also takes the number of fixed variables into account; we’ll come 
back to this concept we look at multiple regression). 
 Let’s see if that formula works for the first colored room experiment discussed in the 
previous chapter. First we’ll do it by hand, using R’s base aov() function: 
 
exp1 = data.frame(Color = c(rep("Red",5), rep("Blue",5), rep("Yellow",5)), 
 Learning=c(c(0,1,3,1,0),c(4,3,6,3,4),c(1,2,2,0,0))) # To keep track of the 3 samples 
summary(aov(Learning~Color,data=exp1)) # Use this to copy/paste the values below 
eta2 = 30/(30+16) # (Sum Sq for Color = 30, Sum Sq for Residuals = 16) 
eta2 
 
[1] 0.6521739 
 
 Now we’ll redo it using a regression analysis, just to prove I wasn’t lying when I said that 
eta-squared for an ANOVA is the same as the r2 you get from regression. Look for the value 
reported in the text report as “Multiple R-squared”: 
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summary(lm(Learning~Color,data=exp1)) # Multiple R-squared:  0.6522 
 
 Next, let’s use the ezANOVA() function in the ez package (note that we have to tell it that 
all of the subjects were different). Look in the text report for “ges” (generalized eta-squared): 
 
library(ez) # In case it's not already running 
exp1$Subj = 1:15 
ezANOVA(data=exp1,dv=Learning,between=Color,wid=Subj) # ges: 0.6521739 
 
 Since there’s only one independent variable, the generalized eta-squared is the same as 
the simple eta-squared that we computed ourselves. In more complex models, the generalized 
eta-squared will be a bit lower (again, see the multiple regression chapter, coming up next). 
 That’s three ways to compute eta-squared in R, and here’s a fourth way. Remember the 
lsr package (Navarro, 2014), that we used to compute Cohen’s d for t tests? Cohen’s d is also 
a measure of effect size, so it’s not surprising that this package also has a function for 
computing the effect size for ANOVA: etaSquared(), which operates on aov() models: 
 
library(lsr) 
etaSquared(aov(Learning~Color,data=exp1)) 
 

 eta.sq eta.sq.part 
Color 0.6521739 0.6521739 

 
 The “eta.sq” part is the overall eta-squared for the ANOVA model, and the “eta.sq.part” 
part is the eta-squared just for Color. They’re the same here because the model only has this 
one independent variable. 
 
3.3.2 Confidence intervals for ANOVA 
 
 It’s also possible to compute confidence intervals for ANOVA, and as usual, the main 
benefit is to add error bars to graphs. Loftus & Masson (1994) explain how to do this, for any 
type of ANOVA (the journal editor asked me to follow their advice for Myers et al., 2006). 
 The basic idea builds on the formula we used for the one-sample t tests: 
 
µ = M ± (t(df)95%conf)(SE) = M ± (t(df)95%conf)(s/√n) = M ± (t(df)95%conf)√(s/n) 
 
 To generalize from a t test to ANOVA, remember that s2 is the measure of randomness 
(error) in the data, and that in ANOVA, the measure of randomness is MSE. This gives the 
following general formula for confidence intervals in ANOVA, where n is the size of each cell: 
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𝜇𝜇 = 𝑀𝑀 ± 𝑡𝑡(𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡)95%𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑�
𝑀𝑀𝑀𝑀𝑀𝑀
𝑡𝑡

  

 
 I’m still not sure how useful this is, though, since you have to add the same error bars to 
everything in your plot, but unlike a t test, an ANOVA actually tests multiple things at the same 
time. So in a two-way ANOVA, you’re testing two main effects and an interaction, but the 
95% confidence intervals can only reflect one of these comparisons. Moreover, if your factor 
has more than two levels, testing statistical differences between levels requires a post-hoc test 
of some kind, so it seems to me that it would make sense to plot confidence intervals derived 
from something like Tukey’s HSD (remember the lower [lwr] and upper [upr] bounds that you 
get when you use R’s TukeyHSD function). But I have to admit that I’ve never seen anybody 
actually doing this in a published paper. 
 A different approach towards computing confidence intervals for ANOVA is reviewed in 
Morey (2008). This approach aims to combine information about the model with information 
about the reliability of each measurement point, so different means may be surrounded by 
different-sized error bars. In technical terms, it does this by taking each data point, subtracting 
the individual unit’s overall mean (e.g., each participant’s mean), adding the overall mean, 
multiplying by the number of within-group conditions, and dividing by the df for conditions, 
and then finally putting these values through the Loftus & Masson (1994) method. 
 I find it interesting that even the experts continue to disagree about what seems to be pretty 
basic stuff. This controversy highlights my own concern with error bars: it is unclear what they 
represent. Are they telling your readers about your statistical analysis (i.e., clarifying what you 
believe) or telling your readers about the objective results (i.e., clarifying the data so the readers 
can decide what to believe themselves)? Maybe such confusions explain why some good R-
for-linguists books (Baayen, 2008; Johnson, 2008; Gries, 2013; Levshina, 2015) pay very little 
attention to confidence intervals; Winter (2019) discusses them a bit more). 
 If you do want to add error bars to your ANOVA-related plot, R can help, perhaps most 
simply and generally using the emmeans package (Lenth, 2016, 2022), which stands for 
“estimated marginal means” (because ANOVA is a kind of regression, and regression lines are 
found by estimating mean values conditioned on other values; remember the “margins” from 
chi-square tests?). As usual with R packages, it’s not 100% clear what math lies behind this 
function, but since it gives you separate confidence intervals for each ANOVA cell, I assume 
it does something related to Morey (2008). Here’s a demo using Dorami’s by-participant 
ANOVA. As usual, we need the output of aov(), not summary(aov()). The endpoints of each 
cell’s confidence interval are indicated by “lower.CL” and “upper.CL”, which are centered 
around the cell means in “emmean”. 
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library(emmeans) 
bypart.aov.model = aov(RT~Education*SynCat*Freq 
 +Error(Participant/(SynCat*Freq)), data = ddat.part) 
emmeans(bypart.aov.model,c("Education","SynCat","Freq")) 
 
 
Note: re-fitting model with sum-to-zero contrasts 
Education SynCat Freq emmean SE df lower.CL upper.CL 
College Noun High 754 26 65.4 703 806 
HighSchool Noun High 719 26 65.4 668 771 
College Verb High 711 26 65.4 659 762 
HighSchool Verb High 669 26 65.4 617 721 
College Noun Low 774 26 65.4 722 826 
HighSchool Noun Low 800 26 65.4 748 852 
College Verb Low 739 26 65.4 687 790 
HighSchool Verb Low 782 26 65.4 730 834 
 
Warning: EMMs are biased unless design is perfectly balanced  
Confidence level used: 0.95 
 
 In addition to the table, the function outputs some fancy mathematical notes, once again 
relating to stuff in the next chapter, since emmeans() secretly exploits the ANOVA-as-
regression trick: “sum-to-zero contrasts” refers to what I’ll call “sum coding” or “effect coding” 
in the next chapter, and “EMMs [estimated marginal means] are biased unless design is 
perfectly balanced” means that the ANOVA-as-regression trick only works if all of the cell 
sizes are equal. 
 But forget all that: crucially, the table gives you estimates for the lower and upper ends of 
this ANOVA model’s confidence intervals, and just like the t test confidence intervals 
discussed in the t test chapter, they’re all the same size (103, give or take some rounding), since 
they all come from the same statistical model. To plot them, I gave you some base R code in 
the t test chapter. The ggplot2 package also has syntax for adding error bars (search the web 
yourself for examples, particularly relating to the function ggplot() and its argument called 
geom_errorbar).  
 
3.4 Ordered variance partition in ANOVA 
 
 Let me show you something. First, let’s redo the two-way independent-measures ANOVA 
we did in the previous chapter. I’ll keep the old name too (exp2, since it was the second 
experiment we analyzed in that chapter): 
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exp2 = data.frame(Gender = c(rep("Female",15),rep("Male",15)),  # F+M 
 Color = rep(c(rep("Red",5), rep("Blue",5), rep("Yellow",5)),2),  # RBY+RBY 
 Learning=c(c(3,1,1,6,4), c(2,5,9,7,7), c(9,9,13,6,8),  # F: RBY 
           c(0,2,0,0,3), c(3,8,3,3,3), c(0,0,0,5,0)))   # M: RBY 
head(exp2) # See what it looks like (try it!) 
colorgender.aov = aov(Learning ~ Gender * Color, data = exp2) 
summary(colorgender.aov) # Try it! 
 
 We’ll do the analysis again, but change the order of the independent variables Gender and 
Color in the formula. Logically, this should make no difference, right? Let’s see: 
 
colorgender2.aov = aov(Learning ~ Color * Gender, data = exp2) 
summary(colorgender2.aov) # Try it! 
 
 Look at the results carefully. Do you see any differences? Not really; the only thing that 
changes is the order of the output report: originally the ANOVA table reported the main effect 
of Gender before Color, and now it reports Color before Gender. But the numbers are all the 
same as before. 
 But now let’s modify the data slightly. Suppose that on the day of the wise old Chinese 
teacher’s experiment, one of the students in one of the classes was home sick. We’ll simulate 
that by removing the last row from the data frame: 
 
exp2a = exp2[-nrow(exp2),] 
tail(exp2); tail(exp2a) # Compare how each data frame ends 
 
 See how I did this? The [row,col] part describes the rows and columns of exp2; there’s 
nothing in the col position because we want to keep all of the columns, and since nrow(exp2) 
gives the number of the last row, putting a - (minus sign) in front removes it. 
 Now we’ll run our differently ordered ANOVAs again. I’ll put the results on the page so 
we can look at them together: 
 
colorgendera.aov = aov(Learning ~ Gender * Color, data = exp2a) 
summary(colorgendera.aov) 
 
 
 Df Sum Sq Mean Sq F value Pr(>F)  

Gender 1 107.73 107.73 20.866 0.000137 *** 
Color 2 66.1 33.05 6.401 0.006164 ** 
Gender:Color 2 50.87 25.43 4.926 0.016574 * 
Residuals 23 118.75 5.16    
 
colorgender2a.aov = aov(Learning ~ Color * Gender, data = exp2a) 
summary(colorgender2a.aov) 
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 Df Sum Sq Mean Sq F value Pr(>F)  

Color 2 71.23 35.61 6.898 0.0045 ** 
Gender 1 102.61 102.61 19.873 0.00018 *** 
Color:Gender 2 50.87 25.43 4.926 0.01657 * 
Residuals 23 118.75 5.16    

 
 Now it’s not just a matter of differently ordered rows in the ANOVA table: the values 
shown in the first two rows are also different! What’s going on? 
 There’s a subtle hint if you look at the new values more carefully: the SS, MS, and F values 
are all larger when they are in the first row. For example, when Gender is in the first row in the 
first table, F = 20.866, but when it’s in the second row in the second table, F = 19.873. You 
can see similar differences in SS and MS, and likewise for SS, MS, and F for Color. However, 
these three values remain the same for the interaction Color:Gender across both tables, and the 
SS and M values for the residuals also remain the same. 
 Does this hint help? Well, think about how ANOVA works: it partitions the variance, 
separating the “interesting” variance from the “boring” variance. It also partitions different 
kinds of “interesting” variance, so it can give us results not just about Gender, but also about 
Color, and their interaction. 
 What this little exercise shows is that the ANOVA algorithm used by R’s aov() function 
partitions the variance in order. So if the formula says Learning ~ Gender * Color, it first 
partitions out the effect of Gender on Learning, leaving a temporary sort of residual that Gender 
cannot explain, and then it passes these values on to Color and partitions out the effect of this 
factor, and then after that it passes the remainder to partition out the interaction Gender:Color. 
But if the formula says Learning ~ Color * Gender, it first partitions out Color. That’s why 
the F value is higher for any given factor when that factor comes first: the ANOVA procedure 
is trying to maximize the amount of variation that this factor can explain. But after the two 
main effects are partitioned, all that’s left is the same interaction (Gender:Color = Color:Gender) 
and overall residuals, so the last two ANOVA table rows end up the same. 
 But then why didn’t see see an effect of order in the original data set? Because that data 
set was balanced: all of the cell sizes were exactly the same. But because of that missing 
student, the other data set is unbalanced: one of the cells is smaller than the others: 
 
xtabs(~Gender + Color, data = exp2) 
 
 Color   

Gender Blue Red Yellow 
Female 5 5 5 
Male 5 5 5 
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xtabs(~Gender + Color, data = exp2a) 
 
 Color   

Gender Blue Red Yellow 
Female 5 5 5 
Male 5 5 4 

 
 When the data set is balanced, the order of factors in the model doesn’t matter, since 
partitioning out any factor explains the same number of data points as partitioning out any other 
factor. This is another reason why ANOVA should ideally be run on cells with equal sample 
sizes, in addition to the point mentioned in the previous chapter, namely that the greater the 
difference in sample sizes, the greater the Type I error risk if you violate other basic ANOVA 
assumptions, like the normality of the dependent variable. Of course, in real life, you can’t 
always count on there being equal sample sizes, and you just have to make do with the data 
you have. 
 There are three different ways to partition out variance in an ANOVA, and unfortunately 
they are called Type I, Type II, and Type III, reusing terms that you already know as meaning 
false alarm error, miss error, and “can’t remember which” error, but now used for a totally 
different purpose. At the other extreme, Type III ANOVA tests each component of your model 
(including interactions) by removing just that one component to create a simplified model, and 
then comparing it with the full model (we’ll be doing this kind of thing ourselves in the chapter 
on multiple regression). Type II ANOVA is a compromise between the two approaches that 
avoids having to test simplified models that don’t make much sense (like for the full model Y 
~ X1*X1, the simplified model Y ~ X1 + X1:X2 would include an interaction with X2 but not 
X2 itself, which is weird). Statistical programs tend to favor one or another of these other types, 
or show you all three for you to choose. Both Excel and R’s aov() function computes Type I 
ANOVA. To run the other types in R, you need to use a different function called anova(), 
which is for comparing models. We’ll use it to compare regression models in the next chapter, 
but won’t ever bother with Type II or Type III ANOVA. But if you’re curious about them 
anyway, you can read more on R’s FAQ page: 
 
https://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-does-the-output-from-
anova_0028_0029-depend-on-the-order-of-factors-in-the-model_003f 
 
4. Conclusions 
 
 Almost every time you see an ANOVA in a linguistics study, it is a repeated-measures 
ANOVA or a mixed ANOVA (where some independent variables are between group and some 
are within group). This chapter explained how to run these kinds of analyses in Excel (only the 

https://cran.r-project.org/doc/FAQ/R-FAQ.html%23Why-does-the-output-from-anova_0028_0029-depend-on-the-order-of-factors-in-the-model_003f
https://cran.r-project.org/doc/FAQ/R-FAQ.html%23Why-does-the-output-from-anova_0028_0029-depend-on-the-order-of-factors-in-the-model_003f
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simplest kind: one-way repeated-measures ANOVA) and R (every kind, including two- or 
more-way repeated-measures ANOVA or mixed ANOVA). In both cases, the key to 
understanding the commands and the output is to see that repeated-measures ANOVA 
generalizes paired t tests by treating the variation across random grouping units (e.g., 
experimental participants) as part of the analysis, partialing it out from the completely 
unexplained variation left in the residuals. In R, the key syntactic things to remember are to 
use the aov() function, to treat your random grouping variable as a factor (even if your 
participants have numerical IDs), and to get your parentheses right inside the Error() term. 
Other complexities arise with repeated-measures or mixed ANOVA that Excel cannot deal 
with. If your within-groups factor has three or more levels, you might consider correcting for 
violations of sphericity (related to homoscedasticity), using the Huynh-Feldt epsilon to adjust 
the df values; this is computed automatically by the ezANOVA() function in the ez package. 
If your experiment involves not just multiple speakers but also multiple items per speaker, then 
you have two random variables, and you should, at the very least, compute separate ANOVA 
results, both by participants and by items, and ideally, recombine the two results together using 
minF'. To see whether your model is not only statistically significant, but also captures an 
impressive amount of variance in the data, you should compute eta-squared (which is just like 
r2), again most easily done with the ezANOVA() function, or plot confidence intervals with 
the emmeans() function in the emmeans package. Finally, even though we’ll see in the next 
chapter how ANOVA is related to regression, there is a subtle difference: in the most 
commonly used species of ANOVA (Type I), it matters what order you put them into the model, 
though only if your design is unbalanced. 
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