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Chapter 9 
 
Semiconductor Optical Amplifiers 
 
 
9.1 Basic Structure of Semiconductor Optical Amplifiers (SOAs) 
 
9.1.1 Introduction: 
Semiconductor optical amplifiers (SOAs), as  the name suggests, are used to amplify optical signals. 
A typical structure of a InGaAsP/InP SOA is shown in the Figure below. The basic structure consists 
of a heterostructure pin junction.  
 

 
The smaller bandgap intrinsic region has smaller refractive index than the wider bandgap p-doped and 
n-doped quasineutral regions. The intrinsic region forms the core of the optical waveguide and the 
quasineutral regions form the claddings. Current injection into the intrinsic region (also called the 
active region) can create a large population of electrons and holes. If the carrier density exceeds the 
transparency carrier density then the material can have optical gain and the device can be used to 
amplify optical signals via stimulated emission.  During operation as an optical amplifier, light is 
coupled into the waveguide at 0z . As the light propagates inside the waveguide it gets amplified. 
Finally, when light comes out at Lz  , its power is much higher compared to what it was at 0z .  
 
 
 

9.2 Basic Equations of Semiconductor Optical Amplifiers (SOAs) 
 
9.2.1 Equation for the Optical Power: 
The material gain of the active region can be described by a complex refractive index. Suppose the 
real part of the refractive index of the active region is an , the material group index of the active 

region M
agn , the group index of the waveguide optical mode is gn , the material gain of the active 

region is g , and the mode confinement factor of the active region is a . Then the change in the 

propagation vector   of the waveguide optical mode due to gain in the active region is given by the 

waveguide perturbation theory, 
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In the presence of gain, the light field amplitude will increase with distance as  zgae 2~  and the 

optical power will increase as zgae
~ . The factor ga

~  is called the modal gain. If  zP  represents 
the optical power (units: energy per sec) then one can write a simple equation for the increase in the 
optical power with distance, 
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A time dependent form of the above equation for power propagating in the +z-direction will be, 

    tzPgtzP
tvz a

g
,~,

1



















 

As the optical signal gets stronger with distance inside the waveguide, and the rate of stimulated 
emission also gets proportionally faster, the carrier density inside the active region also changes and 
cannot be assumed to be the same as in the absence of any optical signal inside the waveguide. In the 
next Section, we develop rate equations for the carrier density in the active region.   
 
9.2.2 Modeling Waveguide Losses: 
Material losses (such as those due to free carrier absorption) lead to losses in the waveguide mode. 
Suppose the material loss is represented by the function ),( yx . We can represent loss by the 

imaginary part of the refractive index. The change in the propagation vector due to loss is, 
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where the sum in the last line represents the sum over all the regions in the cross-section of the 
waveguide. The modal loss ~  is equal to the loss of each region weighted by its mode confinement 
factor. In the presence of loss, the equation for the optical power becomes, 
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The time dependent form will be, 
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9.2.3 Rate Equation for the Carrier Density: 
Recall from the discussion on LEDs that the rate equation for the carrier density in the active region 
of a pin heterostructure can be written as, 
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In the present case, the volume aV  of the active region is WhL  and the cross-sectional area aA  of the 
active region is Wh . The radiative recombination-generation terms in the above equation include 
spontaneous emission into all (guided and unguided) radiation modes as well as stimulated emission 
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and absorption by thermal photons in all (guided and unguided) radiation modes. Note that in the 
bandwidth of interest there will generally be many more unguided modes than guided modes. We 
assume that the density of radiation modes in the active region is not modified significantly from the 
expression valid for a bulk material and is given by, 
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The above approximation turns out to be fairly good even though the optical waveguide does modify 
the density of radiation modes from the expression given above.  
 
We must now add stimulated emission and absorption from the guided optical mode to the right hand 
side of the above rate equation for the carrier density. Assuming the photon density in the active 
region is pn , the net stimulated emission rate is, 
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The material gain  ng  is carrier density dependent and may be approximated as, 
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The values of the transparency carrier density trn  range from 1.5x1018 1/cm3 to 3.0x1018 1/cm3 and 

the values of og  range from 1000 to 4000 /1cm for most III-V materials. The carrier density rate 
equation becomes, 
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It is better to write the last term on the right hand side in terms of g~  where, 
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and we get, 
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Note that now the group velocity of the optical mode appears in the last term on the right hand side. In 
the above equation, both the carrier density and the photon density are functions of position inside the 
waveguide. More explicitly, 
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We need to relate the photon density pn  inside the active region to the optical power P . Since the 

mode confinement factor a  is the ratio of the average mode energy density (units: energy per unit 
length) inside the active region to the average mode energy density W (units: energy per unit length) 
in the entire waveguide, 
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The effective area effA  of the optical mode is defined by the relation, 
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The above definition implies that the photon density in the active region can also be written as, 
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We can now write the carrier density rate equation as, 
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The above equation together with, 
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are the two basic equations used to analyze semiconductor optical amplifiers.  
 
 
 

9.3 Operation of Semiconductor Optical Amplifiers (SOAs) 
 
9.3.1 Case I – No Gain Saturation: 
We assume that the SOA is operating in steady state with an extremely small light signal input to the 
SOA at 0z . We assume that )0( zP  is so small that )(zP  for all z , even after amplification, 

remains small and, consequently, )(znp  is also small. By small I mean small enough such that one 

may ignore the stimulated emission term in the carrier density rate equation compared to the other 
recombination-generation terms. In this case, the steady state carrier density is independent of position 
and can be obtained from the equation, 
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Once the carrier density is determined, the material gain can be obtained using,   
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In steady state, the equation for the optical power becomes, 
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The dimensionless gain G  of the amplifier is defined as the ratio of the output power to the input 
power, 
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The amplifiers gain is usually specified in dB scale, 
 Gain in dB =  G10log10  
 
9.3.2 Case II – Gain Saturation: 
In the more general case, stimulated emission term in the carrier density rate equation cannot be 
ignored. If either the input optical power is large or if the modal gain ga

~  is large, the photon density 

)(znp  can also be very large, especially near the output end of the amplifier ( Lz  ). A large photon 

density increases the rate of carrier recombination by stimulated emission. Since photon density 
)(znp  is z-dependent, the carrier density )(zn  in steady state will also be z-dependent. The situation 

will look as follows, 
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The carrier density, and consequently the gain g~ , are both reduced near Lz  . This is called “gain 
saturation”; light which is amplified by a gain medium ends up reducing the gain of that medium. In 
other words light starts “eating” the hand that feeds it. Gain saturation makes the amplifier nonlinear. 
 
 
9.3.3 Input-Output Characteristics of SOAs – A Simple Solvable Model: 
The complete non-linear equations of an SOA are difficult to solve analytically. However, with 
certain approximations, an analytic solution can be obtained. We assume that the material gain can be 
approximated by a linear model, 
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The linear model holds well at least for carrier densities near the transparency carrier density. The 
quantity oa~  is called the differential gain (units: cm2). We also assume that the recombination-
generation rates can also be approximated with a linear model, 
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Here, r  is a phenomenological recombination time. With these approximations we can write the 

following set of equations for operation in the steady state, 
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The second equation gives us, 
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The above equation shows that the reduction of the carrier density and the saturation of the gain is 
governed by the denominator. We write the above expression as, 

P(z) n(z)

z=0 z=L z=0 z=L 
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where, 
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The quantity satP  defines the optical power at which gain saturation cannot be ignored. When 

  satPzP   gain saturation can be ignored and carrier density can be determined assuming the 

optical power is zero. The unsaturated value of the modal gain is, 
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and the unsaturated value of the amplifier gain is, 
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Plugging the result in (3) into (1) gives, 

 
 

   zP

P

zP
g

dz

zdP

sat

a























 ~

1

*~
 

It is clear from the above equation that if   satPzP   then the amplifier gain is just the unsaturated 

gain  LgeG a ~*~
*  . Solution of the above equation via direct integration gives, 
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In the above equation G  is the amplifier gain defined as    0PLP . The above equation can be used 

to obtain G  as a function of the unsaturated modal gain and the input optical power. Since the 
amplifier gain depends on the input power, the amplifier is nonlinear. The nonlinearity is due to gain 
saturation. When   satPP 0  the amplifier gain G  equals the unsaturated value *G . As the input 

power )0(P  increases, the optical power )(LP  at the output becomes large enough to cause a 

significant reduction in the carrier density )(zn  close to Lz  , and when the carrier density 

decreases, the gain G , which can also be written as, 
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also decreases. This is gain saturation. Two important figures of merit of SOAs are the input 
saturation power and the output saturation power. The input saturation power is the input optical 
power at which the amplifier gain G  decreases by a factor of two (or by 3 dB) from the unsaturated 
value *G . The output saturation power is the output optical power at which the amplifier gain 
decreases by a factor of two (or by 3 dB). The input saturation power is given by the expression, 
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The output saturation power is, 
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The maximum output saturation power the amplifier can produce is obtained by taking the limit 
*G  assuming that the ratio ~*~ga  remains constant. For example, *G  can be increased by 

increasing the length of the amplifier. The maximum output saturation power is, 
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The above equation shows that the maximum value of the output saturation power is of the order of 

satP . More insight can be obtained by plotting )(LP  vs )0(P  and the gain G  vs the output power 

)(LP  and vs the input power )0(P . These graphs are shown below for *G  equal to 28 dB and the 

ratio ~*~ga  equal to 2. All the quantities are plotted in decibels (dB).  

 

 
The plots show: 
 

i) the decrease in the amplifier gain with the input optical power when the input optical power 
exceeds  *GPsat .  

ii) the saturation of the output optical power at large input powers to values close to satP . 
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SOAs with large output saturation powers are desirable. In order to increase the output saturation 
power one must increase the value of satP  and the value of the ratio ~*~ga .  
 
 

9.4 Amplified Spontaneous Emission (ASE) in Semiconductor 
Optical Amplifiers (SOAs) 
 
9.4.1 Introduction: 
Spontaneously emitted photons into all the unguided radiation modes leave the active region soon 
after emission. Spontaneously emitted photons into the guided radiation mode travel along the 
waveguide and get amplified via stimulated emission. This amplified spontaneous emission (ASE) 
exits from the output end of the amplifier along with the amplified input signal. ASE is undesirable 
but unavoidable. It is considered a part of the noise added by the optical amplifier.  
 
 
9.4.2 Amplified Spontaneous Emission: 
Suppose the optical waveguide of the SOA supports only a single guided mode. When we say a 
“single mode waveguide” we do not mean that only a single radiation mode is guided. What we mean 
is that the waveguide only supports a single transverse optical mode. For this single transverse mode, 
the propagation vector    is a function of frequency, as shown below, and different values of 

   correspond to different longitudinal modes of the waveguide.  

 
If the length of the waveguide is L  then periodic boundary conditions give    2L  different 

longitudinal modes in an interval  . From previous Chapters we know how to calculate the 
spontaneous emission rate into a single radiation mode. The expression for the spontaneous emission 
rate has the same form as that for the stimulated emission rate except that the photon occupation of 
the mode is taken to be unity. The spontaneous emission rate into a longitudinal mode of frequently 
  per unit volume of the active region per second is, 
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Here, pV  is the modal volume of the mode and equals LAeff . To proceed further, we will make some 

assumptions that will simplify things. We assume that: 
a) There is no input optical signal. 
b) The photons travelling in the waveguide are entirely due to spontaneous emission and 

amplified spontaneous emission and not coming from any input signal or amplified input 
signal. 



 
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c) The photon density everywhere in the waveguide is small enough to not cause any significant 
reduction in the carrier density due to stimulated recombination. Consequently, carrier density 
can be calculated as if there were no photons in the waveguide. 

Knowing the carrier density, we can calculate the gain  g~  and the spontaneous emission factor 

 spn  which are both functions of the photon frequency  . As assumed, the gain will be the 

unsaturated gain  *~g .  
 
Suppose the ASE optical power at frequency   moving in the +z-direction is given by  ,zP .  
Consider a small waveguide segment of length z  located at z . The increase in power from z  to 

zz   due to the addition of spontaneously emitted photons is, 
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This implies, 
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The above equation contains only the spontaneous emission contribution. We also add the stimulated 
emission-absorption and loss contributions to get, 

 
           















L

v
ngzPg

z

zP g
spaa 

~,~~,
  

The solution subject to the boundary condition   0,0  zP  is, 
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Note that the ASE power is roughly proportional to the gain     LgaeG 
~~   of the amplifier.  

 
The above expression gives the ASE power at the output ( Lz  ) in only one longitudinal radiation 
mode. To get the total ASE power coming out at Lz   we need to sum the power in all the 
longitudinal modes, 
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We can convert the above integral into a frequency integral by noting that,   
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and get, 
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The integral is non-zero and significant only within a bandwidth roughly equal to the gain bandwidth. 
For frequencies at which   0~ g ,  spn  is infinite, but the product   )(~  spng is always finite, 

and therefore the integrand is also finite. An equal amount of ASE power comes out from the input 
end of the amplifier.  

z z+z 

  
 



Semiconductor Optoelectronics (Farhan Rana, Cornell University) 

 
Usually an optical filter is placed in front of the SOA to cut down the ASE in unused bandwidth. 
Suppose the filter has a center frequency f  and a band width f . Then the ASE power going 
through the filter is, 
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