ıılıılı cısco

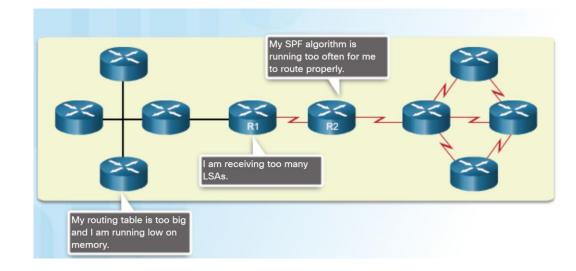
Chapter 9: Multiarea OSPF

CCNA Routing and Switching

Scaling Networks v6.0

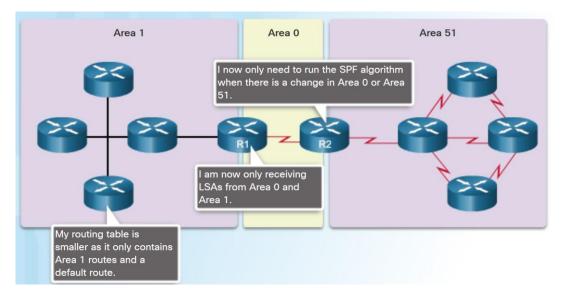
Chapter 9 - Sections & Objectives

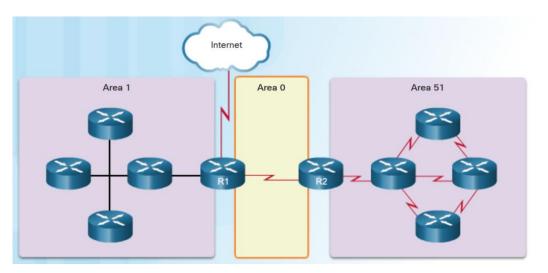
- 9.1 Multiarea OSPF Operation
 - Explain how multiarea OSPF operates in a small to medium-sized business network.
 - Explain why multiarea OSPF is used.
 - Explain how multiarea OSPFv2 uses link-state advertisements.
 - Explain how multiarea OSPF establishes neighbor adjacencies.
- 9.2 Implement Multiarea OSPF
 - Implement multiarea OSPFv2 and OSPFv3.
 - Configure multiarea OSPFv2 and OSPFv3 in a routed network.
 - Verify multiarea OSPFv2 and OSPFv3 operation.


9.1 Multiarea OSPF Operation

Why Multiarea OSPF? Single-Area OSPF

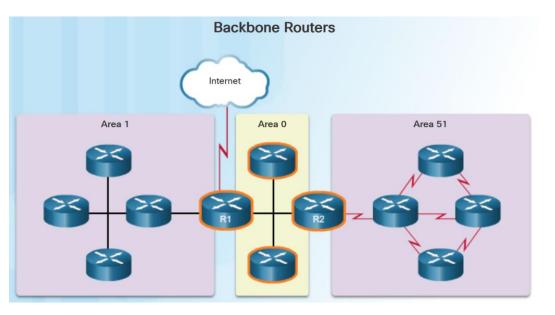
- Issues in a large single area OSPF:
 - Large routing table


- Large link-state database (LSDB)
- Frequent SPF algorithm calculations
- To make OSPF more efficient and scalable, OSPF supports hierarchical routing using areas.


Why Multiarea OSPF? Multiarea OSPF

Multiarea OSPF:

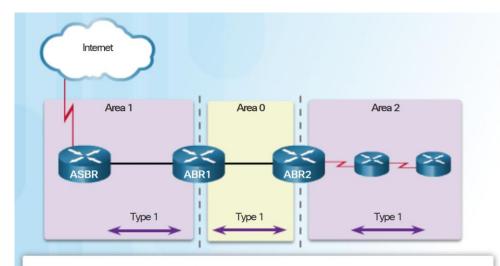
- Large OSPF area is divided into smaller areas.
- Reduces processing and memory overhead.
- Requires a hierarchical network design.
- The main area is the backbone area (area 0) and all other areas connect to it.
- Advantages of Multiarea OSPF:
 - Smaller routing tables Fewer routing table entries as network addresses can be summarized between areas.
 - Reduced link-state update overhead.
 - Reduced frequency of SPF calculations.



Why Multiarea OSPF? OSPF Two-Layer Area Hierarchy

- Multiarea OSPF is implemented in a two-layer area hierarchy.
- Backbone (Transit) area An OSPF area whose primary function is the fast and efficient movement of IP packets:
 - Interconnects with other OSPF area types.
 - Also called OSPF area 0.
- Regular (nonbackbone) area -Connects users and resources:
 - Usually set up along functional or geographical groupings
 - All traffic from other areas must cross a transit area.

Why Multiarea OSPF? Types of OSPF Routers

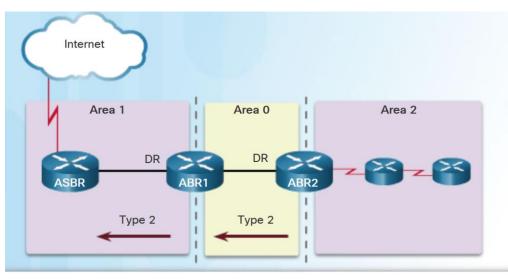

- There are four different types of OSPF routers:
 - Internal router –A router that has all of its interfaces in the same area.
 - Backbone router A router in the backbone area. The backbone area is set to area 0
 - Area Border Router (ABR) A router that has interfaces attached to multiple areas.
 - Autonomous System Boundary Router (ASBR) – A router that has at least one interface attached to an external internetwork.
- A router can be classified as more than one router type.

Multiarea OSPF LSA Operation OSPF LSA Types

LSA Type	Description
1	Router LSA
2	Network LSA
3 and 4	Summary LSAs
5	AS External LSA
6	Multicast OSPF LSA
7	Defined for NSSAs
8	External Attributes LSA for Border Gateway Protocol (BGP)
9, 10, or 11	Opaque LSAs

- LSAs individually act as database records and provide specific OSPF network details.
- LSAs in combination describe the entire topology of an OSPF network or area.
- Any implementation of multiarea OSPF must support the first five LSAs

Multiarea OSPF LSA Operation OSPF LSA Type 1

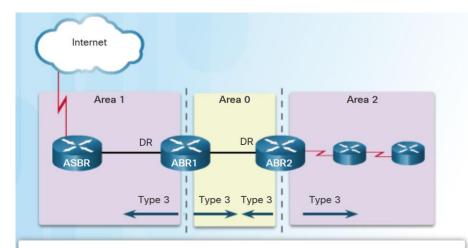


- Type 1 LSAs include a list of directly connected network prefixes and link types.
- All routers generate type 1 LSAs.

- Type 1 LSAs are flooded within the area and do not propagate beyond an ABR.
- A type 1 LSA link-state ID is identified by the router ID of the originating router.

- Routers advertise their directly connected OSPF-enabled links in a type 1 LSA.
- Type 1 LSAs are also referred to as router link entries.
- Type 1 LSAs are flooded only within the area in which they originated.
- ABRs advertise the networks learned from the type 1 LSAs to other areas as type 3 LSAs.
- The type 1 LSA link ID is identified by the router ID of the originating router.

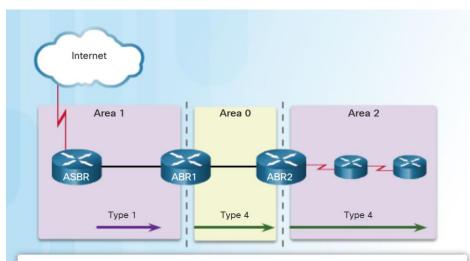
Multiarea OSPF LSA Operation OSPF LSA Type 2


- Type 2 LSAs identify the routers and the network addresses of the multiaccess links.
- Only a DR generates a type 2 LSA.

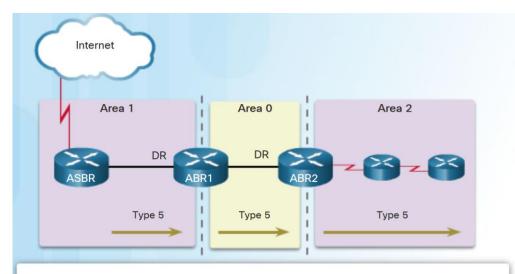
- Type 2 LSAs are flooded within the multiaccess network and do not go beyond an ABR.
- A type 2 LSA link-state ID is identified by the DR router ID.

- Type 2 LSAs have the following characteristics:
 - Only found on multiaccess and nonbroadcast multiaccess (NBMA) networks
 - Contain the router ID and IP address of the DR, along with the router ID of all other routers on the multiaccess segment
 - Give other routers information about multiaccess networks within the same area
 - Not forwarded outside of an area
 - Also referred to as network link entries
 - Link-state ID is DR router ID

Multiarea OSPF LSA Operation OSPF LSA Type 3


- Type 3 LSAs have the following characteristics:
 - They are used by ABRs to advertise networks from other areas.
 - The ABR creates a type 3 LSA for each of its learned OSPF networks.
 - ABRs flood type 3 LSAs from one area to other areas.
 - To reduce impact of flooding in a large OSPF deployment, configuration of manual route summarization on the ABR is recommended.
 - The link-state ID is set to the network address.

- A type 3 LSA describes a network address learned by type 1 LSAs.
- A type 3 LSA is required for every subnet.
- ABRs flood type 3 LSAs to other areas and are regenerated by other ABRs.
- A type 3 LSA link-state ID is identified by the network address.
- By default, routes are not summarized.


Multiarea OSPF LSA Operation OSPF LSA Type 4

- Type 4 LSAs have the following characteristics:
 - They identify an ASBR and provide a route to it.
 - They are generated by an ABR only when an ASBR exists within an area.
 - They are flooded to other areas by ABRs.
 - The link-state ID is set to the ASBR router ID.

- Type 4 LSAs are used to advertise an ASBR to other areas and provide a route to the ASBR.
- ABRs generate type 4 LSAs.
- A type 4 LSA is generated by the originating ABR and regenerated by other ABRs.
- A type 4 LSA link-state ID is identified by the router ID of the ASBR.

Multiarea OSPF LSA Operation OSPF LSA Type 5

- Type 5 LSAs are used to advertise external (i.e., non-OSPF) network addresses.
- An ASBR generates a type 5 LSA.

- Type 5 LSAs are flooded throughout the area and regenerated by other ABRs.
- A type 5 LSA link-state ID is the external network address.
- · By default, routes are not summarized.

- Type 5 LSAs have the following characteristics:
 - They advertise external routes, also referred to as external LSA entries.
 - They are originated by the ASBR and flooded to the entire routing domain.
 - The link-state ID is the external network number.

OSPF Routing Table and Types of Routes **OSPF** Routing Table Entries

R1# show ip route

Codes:L - local, C-connected, S-static, R-RIP, M-mobile, B-BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su-IS-IS summary, L1-IS-IS level-1, L2-IS-IS level-2 ia - IS-IS inter area,*-candidate default,U-per-user static route o - ODR, P-periodic downloaded static route, H-NHRP, 1-LISP + - replicated route, % - next hop override

Gateway of last resort is 192.168.10.2 to network 0.0.0.0

O*E2 0.0.0.0/0 [110/1] via 192.168.10.2, 00:00:19, Serial0/0/0

10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks 10.1.1.0/24 is directly connected, GigabitEthernet0/0 10.1.1.1/32 is directly connected, GigabitEthernet0/0 10.1.2.0/24 is directly connected, GigabitEthernet0/1 10.1.2.1/32 is directly connected, GigabitEthernet0/1 O IA 192.168.1.0/24 [110/1295] via 192.168.10.2, 00:01:48, Serial0/0/0 192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks

- 192.168.10.0/30 is directly connected, Serial0/0/0
- 192.168.10.1/32 is directly connected, Serial0/0/0

- OSPF routes in an IPv4 routing table are identified using the following descriptors:
 - O The routing table reflects the link-• state information with a designation of O, meaning that the route is intra-area
 - O IA Summary LSAs appear in the routing table as IA (interarea routes).
 - O E1 or O E2 External LSAs appear in the routing table marked as external type 1 (E1) or external type 2 (E2) routes.

ad tad ta CISCO

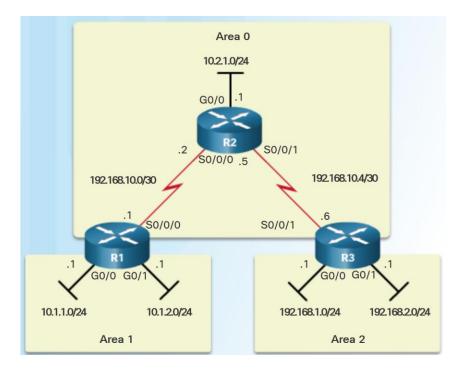
R1#

OSPF Routing Table and Types of Routes OSPF Route Calculation

Steps to OSPF Convergence
 Rl# show ip route | begin Gateway
 Gateway of last resort is 192.168.10.2 to network 0.0.0.0
 0*E2 0.0.0.0/0 [110/1] via 192.168.10.2, 00:00:19, Serial0/0/0
 10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
 10.1.1.0/24 is directly connected, GigabitEthernet0/0
 10.1.2.0/24 is directly connected, GigabitEthernet0/1
 10.1.2.1/32 is directly connected, GigabitEthernet0/1
 10.1.2.1/32 is directly connected, GigabitEthernet0/1
 10.2.1.0/24 [110/648] via 192.168.10.2, 00:04:34, Serial0/0/0
 14.192.168.1.0/24 [110/1295] via 192.168.10.2, 00:01:48, Serial0/0/0
 192.168.1.0.0/24 is variably subnetted, 3 subnets, 2 masks
 192.168.1.0.0/30 is directly connected, Serial0/0/0
 192.168.10.1/32 is directly connected, Serial0/0/0

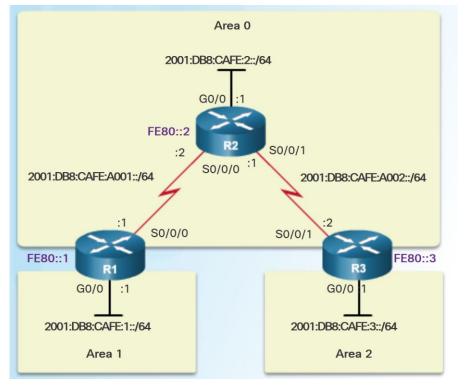
- · Calculate intra-area OSPF routes.
- · Calculate best path to interarea OSPF routes.
- Calculate best path route to external non-OSPF networks.

- The order in which the best paths are calculated is as follows:
 - All routers calculate the best path or paths to destinations within their area (intra-area). These are the type 1 and type 2 LSAs – O.
 - All routers calculate the best path or paths to the other areas within the internetwork. Type 3 LSAs - O IA.
 - All routers calculate the best path or paths to the external autonomous system (type 5) destinations - O E1 or an O E2.


9.2 Configuring Multiarea OSPF

Configuring Multiarea OSPF Implementing Multiarea OSPF

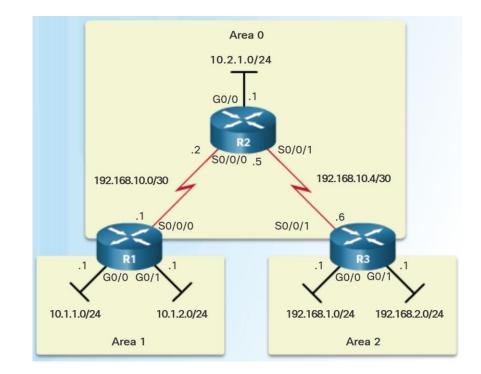
- There are 4 steps to implementing multiarea OSPF:
 - Step 1. Gather the network requirements and parameters
 - Step 2. Define the OSPF parameters
 - Single area or multiarea OSPF?
 - IP addressing plan
 - OSPF areas
 - Network topology
 - Step 3. Configure the multiarea OSPF implementation based on the parameters.
 - Step 4. Verify the multiarea OSPF implementation


Configuring Multiarea OSPF Configuring Multiarea OSPFv2

R1(config)# router	ospf 10
R1(config-router)#	router-id 1.1.1.1
R1(config-router)#	network 10.1.1.1 0.0.0.0 area 1
R1(config-router)#	network 10.1.2.1 0.0.0.0 area 1
R1(config-router)#	network 192.168.10.1 0.0.0.0 area 0
R1(config-router)#	end
R1#	

- There are no special commands to implement multiarea OSPFv2.
- A router becomes an ABR when it has two network statements in different areas.
- R1 is an ABR because it has interfaces in area 1 and an interface in area 0.

Configuring Multiarea OSPF Configuring Multiarea OSPFv3


R1(config)# ipv6 router ospf 10
R1(config-rtr)# router-id 1.1.1.1
R1(config-rtr)# exit
R1(config)#
R1(config)# interface GigabitEthernet 0/0
R1(config-if)# ipv6 ospf 10 area 1
R1(config-if)#
R1(config-if)# interface Serial0/0/0
R1(config-if)# ipv6 ospf 10 area 0
R1(config-if)# end
R1#

- There are no special commands required to implement multiarea OSPFv3.
- A router becomes an ABR when it has two interfaces in different areas.

Verifying Multiarea OSPF Verifying Multiarea OSPFv2

- Commands to verify multiarea OSPFv2
 - show ip ospf neighbor
 - show ip ospf
 - show ip ospf interface
 - Show ip protocols
 - show ip ospf interface brief
 - show ip route ospf
 - show ip ospf database

Note: For the equivalent OSPFv3 command, simply substitute ipv6 for ip.

Verifying Multiarea OSPF Verify General Multiarea OSPFv2 Settings

- Use the show ip protocols command to verify the OSPFv2 status.
 - Lists routing protocols configured on router, number of areas, router ID and networks included in routing protocol.
- Use the show ip ospf interface brief command to display OSPFv2-related information for OSPFv2-enabled interfaces.
 - Lists the OSPFv2 process ID, area that the interfaces are in, and interface cost.

R1# show ip protocols *** IP Routing is NSF aware ***
Routing Protocol is "ospf 10"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 1.1.1.1
It is an area border router
Number of areas in this router is 2. 2 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
10.1.1.1 0.0.0.0 area 1
10.1.2.1 0.0.0.0 area 1
192.168.10.1 0.0.0.0 area 0
Routing Information Sources:
Gateway Distance Last Update
3.3.3.3 110 02:20:36
2.2.2.2 110 02:20:39
Distance: (default is 110)

Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs F/C
Se0/0/0	10		192.168.10.1/30	64	P2P	1/1
Gi0/1	10		10.1.2.1/24	1	DR	0/0
Gi0/0	10		10.1.1.1/24	1	DR	0/0
R1#						

Verifying Multiarea OSPF Verify the OSPFv2 Routes

- Use the show ip route ospf command to verify the muliarea OSPFv2 configuration...
 - O represents OSPFv2 routes and IA represents interarea, which means that the route originated from another area.

Verifying Multiarea OSPF Verify the Multiarea OSPFv2 LSDB

R1# show ip ospf o	database					
	OSPF Route	r with II	D (1.1.1.1) (Pro	cess ID 10)		
			Router Link Sta	tes (Area O)		
Link ID	ADV Router	Age	Seq#	Checksum	Link	
1.1.1.1		725	0x80000005	0x00F9B0		
2.2.2.2			0x80000007	0x003DB1		
3.3.3.3		681	0x80000005	0x00FF91		
		Si	ummary Net Link S	States (Area 0)		
Link ID	ADV Router	Age	Seq#	Checksum		
10.1.1.0		725	0x80000006	0x00D155		
10.1.2.0		725	0x80000005	0x00C85E		
192.168.1.0		681	0x80000006	0x00724E		
192.168.2.0		681	0x80000005	0x006957		
			Router Link St	ates (Area 1)		
Link ID	ADV Router	Age	Seq#	Checksum	Link	
1.1.1.1		725		0x007D7C		
			Summary Net Link	States (Area 1)		
Link ID	ADV Router		Seq#	Checksum		
10.2.1.0		725		0x004A9C		
192.168.1.0				0x00B593		
192.168.2.0		725		0x00AA9D		
192.168.10.0		725		0x00B3D0		
192.168.10.4		725		0x000E32		
R1#						

 Use the show ip ospf database command to verify the contents of the OSPFv2 LSDB.

Verifying Multiarea OSPF Verify Multiarea OSPFv3

R1# show ipv6 protocols

IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 10"
Router ID 1.1.1.1
Area border router
Number of areas: 2 normal, 0 stub, 0 nssa
Interfaces (Area 0):
 Serial0/0/0
Interfaces (Area 1):
 GigabitEthernet0/0
Redistribution:
 None
R1#

R1# show ipv	76 ospf	interface	brief			
Interface	PID	Area	Intf ID	Cost	State	Nbrs F/C
Se0/0/0	10			647	P2P	1/1
Gi0/0	10			1	DR	0/0
R1#						

- Use the show ipv6 protocols command to verifyOSPFv3.
- Use the show ipv6 interface brief to verify the OSPFv3enabled interfaces and the area to which they belong.
- Use show ipv6 route ospf to display the routing table.
- Use show ipv6 ospf database to display the contents of the LSDB.

R1# show ipv6 route ospf
IPv6 Routing Table - default - 8 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route, B - BGP,
R - RIP, H - NHRP, II - ISIS L1, I2 - ISIS L2, IA - ISIS interarea,
IS - ISIS summary, D - EIGRP, EX - EIGRP external, ND - ND Default,
NDp - ND Prefix, DCE - Destination, NDr - Redirect, O - OSPF Intra,
OI - OSPF Inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1,
ON2 - OSPF NSSA ext 2
0 2001:DB8:CAFE:2::/64 [110/648]
via FE80::2, Serial0/0/0
OI 2001:DB8:CAFE:3::/64 [110/1295]
via FE80::2, Serial0/0/0
0 2001:DB8:CAFE:A002::/64 [110/1294]
via FE80::2, Serial0/0/0

9.3 Chapter Summary

Conclusion

Chapter 9: Multiarea OSPF

- Explain how multiarea OSPF operates in a small to medium-sized business network.
- Implement multiarea OSPFv2 and OSPFv3.

··II··II·· CISCO