CHAPTER 9

PHASE DIAGRAMS

PROBLEM SOLUTIONS

9.17 A $90 w t \%$ Ag-10 wt\% Cu alloy is heated to a temperature within the $\beta+$ liquid phase region. If the composition of the liquid phase is $85 \mathrm{wt} \% \mathrm{Ag}$, determine:
(a) The temperature of the alloy
(b) The composition of the β phase
(c) The mass fractions of both phases

Solution

(a) In order to determine the temperature of a $90 \mathrm{wt} \% \mathrm{Ag}-10 \mathrm{wt} \% \mathrm{Cu}$ alloy for which β and liquid phases are present with the liquid phase of composition $85 \mathrm{wt} \% \mathrm{Ag}$, we need to construct a tie line across the $\beta+L$ phase region of Figure 9.7 that intersects the liquidus line at $85 \mathrm{wt} \% \mathrm{Ag}$; this is possible at about $850^{\circ} \mathrm{C}$.
(b) The composition of the β phase at this temperature is determined from the intersection of this same tie line with solidus line, which corresponds to about $95 \mathrm{wt} \% \mathrm{Ag}$.
(c) The mass fractions of the two phases are determined using the lever rule, Equations 9.1 and 9.2 with C_{0} $=90 \mathrm{wt} \% \mathrm{Ag}, C_{L}=85 \mathrm{wt} \% \mathrm{Ag}$, and $C_{\beta}=95 \mathrm{wt} \% \mathrm{Ag}$, as

$$
\begin{aligned}
& W_{\beta}=\frac{C_{0}-C_{L}}{C_{\beta}-C_{L}}=\frac{90-85}{95-85}=0.50 \\
& W_{L}=\frac{C_{\beta}-C_{0}}{C_{\beta}-C_{L}}=\frac{95-90}{95-85}=0.50
\end{aligned}
$$

9.32 For a copper-silver alloy of composition $25 \mathrm{wt} \% \mathrm{Ag}-75 \mathrm{wt} \% \mathrm{Cu}$ and at $775^{\circ} \mathrm{C}\left(1425^{\circ} \mathrm{F}\right)$ do the following:
(a) Determine the mass fractions of α and β phases.
(b) Determine the mass fractions of primary α and eutectic microconstituents.
(c) Determine the mass fraction of eutectic α.

Solution

(a) This portion of the problem asks that we determine the mass fractions of $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ phases for an $25 \mathrm{wt} \%$ $\mathrm{Ag}-75 \mathrm{wt} \% \mathrm{Cu}$ alloy (at $775^{\circ} \mathrm{C}$). In order to do this it is necessary to employ the lever rule using a tie line that extends entirely across the $\alpha+\beta$ phase field. From Figure 9.7 and at $775^{\circ} \mathrm{C}, C_{\alpha}=8.0 \mathrm{wt} \% \mathrm{Ag}, C_{\beta}=91.2 \mathrm{wt} \% \mathrm{Ag}$, and $C_{\text {eutectic }}=71.9 \mathrm{wt} \% \mathrm{Sn}$. Therefore, the two lever-rule expressions are as follows:

$$
\begin{aligned}
W_{\alpha} & =\frac{C_{\beta}-C_{0}}{C_{\beta}-C_{\alpha}}=\frac{91.2-25}{91.2-8.0}=0.796 \\
W_{\beta} & =\frac{C_{0}-C_{\alpha}}{C_{\beta}-C_{\alpha}}=\frac{25-8.0}{91.2-8.0}=0.204
\end{aligned}
$$

(b) Now it is necessary to determine the mass fractions of primary $\boldsymbol{\alpha}$ and eutectic microconstituents for this same alloy. This requires us to utilize the lever rule and a tie line that extends from the maximum solubility of Ag in the α phase at $775^{\circ} \mathrm{C}$ (i.e., $8.0 \mathrm{wt} \% \mathrm{Ag}$) to the eutectic composition ($71.9 \mathrm{wt} \% \mathrm{Ag}$). Thus

$$
\begin{aligned}
& W_{\alpha^{\prime}}=\frac{C_{\text {eutectic }} \dot{z} C_{0}}{C_{\text {eutectic }} \dot{z} C_{\alpha}}=\frac{71.9-25}{71.9-8.0}=0.734 \\
& W_{e}=\frac{C_{0}-C_{\alpha}}{C_{\text {eutectic }}-C_{\alpha}}=\frac{25-8.0}{71.9-8.0}=0.266
\end{aligned}
$$

(c) And, finally, we are asked to compute the mass fraction of eutectic $\alpha, W_{e \alpha}$. This quantity is simply the difference between the mass fractions of total α and primary α as

$$
W_{e \alpha}=W_{\alpha}-W_{\alpha^{\prime}}=0.796-0.734=0.062
$$

9.34 Consider the hypothetical eutectic phase diagram for metals A and B, which is similar to that for the lead-tin system, Figure 9.8. Assume that (1) α and β phases exist at the A and B extremities of the phase diagram, respectively; (2) the eutectic composition is $47 \mathrm{wt} \% \mathrm{~B}-53 \mathrm{wt} \mathrm{\%} A$; and (3) the composition of the β phase at the eutectic temperature is 92.6 wt\% B-7.4 wt\% A. Determine the composition of an alloy that will yield primary α and total α mass fractions of 0.356 and 0.693, respectively.

Solution

We are given a hypothetical eutectic phase diagram for which $C_{\text {eutectic }}=47 \mathrm{wt} \% \mathrm{~B}, C_{\beta}=92.6 \mathrm{wt} \% \mathrm{~B}$ at the eutectic temperature, and also that $W_{\alpha^{\prime}}=0.356$ and $W_{\alpha}=0.693$; from this we are asked to determine the composition of the alloy. Let us write lever rule expressions for $W_{\alpha^{\prime}}$ and W_{α}

$$
\begin{gathered}
W_{\alpha}=\frac{C_{\beta} \dot{z} C_{0}}{C_{\beta}-C_{\alpha}}=\frac{92.6-C_{0}}{92.6-\mathrm{C}_{\alpha}}=0.693 \\
W_{\alpha^{\prime}}=\frac{C_{\text {eutectic }} \dot{z} C_{0}}{C_{\text {eutectic }} \dot{z} C_{\alpha}}=\frac{47-C_{0}}{47-\mathrm{C}_{\alpha}}=0.356
\end{gathered}
$$

Thus, we have two simultaneous equations with C_{0} and C_{α} as unknowns. Solving them for C_{0} gives $C_{0}=32.6 \mathrm{wt} \%$ B.
9.36 For a $68 w t \% \mathrm{Zn}-32$ wt\% Cu alloy, make schematic sketches of the microstructure that would be observed for conditions of very slow cooling at the following temperatures: $1000^{\circ} \mathrm{C}\left(1830{ }^{\circ} \mathrm{F}\right), 760{ }^{\circ} \mathrm{C}\left(1400{ }^{\circ} \mathrm{F}\right)$, $600^{\circ} \mathrm{C}\left(1110^{\circ} \mathrm{F}\right)$, and $400^{\circ} \mathrm{C}\left(750{ }^{\circ} \mathrm{F}\right)$. Label all phases and indicate their approximate compositions.

Solution

The illustration below is the $\mathrm{Cu}-\mathrm{Zn}$ phase diagram (Figure 9.19). A vertical line at a composition of 68 $\mathrm{wt} \% \mathrm{Zn}-32 \mathrm{wt} \% \mathrm{Cu}$ has been drawn, and, in addition, horizontal arrows at the four temperatures called for in the problem statement (i.e., $1000^{\circ} \mathrm{C}, 760^{\circ} \mathrm{C}, 600^{\circ} \mathrm{C}$, and $400^{\circ} \mathrm{C}$).

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

On the basis of the locations of the four temperature-composition points, schematic sketches of the four respective microstructures along with phase compositions are represented as follows:

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

($75 \mathbf{w t} \% \mathbf{Z n}$)

9.50 Consider 1.0 kg of austenite containing $1.15 \mathrm{wt} \% \mathrm{C}$, cooled to below $727^{\circ} \mathrm{C}\left(1341{ }^{\circ} \mathrm{F}\right)$.
(a) What is the proeutectoid phase?
(b) How many kilograms each of total ferrite and cementite form?
(c) How many kilograms each of pearlite and the proeutectoid phase form?
(d) Schematically sketch and label the resulting microstructure.

Solution

(a) The proeutectoid phase will be $\mathrm{Fe}_{3} \mathrm{C}$ since $1.15 \mathrm{wt} \% \mathrm{C}$ is greater than the eutectoid composition (0.76 $\mathrm{wt} \% \mathrm{C}$).
(b) For this portion of the problem, we are asked to determine how much total ferrite and cementite form. Application of the appropriate lever rule expression yields

$$
W_{\alpha}=\frac{C_{\mathrm{Fe}_{3} \mathrm{C}}-C_{0}}{C_{\mathrm{Fe}_{3} \mathrm{C}}-C_{\alpha}}=\frac{6.70-1.15}{6.70-0.022}=0.83
$$

which, when multiplied by the total mass of the alloy (1.0 kg), gives 0.83 kg of total ferrite.
Similarly, for total cementite,

$$
W_{\mathrm{Fe}_{3} \mathrm{C}}=\frac{C_{0}-C_{\alpha}}{C_{\mathrm{Fe}_{3} \mathrm{C}}-C_{\alpha}}=\frac{1.15-0.022}{6.70-0.022}=0.17
$$

And the mass of total cementite that forms is $(0.17)(1.0 \mathrm{~kg})=0.17 \mathrm{~kg}$.
(c) Now we are asked to calculate how much pearlite and the proeutectoid phase (cementite) form. Applying Equation 9.22, in which $C_{1}^{\prime}=1.15 \mathrm{wt} \% \mathrm{C}$

$$
W_{p}=\frac{6.70-C_{1}^{\prime}}{6.70-0.76}=\frac{6.70-1.15}{6.70-0.76}=0.93
$$

which corresponds to a mass of 0.93 kg . Likewise, from Equation 9.23

$$
W_{\mathrm{Fe}_{3} \mathrm{C}^{\prime}}=\frac{C_{1}^{\prime}-0.76}{5.94}=\frac{1.15-0.76}{5.94}=0.07
$$

which is equivalent to 0.07 kg of the total 1.0 kg mass.
(d) Schematically, the microstructure would appear as:

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
9.53 The microstructure of an iron-carbon alloy consists of proeutectoid ferrite and pearlite; the mass fractions of these two microconstituents are 0.286 and 0.714 , respectively. Determine the concentration of carbon in this alloy.

Solution

This problem asks that we determine the carbon concentration in an iron-carbon alloy, given the mass fractions of proeutectoid ferrite and pearlite. From Equation 9.20

$$
W_{p}=0.714=\frac{C_{0}^{\prime}-0.022}{0.74}
$$

which yields $C_{0}^{\prime}=0.55 \mathrm{wt} \% \mathrm{C}$.
9.54 The mass fractions of total ferrite and total cementite in an iron-carbon alloy are 0.88 and 0.12, respectively. Is this a hypoeutectoid or hypereutectoid alloy? Why?

Solution

In this problem we are given values of W_{α} and $W_{\mathrm{Fe}_{3} \mathrm{C}}$ for an iron-carbon alloy (0.88 and 0.12 , respectively), and then are asked to specify whether the alloy is hypoeutectoid or hypereutectoid. Employment of the lever rule for total α leads to

$$
W_{\alpha}=0.88=\frac{C_{\mathrm{Fe}_{3} \mathrm{C}}-C_{0}}{C_{\mathrm{Fe}_{3} \mathrm{C}}-C_{\alpha}}=\frac{6.70-C_{0}}{6.70-0.022}
$$

Now, solving for C_{0}, the alloy composition, leads to $C_{0}=0.82 \mathrm{wt} \% \mathrm{C}$. Therefore, the alloy is hypereutectoid since C_{0} is greater than $0.76 \mathrm{wt} \% \mathrm{C}$.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

