Name	Class	Date	
rvanie	Class	_ Date	

Chapter 9 Plate Tectonics

Investigation 9

Modeling a Plate Boundary

Introduction

The lithosphere is divided into moving segments called **plates.** The plates move as units relative to all other plates. All major interactions occur among individual plates along boundaries. Scientists first attempted to outline the plate boundaries by using locations of earthquakes. Later research showed plates bounded by three distinct types of boundaries, which exhibit different types of movement.

A **convergent boundary** is formed when two plates slowly move together. At this boundary, the leading edge of one plate is bent downward, sliding beneath the second plate. This process is called subduction, and the convergent boundaries are called **subduction zones**. The surface expression produced by one plate sliding below another plate is an **ocean trench**.

Just south of the Aleutian Islands in the northern Pacific Ocean, the Pacific plate moves northward and is subducted beneath the North American plate. A large number of earthquakes occur in this region. In this investigation, you will use earthquake data from one part of this region to form a model of the convergent boundary between the two plates.

Problem

How can you use earthquake data to model a convergent boundary between two plates?

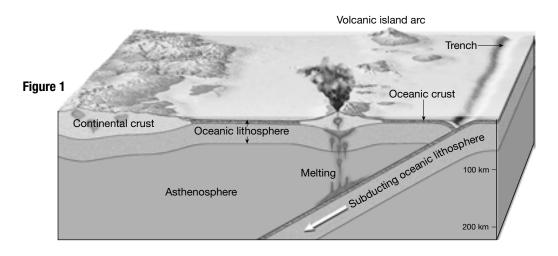
Pre-Lab Discussion

Read the entire investigation. Then work with a partner to answer the following questions.

1.	Posing Questions Write a question that summarizes the purpose of this investigation.		
2.	Controlling Variables What is the dependent variable in this investigation?		

N	ame	Class	Date	
3.	Controlling Variables investigation?	What is the independent vari	iable in this	
4.		d the graph of earthquake deptave a zero at the top of the vert		
5.	Predicting How do y distance from an ocea	ou think earthquake depth is r n trench?	related to the	

Materials (per pair of students)

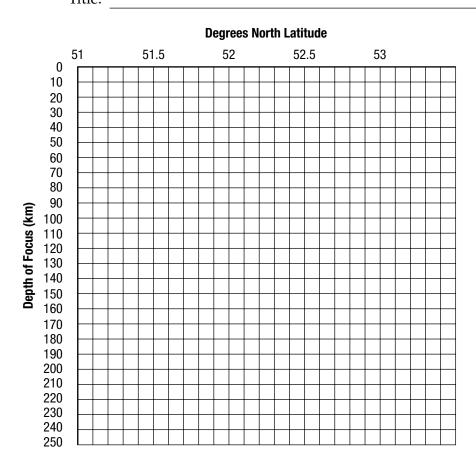

ruler

protractor

Resource 3 in the DataBank

Procedure

- **1.** Examine the map on Resource 3 in the DataBank. Study the convergence of the Pacific plate and the North American plate just south of the Aleutian Arc of volcanic islands in the northern Pacific Ocean.
- **2.** Draw and label a diagram showing how the edges of the Pacific plate and the North American plate converge. Use Figure 1 to help you draw this diagram.


3. The Data Table below shows the depths of foci and latitudes of earthquakes in the Aleutian Islands. All of the earthquakes in the table occurred near 180°W longitude. Examine the table of earthquake data and record any patterns you observe.

DATA TABLE

Earthquake	Year	Latitude of Epicenter (°N)	Depth of Focus (km)
1	1982	51.39	51
2	1983	51.97	116
3	1984	51.13	15
4	1985	52.36	213
5	1985	52.62	233
6	1986	51.70	67
7	1986	52.31	170
8	1987	51.29	22
9	1987	51.93	94
10	1990	52.30	143
11	1991	51.96	108
12	1992	52.01	99
13	1992	52.13	130
14	1992	52.48	211
15	1995	51.19	29
16	1997	51.28	33
17	1998	51.59	43
18	1999	51.87	72
19	2000	51.60	71
20	2001	51.32	55
21	2001	51.77	79
22	2003	51.15	11
23	2003	52.13	180

- **4.** Use the information in the Data Table to construct a graph showing the location and depth of the earthquakes. Use the following grid and plot the latitude on the horizontal axis and the depth of the focus on the vertical axis. Number the vertical axis with zero at the top and maximum depth at the bottom. Give your graph an appropriate title.
- **5.** After plotting the data, draw a straight line that comes as close as possible to each of the data points.

Name	Class	Date
Title		

Analysis and Conclusions

1.	Using Graphs	What relationship	exists between	the depths of the
	earthquake foc	i and the latitude?		-

2.	Analyzing Data How does the graph illustrate that the boundary
	between the Pacific plate and the North American plate is a
	convergent boundary?

3. Applying Concepts The Aleutian trench is located where the two plates meet at the surface of the lithosphere. Use the graph to determine the approximate latitude of the Aleutian trench at 180°W longitude. Explain your answer.

Name	Class	Date		
4. Using Graphs Use the slope of the graph to determine how quickly the convergent boundary descends as latitude increases.				
distance of appro this information	hange in latitude of one degree co oximately 111 km along a north–so and your answer to Question 4, d ooundary descends as it moves 1 k	outh line. Using letermine how far		
Use your results fron	n Question 5 to help you answer Qu	estions 6 and 7.		
convergent boun horizontal distar	Oraw a triangle that shows a side vendary with the correct scale relation are and depth. Measure the angle descends beneath the upper plate angle.	onship between at which the		

0
Pearson
Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.
, lnc.,
bub
S.
ning as F
SD
Pearson
earson Prentice
Ы
=
II rights res
랈
reserved.

N	Name	Class	_ Date
7.	7. Calculating Imagine there is a the lithosphere above the area with depth of 100 km. Approximatel islands located? Show your wo	where the descending plate rea y how far north of the trench a	aches a
8.	8. Evaluating and Revising Are a the graph close to the straight li Provide possible explanations f	ine you drew to best fit the da	
9.	9. Applying Concepts Is the year an important variable in this in		rred

Go Further

The United States Geological Survey provides earthquake data from locations around the world. Obtain earthquake data near a divergent boundary such as an oceanic ridge or a transform fault boundary such as the San Andreas Fault. Graph some data points to see whether the depths of the foci of the earthquakes change as the distance from the boundary increases. Compare your findings to the results from this investigation. Explain any differences.