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Chapter 9

The Finite Element

Method for 2D elliptic

PDEs

The procedure of the finite element method to solve 2D problems is the same as that for
1D problems, as the flow chart below demonstrates.

PDE −→ Integration by parts −→ weak form in V : a(u, v) = L(v)

or min
v∈V

F (v) −→ Vh (finite dimensional space and basis functions)

−→ a(uh, vh) = L(vh) −→ uh and error analysis.

9.1 The second Green’s theorem and integration by

parts in 2D

Let us first recall the 2D version of the well known divergence theorem in Cartesian coor-
dinates.

Theorem 9.1. If F ∈ H1(Ω) ×H1(Ω) is a vector in 2D, then
∫ ∫

Ω

∇·F dx dy =

∫

∂Ω

F·n ds , (9.1)

where n is the unit normal direction pointing outward at the boundary ∂Ω with line element

ds, and ∇ is the gradient operator once again is ∇ = [ ∂
∂x
, ∂

∂y
]T .

The second Green’s theorem is a corollary of the divergence theorem if we set F = v∇u =[
v
∂u

∂x
, v
∂u

∂y

]T

. Thus since

∇·F =
∂

∂x

(
v
∂u

∂x

)
+

∂

∂y

(
v
∂u

∂y

)

=
∂u

∂x

∂v

∂x
+ v

∂2u

∂x2
+
∂u

∂y

∂v

∂y
+ v

∂2u

∂y2

= ∇u · ∇v + v ∆u,
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Ω

∂Ω

∂Ω

n

n

Figure 9.1. A diagram of a two dimensional domain Ω, its boundary ∂Ω

and its unit normal direction.

where ∆u = ∇·∇u = uxx + uyy, we obtain
∫ ∫

Ω

∇·F dxdy =

∫ ∫

Ω

(∇u · ∇v + v ∆u) dxdy

=

∫

∂Ω

F · n ds

=

∫

∂Ω

v∇u · n ds =

∫

∂Ω

v
∂u

∂n
ds ,

where n = (nx, ny) (n2
x + n2

y = 1) is the unit normal direction, and ∂u
∂n

= ∇u · n =
nx

∂u
∂x

+ ny
∂u
∂y

, the normal derivative derivative of u, see Fig. 9.1 for an illustration. This
result immediately yields the formula for integration by parts in 2D.

Theorem 9.2. If u(x, y) ∈ H2(Ω) and v(x, y) ∈ H1(Ω) where Ω is a bounded domain,

then ∫ ∫

Ω

v∆u dxdy =

∫

∂Ω

v
∂u

∂n
ds−

∫ ∫

Ω

∇u · ∇v dxdy . (9.2)

Note: the normal derivative ∂u/∂n is sometimes written more concisely as un.

Some important elliptic PDEs in 2D Cartesian coordinates are:

uxx + uyy = 0, Laplace equation,

−uxx − uyy = f(x, y), Poisson equation,

−uxx − uyy + λu = f, generalized Helmholtz equation,

uxxxx + 2uxxyy + uyyyy = 0, Bi-harmonic equation.

When λ > 0, the generalized Helmholtz equation is easier to solve than when λ < 0.
Incidentally, the expressions involved in these PDEs may also be abbreviated using the
gradient operator ∇, e.g., uxx + uyy = ∇·∇u = ∆u as mentioned before. We also recall
that a general linear second order elliptic PDE has the form

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + g(x, y)u = f(x, y)
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with discriminant b2 − ac < 0. A second order self-adjoint elliptic partial differential
equation has the form

−∇ · (p(x, y)∇u) + q(x, y)u = f(x, y) . (9.3)

9.1.1 Boundary conditions

In 2D, the domain boundary ∂Ω is one or several curves. We consider the following various
linear boundary conditions.

• Dirichlet boundary condition on the entire boundary, i.e., u(x, y)|∂Ω = u0(x, y) is
given.

• Neumann boundary condition on the entire boundary, i.e., ∂u/∂n|∂Ω = g(x, y) is
given.
In this case, the solution to a Poisson equation may not be unique or even exist, de-
pending upon whether a compatibility condition is satisfied. Integrating the Poisson
equation over the domain, we have

∫ ∫

Ω

fdxdy = −
∫ ∫

Ω

∆u dxdy = −
∫ ∫

Ω

∇ · ∇u dxdy

= −
∫

∂Ω

un ds = −
∫

∂Ω

g(x, y) ds ,

(9.4)

which is the compatibility condition to be satisfied for the solution to exist. If a
solution does exist, it is not unique as it is determined within an arbitrary constant.

• Mixed boundary condition on the entire boundary, i.e.,

α(x, y)u(x, y) + β(x, y)
∂u

∂n
= γ(x, y)

is given, where α(x, y), β(x, y), and γ(x, y) are known functions.

• Dirichlet, Neumann, and Mixed boundary conditions on some parts of the boundary.

9.2 Weak form of second order self-adjoint elliptic

PDEs

Now we derive the weak form of the self-adjoint PDE (9.3) with a homogeneous Dirichlet
boundary condition on part of the boundary ∂ΩD, u|∂ΩD = 0 and a homogeneous Neumann
boundary condition on the rest of boundary ∂ΩN = ∂Ω − ∂ΩD, ∂u

∂n
|∂ΩN = 0. Multiplying

the equation (9.3) by a test function v(x, y) ∈ H1(Ω), we have
∫ ∫

Ω

{
−∇ · (p(x, y)∇u) + q(x, y)u

}
v dxdy =

∫ ∫

Ω

fv dxdy ;

and on using the formula for integration by parts the left-hand side becomes
∫ ∫

Ω

(
p∇u · ∇v + quv

)
dxdy −

∫

∂Ω

pvun ds ,
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so the weak form is
∫ ∫

Ω

(p∇u · ∇v + quv) dxdy =

∫ ∫

Ω

fvdxdy

+

∫

∂ΩN

pg(x, y)v(x, y) ds ∀v(x, y) ∈ H1(Ω) .
(9.5)

Here ∂ΩN is the part of boundary where a Neumann boundary condition is applied; and
the solution space resides in

V =
{
v(x, y) , v(x, y) = 0 , (x, y) ∈ ∂ΩD , v(x, y) ∈ H1(Ω)

}
, (9.6)

where ∂ΩD is the part of boundary where a Dirichlet boundary condition is applied.

9.2.1 Verification of conditions of the Lax-Milgram Lemma

The bilinear form for (9.3) is

a(u, v) =

∫ ∫

Ω

(p∇u · ∇v + quv) dxdy , (9.7)

and the linear form is

L(v) =

∫ ∫

Ω

fv dxdy (9.8)

for a Dirichlet BC on the entire boundary. As before, we assume that

0 < pmin ≤ p(x, y) ≤ pmax , 0 ≤ q(x) ≤ qmax , p ∈ C(Ω) , q ∈ C(Ω) .

We need the Poincaré inequality to prove the V-elliptic condition.

Theorem 9.3. If v(x, y) ∈ H1
0 (Ω), Ω ⊂ R2, i.e., v(x, y) ∈ H1(Ω) and vanishes at the

boundary ∂Ω (can be relaxed to a point on the boundary), then

∫ ∫

Ω

v2dxdy ≤ C

∫∫

Ω

|∇v|2 dxdy , (9.9)

where C is a constant.

Now we are ready to check the conditions of the Lax-Milgram Lemma.

1. It is obvious that a(u, v) = a(v, u).

2. It is easy to see that

|a(u, v)| ≤ max {pmax, qmax}
∣∣∣∣
∫ ∫

Ω

(|∇u · ∇v| + |uv|) dxdy
∣∣∣∣

= max {pmax, qmax} |(|u|, |v|)1|
≤ max {pmax, qmax} ‖u‖1‖v‖1 ,

so a(u, v) is a continuous and bounded bilinear operator.
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3. From the Poincaré inequality

|a(v, v)| =

∣∣∣∣
∫ ∫

Ω

p
(
|∇v|2 + qv2

)
dxdy

∣∣∣∣

≥ pmin

∫ ∫

Ω

|∇v|2 dxdy

=
1
2
pmin

∫ ∫

Ω

|∇v|2 dxdy +
1
2
pmin

∫ ∫

Ω

|∇v|2 dxdy

≥ 1
2
pmin

∫ ∫

Ω

|∇v|2 dxdy +
pmin

2C

∫ ∫

Ω

|v|2 dxdy

≥ 1
2
pmin min

{
1,

1
C

}
‖v‖2

1 ,

therefore a(u, v) is V-elliptic.

4. Finally, we show that L(v) is continuous:

|L(v)| = |(f, v)0| ≤ ‖f‖0‖v‖0 ≤ ‖f‖0‖v‖1 .

Consequently, the solutions to the weak form and the minimization form are unique and
bounded in H1

0 (Ω).

9.3 Triangulation and basis functions

The general procedure of the finite element method is the same for any dimension, and
the Galerkin finite element method involves the following main steps.

• Generate a triangulation over the domain. Usually the triangulation is composed
of either triangles or rectangles. There are a number of mesh generation software
packages available, e.g., the Matlab PDE toolbox from Mathworks, Triangle from
Carnegie Mellon University, etc. Some are available through the Internet.

• Construct basis functions over the triangulation. We mainly consider the conforming
finite element method in this book.

• Assemble the stiffness matrix and the load vector element by element, using either
the Galerkin finite method (the weak form) or the Ritz finite method (the minimiza-
tion form).

• Solve the system of equations.

• Do the error analysis.

In Fig. 9.2, we show a diagram of simple mesh generation process. The circular
domain is approximated by a polygon with five vertices (selected points on the boundary).
We then connect the five vertices to get initial five triangles (solid line) to obtain an initial
coarse mesh. We can refine the mesh using the so called middle point rule by connecting
all the middle points of all triangles in the initial mesh to obtain a finer mesh (solid and
dashed lines).
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Figure 9.2. A diagram of a simple generation process and the middle point rule.

9.3.1 Triangulation and mesh parameters

Given a general domain, we can approximate the domain by a polygon and then generate
a triangulation over the polygon, and we can refine the triangulation if necessary. A simple
approach is the mid-point rule by connecting all the middle points of three sides of existing
triangles to get a refined mesh.

A triangulation usually has the mesh parameters

Ωp : polygonal region = K1 ∪K2 ∪K3 · · · ∪Knelem ,

Kj : are non-overlapping triangles, j = 1, 2, · · · , nelem ,

Ni : are nodal points, i = 1, 2, · · · , nnode ,
hj : the longest side of Kj ,

ρj : the diameter of the circle inscribed in Kj (encircle),

h : the largest of all hj , h = max{hj} ,
ρ : the smallest of all ρj , ρ = min{ρj} ,

with

1 ≥ ρj

hj
≥ β > 0 ,

where the constant β is a measurement of the triangulation quality, see Fig. 9.4 for an
illustration of such a ρ’s and h’s. The larger the β, the better the quality of the triangula-
tion. Given a triangulation, a node is also the vertex of all adjacent triangles. We do not
discuss hanging nodes here.

9.3.2 The FE space of piecewise linear functions over a

triangulation

For linear second order elliptic PDEs, we know that the solution space is in the H1(Ω).
Unlike the 1D case, an element v(x, y) in H1(Ω) may not be continuous under the Sobolev
embedding theorem. However, in practice most solutions are indeed continuous, especially
for second order PDEs with certain regularities. Thus, we still look for a solution in the



i i

i

i

i

i

9.3. Triangulation and basis functions 225

continuous function space C0(Ω). Let us first consider how to construct piecewise linear
functions over a triangulation with the Dirichlet BC

u(x, y)|∂Ω = 0 .

Given a triangulation, we define

Vh =
{
v(x, y) is continuous in Ω and piecewise linear over each Kj ,

v(x, y)|∂Ω = 0 } .
(9.10)

We need to determine the dimension of this space and construct a set of basis functions.
On each triangle, a linear function has the form

vh(x, y) = α+ βx+ γy , (9.11)

where α, β and γ are constants (three free parameters). Let

Pk = { p(x, y) , a polynomial of degree of k } . (9.12)

We have the following theorem.

Theorem 9.4.

1. A linear function p1(x, y) = α+βx+γy defined on a triangle is uniquely determined

by its values at the three vertices.

2. If p1(x, y) ∈ P1 and p2(x, y) ∈ P1 are such that p1(A) = p2(A) and p1(B) = p2(B),
where A and B are two points in the xy-plane, then p1(x, y) ≡ p2(x, y), ∀(x, y) ∈
IAB, where IAB is the line segment between A and B.

ξ

η

a1

a2p1

p2

a3

Figure 9.3. A diagram of a triangle with three vertices a1, a2, and a3; an

adjacent triangle with a common side; and the local coordinate system in which a2

is the origin and a2a3 is the η axis.



i i

i

i

i

i

226 Chapter 9. The Finite Element Method for 2D elliptic PDEs

Proof: Assume the vertices of the triangle are (xi, yi), i = 1, 2, 3. The linear function
takes the value vi at the vertices, i.e.,

p(xi, yi) = vi ,

so we have the three equations

α+ βx1 + γy1 = v1 ,

α+ βx2 + γy2 = v2 ,

α+ βx3 + γy3 = v3 .

The determinant of this linear algebraic system is

det




1 x1 y1

1 x2 y2

1 x3 y3


 = ±2 area of the triangle 6= 0 since

ρj

hj
≥ β > 0 , (9.13)

hence the linear system of equations has a unique solution.
Now let us prove the second part of the theorem. Suppose that the equation of the

line segment is

l1x+ l2y + l3 = 0 , l21 + l22 6= 0 .

We can solve for x or for y:

x = − l2y + l3
l1

if l1 6= 0 ,

or y = − l1x+ l3
l2

if l2 6= 0 .

Without loss of generality, let us assume l2 6= 0 such that

p1(x, y) = α+ βx+ γy

= α+ βx− l1x+ l3
l2

γ

=
(
α − l3

l2
γ
)

+
(
β − l1

l2
γ
)
x

= α1 + β1x .

Similarly, we have

p2(x, y) = ᾱ1 + β̄1x .

Since p1(A) = p2(A) and p1(B) = p2(B),

α1 + β1x1 = p(A) , ᾱ1 + β̄1x1 = p(A) ,

α1 + β1x2 = p(B) , ᾱ1 + β̄1x2 = p(B) ,
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where both of the linear system of algebraic equations have the same coefficient matrix
[

1 x1

1 x2

]

that is non-singular since x1 6= x2 (because points A and B are distinct). Thus we conclude
that α1 = ᾱ1 and β1 = β̄1, so the two linear functions have the same expression along the
line segment, i.e., they are identical along the line segment.

Corollary 9.5. A piecewise linear function in C0(Ω) ∩H1(Ω) over a triangulation (a set

of non-overlapping triangles) is uniquely determined by its values at the vertices.

Theorem 9.6. The dimension of the finite dimensional space composed of piecewise linear

functions in C0(Ω) ∩H1(Ω) over a triangulation for (9.3) is the number of interior nodal

points plus the number of nodal points on the boundary where the natural BC are imposed

(Neumann and mixed boundary conditions).

Example 9.1. Given the triangulation shown in Fig. 9.4, a piecewise continuous function

vh(x, y) is determined by its values on the vertices of all triangles, more precisely, vh(x, y)
is determined from

(0, 0, v(N1)) , (x, y) ∈ K1 , (0, v(N2), v(N1)) , (x, y) ∈ K2 ,

(0, 0, v(N2)) , (x, y) ∈ K3 , (0, 0, v(N2)) , (x, y) ∈ K4 ,

(0, v(N3), v(N2)) , (x, y) ∈ K5 , (0, 0, v(N3)) , (x, y) ∈ K6 ,

(0, v(N1), v(N3)) , (x, y) ∈ K7 , (v(N1), v(N2), v(N3)) , (x, y) ∈ K8 .

Note that although three values of the vertices are the same, like the values for K3 and
K4, the geometries are different, hence, the functions will likely have different expressions
on different triangles.

1

2

3

1

2

3

4
5

6

7

8

0 0

0

0

Figure 9.4. A diagram of a simple triangulation with a homogeneous

boundary condition.
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9.3.3 Global basis functions

A global basis function of the piecewise linear functions in C0(Ω) ∩H1(Ω) can be defined
as

φi(Nj) =

{
1 if i = j ,

0 otherwise ,
(9.14)

where Nj are nodal points. The shape (mesh plot) of φi(Nj) looks like a “tent” without a
door; and its support of φi(Nj) is the union of the triangles surrounding the node Ni, cf.,
Fig. 9.5, where Fig. 9.5 (a) is the mesh plot of the global basis function, and Fig. 9.5 (b)
is the plot of a triangulation and the contour plot of the global basis function centered at
a node. The basis function is piecewise linear and it is supported only in the surrounding
triangles.

(a)

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

1

(b)

−2 −1 0 1 2
−2

−1

0

1

2

Figure 9.5. A global basis function φj . (a) the mesh plot of the global

function; (b) the triangulation and the contour plot of the global basis function.

It is almost impossible to give a closed form of a global basis function except for
some very special geometries (cf., the example in the next section). However, it is much
easier to write down the shape function.

Example 9.2. Let us consider a Poisson equation and a uniform mesh, as an example to

demonstrate the piecewise linear basis functions and the finite element method:

−(uxx + uyy) = f(x, y) , (x, y) ∈ (a, b) × (c, d) ,

u(x, y)|∂Ω = 0 .

We know how to use the standard central finite difference scheme with the five point stencil
to solve the Poisson equation. With some manipulations, the linear system of equations
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1 2 3

1
2

3

4
5

6

Figure 9.6. A uniform triangulation defined on a rectangular domain.

on using the finite element method with a uniform triangulation (cf., Fig. 9.6) proves to
be the same as that obtained from the finite difference method.

Given a uniform triangulation as shown in Fig. 9.6, if we use row-wise natural or-
dering for the nodal points

(xi, yj) , xi = ih , yj = jh , h =
1
n
, i = 1, 2, · · · ,m− 1 , j = 1, 2, · · · , n− 1 ,

then the global basis function defined at (xi, yj) = (ih, jh) are

φj(n−1)+i =





x− (i− 1)h+ y − (j − 1)h
h

− 1 Region 1

y − (j − 1)h
h

Region 2

h − (x− ih)
h

Region 3

1 − x− ih+ y − jh

h
Region 4

h − (y − jh)
h

Region 5

x− (i− 1)h
h

Region 6

0 otherwise .

If m = n = 3, there are 9 interior nodal points such that the stiffness matrix is a 9 × 9
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matrix:

A =




∗ ∗ 0 ∗ 0 0 0 0 0

∗ ∗ ∗ o ∗ 0 0 0 0

0 ∗ ∗ 0 o ∗ 0 0 0

∗ o 0 ∗ ∗ 0 ∗ 0 0

0 ∗ o ∗ ∗ ∗ o ∗ 0

0 0 ∗ 0 ∗ ∗ 0 o ∗

0 0 0 ∗ o 0 ∗ ∗ 0

0 0 0 0 ∗ o ∗ ∗ ∗

0 0 0 0 0 ∗ 0 ∗ ∗




,

where ‘∗’ stands for the nonzero entries and ‘o’ happens to be zero for Poisson equations.
Generally, the stiffness matrix is block tri-diagonal:

A =




B −I 0

−I B −I

· · · · · ·

· · · · · ·

−I B −I

−I B




, where B =




4 −1 0

−1 4 −1

· · · · · ·

· · · · · ·

−1 4 −1

−1 4




and I is the identity matrix. The component of the load vector Fi can be approximated
as

∫ ∫

D

f(x, y)φidxdy ≃ fij

∫ ∫

D

φi dxdy = h2fij ,

so after dividing by h2 we get the same system of equations as in the finite difference
scheme, namely,

−Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Uij

h2
= fij ,

with the same ordering.

9.3.4 The interpolation function and error analysis

We know that the finite element solution uh is the best solution in terms of the energy
norm in the finite dimensional space Vh, i.e., ‖u − uh‖a ≤ ‖u − vh‖a, assuming that u is
the solution to the weak form. However, this does not give a quantitative estimate for the
finite element solution, and we may wish to have a more precise error estimate in terms of
the solution information and the mesh size h. This can be done through the interpolation
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function, for which an error estimate is often available from the approximation theory.
Note that the solution information appears as part of the error constants in the error
estimates, even though the solution is unknown. We will use the mesh parameters defined
on page 224 in the discussion here.

Definition 9.7. Given a triangulation of Th, let K ∈ Th be a triangle with vertices ai,

i = 1, 2, 3. The interpolation function for a function v(x, y) on the triangle is defined as

vI(x, y) =
3∑

i=1

v(ai)φi(x, y), (x, y) ∈ K , (9.15)

where φi(x, y) is the piecewise linear function that satisfies φi(aj) = δj
i (with δj

i being the

Kronecker delta). A global interpolation function is defined as

vI(x, y) =
nnode∑

i=1

v(ai)φi(x, y), (x, y) ∈ Th , (9.16)

where ai’s are all nodal points and φi(x, y) is the global basis function centered at ai.

Theorem 9.8. If v(x, y) ∈ C2(K), then we have an error estimate for the interpolation

function on a triangle K,

‖v − vI‖∞ ≤ 2h2 max
|α|=2

‖Dαv‖∞ , (9.17)

where h is the longest side. Furthermore, we have

max
|α|=1

‖Dα (v − vI) ‖∞ ≤ 8h2

ρ
max
|α|=2

‖Dαv‖∞ . (9.18)

ξ

η

a1

a2

a3

ξ1

ρ

h

Figure 9.7. A diagram used to prove Theorem 9.8.
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Proof: From the definition of the interpolation function and the Taylor expansion
of v(ai) at (x, y), we have

vI(x, y) =
3∑

i=1

v(ai)φi(x, y)

=
3∑

i=1

φi(x, y)

(
v(x, y) +

∂v

∂x
(x, y)(xi − x) +

∂v

∂y
(x, y)(yi − y)+

1
2
∂2v

∂x2
(ξ, η)(xi − x)2 +

∂2v

∂x∂y
(ξ, η)(xi − x)(yi − y) +

1
2
∂2v

∂y2
(ξ, η)(yi − y)2

)

=
3∑

i=1

φi(x, y)v(x, y) +
3∑

i=1

φi(x, y)

(
∂v

∂x
(x, y)(xi − x) +

∂v

∂y
(x, y)(yi − y)

)

+R(x, y) ,

where (ξ, η) is a point in the triangle K. It is easy to show that

|R(x, y)| ≤ 2h2 max
|α|=2

‖Dαv‖∞

3∑

i=1

|φi(x, y)| = 2h2 max
|α|=2

‖Dαv‖∞ ,

since φ(x, y) ≥ 0 and
∑3

i=1
φi(x, y) = 1. If we take v(x, y) = 1, which is a linear function,

then ∂v/∂x = ∂v/∂y = 0 and max|α|=2 ‖Dαv‖∞ = 0. The interpolation is simply the
function itself, since it uniquely determined by the values at the vertices of T , hence

vI(x, y) = v(x, y) =
3∑

i=1

v(ai)φi(x, y) =
3∑

i=1

φi(x, y) = 1 . (9.19)

If we take v(x, y) = d1x+d2y, which is also a linear function, then ∂v/∂x = d1, ∂v/∂y = d2,
and max|α|=2 ‖Dαv‖∞ = 0. The interpolation is again simply the function itself, since it
uniquely determined by the values at the vertices of K. Thus from the previous Taylor
expansion and the identity

∑3

i=1
φi(x, y) = 1, we have

vI(x, y) = v(x, y) = v(x, y) +
3∑

i=1

φi(x, y) (d1(xi − x) + d2(yi − y)) = v(x, y) , (9.20)

hence
∑3

i=1
φi(x, y) (d1(xi − x) + d2(yi − y)) = 0 for any d1 and d2, i.e., the linear part in

the expansion is the interpolation function. Consequently, for a general function v(x, y) ∈
C2(K) we have

vI(x, y) = v(x, y) +R(x, y) , ‖v − vI‖∞ ≤ 2h2 max
|α|=2

‖Dαv‖∞ ,

which completes the proof of the first part of the theorem.
To prove the second part concerning the error estimate for the gradient, choose a

point (x0, y0) inside the triangle K and apply the Taylor expansion at (x0, y0) to get

v(x, y) = v(x0, y0) +
∂v

∂x
(x0, y0)(x− x0) +

∂v

∂y
(x0, y0)(y − y0) +R2(x, y),

= p1(x, y) +R2(x, y), |R2(x, y)| ≤ 2h2 max
|α|=2

‖Dαv‖∞ .
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Rewriting the interpolation function vI(x, y) as

vI(x, y) = v(x0, y0) +
∂v

∂x
(x0, y0)(x− x0) +

∂v

∂y
(x0, y0)(y − y0) +R1(x, y),

where R1(x, y) is a linear function of x and y, we have

vI(ai) = p1(ai) +R1(ai), i = 1, 2, 3 ,

from the definition above. On the other hand, vI(x, y) is the interpolation function, such
that also

vI(ai) = v(ai) = p1(ai) +R2(ai), i = 1, 2, 3 .

Since p1(ai) + R1(ai) = p1(ai) + R2(ai), it follows that R1(ai) = R2(ai), i.e., R1(x, y) is
the interpolation function of R2(x, y) in the triangle K, and we have

R1(x, y) =
3∑

i=1

R2(ai)φi(x, y) .

With this equality and on differentiating

vI(x, y) = v(x0, y0) +
∂v

∂x
(x0, y0)(x− x0) +

∂v

∂y
(x0, y0)(y − y0) +R1(x, y)

with respect to x, we get

∂vI

∂x
(x, y) =

∂v

∂x
(x0, y0) +

∂R1

∂x
(x, y) =

∂v

∂x
(x0, y0) +

3∑

i=1

R2(ai)
∂φi

∂x
(x, y) .

Applying the Taylor expansion for ∂v(x, y)/∂x at (x0, y0) gives

∂v

∂x
(x, y) =

∂v

∂x
(x0, y0) +

∂2v

∂x2
(x̄, ȳ)(x− x0) +

∂2v

∂x∂y
(x̄, ȳ)(y − y0) ,

where (x̄, ȳ) is a point in the triangle K. From the last two equalities, we obtain

∣∣∣∂v
∂x

− ∂vI

∂x

∣∣∣ =

∣∣∣∣∣
∂2v

∂x2
(x̄, ȳ)(x− x0) +

∂2v

∂x∂y
(x̄, ȳ)(y − y0) −

3∑

i=1

R2(ai)
∂φi

∂x

∣∣∣∣∣

≤ max
|α|=2

‖Dαv‖∞

(
2h + 2h2

3∑

i=1

∣∣∣∂φi

∂x

∣∣∣
)
.

It remains to prove that |∂φi/∂x| ≤ 1/ρ, i = 1, 2, 3. We take i = 1 as an illustration, and
use a shift and rotation coordinate transform such that a2a3 is the η axis and a2 is the
origin (cf. Fig. 9.7):

ξ = (x− x2) cos θ + (y − y2) sin θ ,

η = −(x− x2) sin θ + (y − y2) cos θ .
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Then φ1(x, y) = φ1(ξ, η) = Cξ = ξ/ξ1, where ξ1 is the ξ coordinate in the (ξ, η) coordinate
system, such that

∣∣∣∂φ1

∂x

∣∣∣ =

∣∣∣∣
∂φ1

∂ξ
cos θ − ∂φ1

∂η
sin θ

∣∣∣∣ ≤
∣∣∣∣

1
ξ1

cos θ

∣∣∣∣ ≤ 1
|ξ1| ≤ 1

ρ
.

The same estimate applies to ∂φi/∂x, i = 2, 3, so finally we have
∣∣∣ ∂v
∂x

− ∂vI

∂x

∣∣∣ ≤ max
|α|=2

‖Dαv‖∞

(
2h+

6h2

ρ

)
≤ 8h2

ρ
max
|α|=2

‖Dαv‖∞ ,

from the fact that ρ ≤ h. Similarly, we may obtain the same error estimate for ∂vI/∂y. 2

Corollary 9.9. Given a triangulation of Th, we have the following error estimates for the

interpolation function:

‖v − vI‖L2(Th) ≤ C1h
2‖v‖H2(Th) , ‖v − vI‖H1(Th) ≤ C2h‖v‖H2(Th) , (9.21)

where C1 and C2 are constants.

9.3.5 Error estimates of the FE solution

Let us now recall the 2D Sturm-Liouville problem in a bounded domain Ω:

−∇ · (p(x, y)∇u(x, y)) + q(x, y)u(x, y) = f(x, y) , (x, y) ∈ Ω ,

u(x, y)∂Ω = u0(x, y) ,

where u0(x, y) is a given function, i.e., a Dirichlet BC is prescribed. If we assume that
p, q ∈ C(Ω), p(x, y) ≥ p0 > 0, q(x, y) ≥ 0, f ∈ L2(Ω) and the boundary ∂Ω is smooth (in
C1), then we know that the weak form has a unique solution and the energy norm ‖v‖a is
equivalent to the H1 norm ‖v‖1. Furthermore, we know that the solution u(x, y) ∈ H2(Ω).
Given a triangulation Th with a polygonal approximation to the outer boundary ∂Ω, let
Vh be the piecewise linear function space over the triangulation Th, and uh be the finite
element solution. With those assumptions, we have the following theorem for the error
estimates.

Theorem 9.10.

‖u − uh‖a ≤ C1h‖u‖H2(Th) , ‖u − uh‖H1(Th) ≤ C2h‖u‖H2(Th) , (9.22)

‖u− uh‖L2(Th) ≤ C3h
2‖u‖H2(Th) , ‖u − uh‖∞ ≤ C4h

2‖u‖H2(Th) , (9.23)

where Ci are constants.

Sketch of the proof. Since the finite element solution is the best solution in the
energy norm, we have

‖u − uh‖a ≤ ‖u − uI‖a ≤ C̄1‖u − uI‖H1(Th) ≤ C̄1C̄2h‖u‖H2(Th) ,

because the energy norm is equivalent to the H1 norm. Furthermore, because of the
equivalence we get the estimate for the H1 norm as well. The error estimates for the L2

and L∞ norm are not trivial in 2D, and the reader may care to consult other advanced
textbooks on finite element methods.
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9.4 Transforms, shape functions, and quadrature

formulas

Any triangle with nonzero area can be transformed to the right-isosceles master triangle,
or standard triangle △, cf. the right diagram in Fig. 9.8. There are three nonzero basis
functions over this standard triangle △, namely,

ψ1(ξ, η) = 1 − ξ − η , (9.24)

ψ2(ξ, η) = ξ , (9.25)

ψ3(ξ, η) = η . (9.26)

(x1, y1)

(x2, y2)

(x3, y3)

(x, y)

(0, 0)

(ξ, η)

(1, 0)

(0, 1)

η

ξ

Figure 9.8. The linear transform from an arbitrary triangle to the standard

triangle (master element) and the inverse map.

The linear transform from a triangle with vertices (x1, y1), (x2, y2) and (x3, y3)
arranged in the counter-clockwise direction to the master triangle △ is

x =
3∑

j=1

xjψj(ξ, η) , y =
3∑

j=1

yjψj(ξ, η) , (9.27)

or

ξ =
1

2Ae

(
(y3 − y1)(x− x1) − (x3 − x1)(y − y1)

)
, (9.28)

η =
1

2Ae

(
− (y2 − y1)(x− x1) + (x2 − x1)(y − y1)

)
, (9.29)

where Ae is the area of the triangle that can be calculated using the formula in (9.13).
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9.4.1 Quadrature formulas

In the assembling process, we need to evaluate the double integrals

∫ ∫

Ωe

q(x, y)φi(x, y)φj(x, y) dxdy =

∫ ∫

△

q(ξ, η)ψi(ξ, η)ψj(ξ, η)

∣∣∣∣
∂(x, y)
(∂ξ, η)

∣∣∣∣ dξdη ,
∫ ∫

Ωe

f(x, y)φj(x, y) dxdy =

∫ ∫

△

f(ξ, η)ψj(ξ, η)

∣∣∣∣
∂(x, y)
(∂ξ, η)

∣∣∣∣ dξdη ,
∫ ∫

Ωe

p(x, y)∇φi · ∇φj dxdy =

∫ ∫

△

p(ξ, η) ∇(x,y)ψi · ∇(x,y)ψj

∣∣∣∣
(∂(x, y)
∂ξ, η)

∣∣∣∣ dξdη

in which, for example, q(ξ, η) should really be q(x(ξ, η), y(ξ, η)) = q̄(ξ, η) and so on. For
simplification of the notations, we omit the bar symbol.

a
a

b

a

b

d

c

c

Figure 9.9. A diagram of the quadrature formulas in 2D with one, three

and four quadrature points, respectively.

A quadrature formula has the form

∫∫

S△

g(ξ, η)dξdη =
L∑

k=1

wk g(ξk, ηk) , (9.30)

where S△ is the standard right triangle and L is the number of points involved in the
quadrature. Below we list some commonly used quadrature formulas in 2D using one,
three and four points. The geometry of the points are illustrated in Fig. 9.9, and the
coordinates of the points and the weights are given in Table 9.1. It is noted that only the
three-point quadrature formula is closed, since the three points are on the boundary of the
triangle, and the other quadrature formulas are open.

9.5 Some implementation details

The procedure is essentially the same as in the 1D case, but some details are slightly
different.



i i

i

i

i

i

9.5. Some implementation details 237

Table 9.1. Quadrature points and weights corresponding to the geometry

in Fig. 9.9.

L Points (ξk, ηk) wk

1 a

(
1

3
,

1

3

)
1

2

3 a

(
0,

1

2

)
1

6

b

(
1

2
, 0

)
1

6

c

(
1

2
,

1

2

)
1

6

4 a

(
1

3
,

1

3

)
− 27

96

b

(
2

15
,

11

15

)
25

96

c

(
2

15
,

2

15

)
25

96

d

(
11

15
,

2

15

)
25

96

9.5.1 Description of a triangulation

A triangulation is determined by its elements and nodal points. We use the following
notation:

• Nodal points: Ni, (x1, y1), (x2, y2), · · · , (xnnode, ynnode), i.e., we assume there are
nnode nodal points.

• Elements: Ki, K1,K2, · · · ,Knelem, i.e., we assume there are nelem elements.

• A 2D array nodes is used to describe the relation between the nodal points and the
elements: nodes(3, nelem). The first index is the index of nodal point in an element,
usually in the counter-clockwise direction, and the second index is the index of the
element.

Example 9.3. Below we show the relation between the index of the nodal points and

elements, and its relations, cf. also Fig. 9.10.
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nodes(1, 1) = 5 , (x5, y5) = (0, h) ,

nodes(2, 1) = 1 , (x1, y1) = (0, 0) ,

nodes(3, 1) = 6 , (x6, y6) = (h, h) ,

nodes(1, 10) = 7 , (x7, y7) = (2h, h) ,

nodes(2, 10) = 11 , (x11, y11) = (2h, 2h) ,

nodes(3, 10) = 6 , (x6, y6) = (h, h) .

1 2 3 4

5 8

9 12

13 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 9.10. A simple triangulation with the row-wise natural ordering.

9.5.2 Outline of the FE algorithm using the piecewise linear

basis functions

The main assembling process is the following loop.

for nel = 1:nelem

i1 = nodes(1,nel); % (x(i1),y(i1)), get nodal points

i2 = nodes(2,nel); % (x(i2),y(i2))

i3 = nodes(3,nel); % (x(i3),y(i3))

..............

• Computing the local stiffness matrix and the load vector.

ef=zeros(3,1);

ek = zeros(3,3);

for l=1:nq % nq is the number of quadrature points.

[xi_x(l),eta_y(l)] = getint, % Get a quadrature point.

[psi,dpsi] = shape(xi_x(l),eta_y(l));

[x_l,y_l] = transform, % Get (x,y) from (\xi_x(l), \eta_y(l))

[xk,xq,xf] = getmat(x_l,y_l); % Get the material
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%coefficients at the quadrature point.

for i= 1:3

ef(i) = ef(i) + psi(i)*xf*w(l)*J; % J is the Jacobian

for j=1:3

ek(i,j)=ek(i,j)+ (T + xq*psi(i)*psi(j) )*J % see below

end

end

end

Note that psi has three values corresponding to three nonzero basis functions; dpsi
is a 3 × 2 matrix which contains the partial derivatives ∂ψi/∂ξ and ∂ψi/∂η. The
evaluation of T is
∫ ∫

Ωe

p(x, y) ∇φi · ∇φj dx dy =

∫ ∫

Ωe

p(ξ, η)

(
∂ψi

∂x

∂ψj

∂x
+
∂ψi

∂y

∂ψj

∂y

)
|J | dξ dη ,

where J = ∂(x,y)
∂(ξ,η)

is the Jacobian of the transform. We need to calculate ∂ψi/∂x

and ∂ψi/∂y in terms of ξ and η. Notice that

∂ψi

∂x
=
∂ψi

∂ξ

∂ξ

∂x
+
∂ψi

∂η

∂η

∂x
,

∂ψi

∂y
=
∂ψi

∂ξ

∂ξ

∂y
+
∂ψi

∂η

∂η

∂y
.

Since we we know that

ξ =
1

2Ae

(
(y3 − y1)(x− x1) − (x3 − x1)(y − y1)

)
,

η =
1

2Ae

(
− (y2 − y1)(x− x1) + (x2 − x1)(y − y1)

)
,

we obtain those partial derivatives below,

∂ξ

∂x
=

1
2Ae

(y3 − y1) ,
∂ξ

∂y
= − 1

2Ae
(x3 − x1) ,

∂η

∂x
= − 1

2Ae
(y2 − y1) ,

∂η

∂y
=

1
2Ae

(x2 − x1) .

• Add to the global stiffness matrix and the load vector.

for i= 1:3

ig = nodes(i,nel);

gf(ig) = gf(ig) + ef(i);

for j=1:3

jg = nodes(j,nel);

gk(ig,jg) = gk(ig,jg) + ek(i,j);

end

end

• Solve the system of equations gkU = gf.

– Direct method, e.g., Gaussian elimination.
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– Sparse matrix technique, e.g., A = sparse(M,M).

– Iterative method plus preconditioning, e.g., Jacobi, Gauss-Seidel, SOR(ω),
conjugate gradient methods, etc.

• Error analysis.

– Construct interpolation functions.

– Error estimates for interpolation functions.

– Finite element solution is the best approximation in the finite element space
in the energy norm.

9.6 Simplification of the FE method for Poisson

equations

With constant coefficients, there is a closed form for the local stiffness matrix, in terms
of the coordinates of the nodal points; so the finite element algorithm can be simplified.
We now introduce the simplified finite element algorithm. A good reference is [35]: An

introduction to the finite element method with applications to non-linear problems by R.E.
White, John Wiley & Sons.

Let us consider the Poisson equation below

−∆u = f(x, y), (x, y) ∈ Ω ,

u(x, y) = g(x, y) , (x, y) ∈ ∂Ω1 ,

∂u

∂n
= 0 , (x, y) ∈ ∂Ω2 ,

where Ω is an arbitrary but bounded domain. We can use Matlab PDE Tool-box to
generate a triangulation for the domain Ω.

The weak form is
∫ ∫

Ω

∇u · ∇v dx dy =

∫ ∫

Ω

fv dx dy .

With the piecewise linear basis functions defined on a triangulation on Ω, we can derive
analytic expressions for the basis functions and the entries of the local stiffness matrix.

Theorem 9.11. Consider a triangle determined by (x1, y1), (x2, y2) and (x3, y3). Let

ai = xjym − xmyj , (9.31)

bi = yj − ym , (9.32)

ci = xm − xj , (9.33)

where i, j, m is a positive permutation of 1, 2, 3, e.g., i = 1, j = 2 and m = 3; i = 2,

j = 3 and m = 1; and i = 3, j = 1 and m = 2. Then the corresponding three nonzero

basis functions are

ψi(x, y) =
ai + bi x+ ci y

2∆
, i = 1, 2, 3 , (9.34)
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where ψi(xi, yi) = 1, ψi(xj , yj) = 0 if i 6= j, and

∆ =
1
2
det




1 x1 y1

1 x2 y2

1 x3 y3


 = ± area of the triangle. (9.35)

We prove the theorem for ψ1(x, y). Substitute a1, b1, and c1 in terms of xi and yi

in the definition of ψ1, we have,

ψ1(x, y) =
a1 + b1x+ c1y

2∆
,

=
(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y

2∆
,

so ψ1(x2, y2) =
(x2y3 − x3y2) + (y2 − y3)x2 + (x3 − x2)y2

2∆
= 0 ,

ψ1(x3, y3) =
(x2y3 − x3y2) + (y2 − y3)x3 + (x3 − x2)y3

2∆
= 0 ,

ψ1(x1, y1) =
(x2y3 − x3y2) + (y2 − y3)x1 + (x3 − x2)y1

2∆
=

2∆
2∆

= 1 .

We can prove the same feature for ψ2 and ψ3.

We also have the following theorem, which is essential for the simplified finite element
method.

Theorem 9.12. With the same notations as in Theorem 9.11, we have
∫ ∫

Ωe

(ψ1)m(ψ2)n(ψ3)l dxdy =
m!n! l!

(m+ n+ l + 2) !
2∆ , (9.36)

∫ ∫

Ωe

∇ψi · ∇ψj dxdy =
bibj + cicj

4∆
,

F e
1 =

∫ ∫

Ωe

ψ1f(x, y) dxdy ≃ f1
∆
6

+ f2
∆
12

+ f3
∆
12
,

F e
2 =

∫ ∫

Ωe

ψ2f(x, y) dxdy ≃ f1
∆
12

+ f2
∆
6

+ f3
∆
12
,

F e
3 =

∫ ∫

Ωe

ψ3f(x, y) dxdy ≃ f1
∆
12

+ f2
∆
12

+ f3
∆
6
,

where fi = f(xi, yi).

The proof is straightforward since we have the analytic form for ψi. We approximate
f(x, y) using

f(x, y) ≃ f1ψ1 + f2ψ2 + f3ψ3, (9.37)
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and therefore

F e
1 ≃

∫ ∫

Ωe

ψ1f(x, y) dxdy

= f1

∫ ∫

Ωe

ψ2
1dxdy + f2

∫ ∫

Ωe

ψ1ψ2 dxdy + f3

∫ ∫

Ωe

ψ1ψ3 dxdy .

(9.38)

Note that the integrals in the last expression can be obtained from the formula (9.36).
There is a negligible error from approximating f(x, y) compared with the error from the
finite element approximation when we seek approximate solution only in Vh space instead
of H1(Ω) space. Similarly we can get approximation F e

2 and F e
3 .

9.6.1 A pseudo-code of the simplified FE method

Assume that we have a triangulation, e,g., a triangulation generated from Matlab by saving
the mesh. Then we have

p(1, 1), p(1, 2), · · · , p(1, nnode) as x coordinates of the nodal points,

p(2, 1), p(2, 2), · · · , p(2, nnode) as y coordinates of the nodal points;

and the array t (the nodes in our earlier notation)

t(1, 1), t(1, 2), · · · , t(1, nele) as the index of the first node of an element,

t(2, 1), t(2, 2), · · · , t(2, nele) as the index of the second node of the element,

t(3, 1), t(3, 2), · · · , t(3, nele) as the index of the third node of the element;

and the array e to describe the nodal points on the boundary

e(1, 1), e(1, 2), · · · , e(1, nbc) as the index of the beginning node of a boundary edge,

e(2, 1), e(2, 2), · · · , e(2, nbc) as the index of the end node of the boundary edge.

A Matlab code for the simplified finite element method is listed below.

% Set-up: assume we have a triangulation p,e,t from Matlab PDE tool box

% already.

[ijunk,nelem] = size(t);

[ijunk,nnode] = size(p);

for i=1:nelem

nodes(1,i)=t(1,i);

nodes(2,i)=t(2,i);

nodes(3,i)=t(3,i);

end

gk=zeros(nnode,nnode);

gf = zeros(nnode,1);
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for nel = 1:nelem, % Begin to assemble by element.

for j=1:3, % The coordinates of the nodes in the

jj = nodes(j,nel); % element.

xx(j) = p(1,jj);

yy(j) = p(2,jj);

end

for nel = 1:nelem, % Begin to assemble by element.

for j=1:3, % The coordinates of the nodes in the

jj = nodes(j,nel); % element.

xx(j) = p(1,jj);

yy(j) = p(2,jj);

end

for i=1:3,

j = i+1 - fix((i+1)/3)*3;

if j == 0

j = 3;

end

m = i+2 - fix((i+2)/3)*3;

if m == 0

m = 3;

end

a(i) = xx(j)*yy(m) - xx(m)*yy(j);

b(i) = yy(j) - yy(m);

c(i) = xx(m) - xx(j);

end

delta = ( c(3)*b(2) - c(2)*b(3) )/2.0; % Area.

for ir = 1:3,

ii = nodes(ir,nel);

for ic=1:3,

ak = (b(ir)*b(ic) + c(ir)*c(ic))/(4*delta);

jj = nodes(ic,nel);

gk(ii,jj) = gk(ii,jj) + ak;

end

j = ir+1 - fix((ir+1)/3)*3;

if j == 0

j = 3;

end
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m = ir+2 - fix((ir+2)/3)*3;

if m == 0

m = 3;

end

gf(ii) = gf(ii)+( f(xx(ir),yy(ir))*2.0 + f(xx(j),yy(j)) ...

+ f(xx(m),yy(m)) )*delta/12.0;

end

end % End assembling by element.

%------------------------------------------------------

% Now deal with the Dirichlet BC

[ijunk,npres] = size(e);

for i=1:npres,

xb = p(1,e(1,i)); yb=p(2,e(1,i));

g1(i) = uexact(xb,yb);

end

for i=1:npres,

nod = e(1,i);

for k=1:nnode,

gf(k) = gf(k) - gk(k,nod)*g1(i);

gk(nod,k) = 0;

gk(k,nod) = 0;

end

gk(nod,nod) = 1;

gf(nod) = g1(i);

end

u=gk\gf; % Solve the linear system.

pdemesh(p,e,t,u) % Plot the solution.

% End.

Example 9.4. We test the simplified finite element method to solve a Poisson equation

using the following example:

• Domain: Unit square with a hole, cf. Fig. 9.11.

• Exact solution: u(x, y) = x2 + y2, for f(x, y) = −4.

• BC: Dirichlet condition on the whole boundary.

• Use Matlab PDE Tool-box to generate initial mesh and then export it.

Fig. 9.11 shows the domain and the mesh generated by the Matlab PDE Tool-box.
The left plot in Fig. 9.12 is the mesh plot for the finite element solution, and the right plot
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is the error plot (the magnitude of the error is O(h2)).
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Figure 9.11. A mesh generated from Matlab.
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Figure 9.12. (a) A plot of the finite element solution when f(x, y) = −4;

(b) The corresponding error plot.

9.7 Some FE spaces in H1(Ω) and H2(Ω)

Given a triangulation (triangles, rectangles, quadrilaterals, etc.), let us construct different
finite element spaces with finite dimensions. There are several reasons to do so, including:

• better accuracy of the finite element solution, with piecewise higher order polynomial
basis functions; and

• to allow for higher order derivatives in higher order PDEs, e.g., in solving the bi-
harmonic equation in H2 space.



i i

i

i

i

i

246 Chapter 9. The Finite Element Method for 2D elliptic PDEs

As previously mentioned, we consider conforming piecewise polynomial finite element
spaces. A set of polynomials of degree k is denoted by

Pk =

{
v(x, y) , v(x, y) =

i+j≤k∑

i,j=0

aij x
ixj

}
,

in the xy-plane. Below we list some examples,

P1 = { v(x, y), v(x, y) = a00 + a10x+ a01y } ,
P2 =

{
v(x, y), v(x, y) = a00 + a10x+ a01y + a20x

2 + a11xy + a02y
2
}
,

P3 = P2 +
{
a30x

3 + a21x
2y + a12xy

2 + a03y
3
}
,

· · · · · · · · · · · · .

Degree of freedom of Pk. For any fixed xi, the possible yj terms of in a pk(x, y) ∈
Pk are y0, y1, · · · , yk−i, i.e., j ranges from 0 to k− i. Thus there are k− i+ 1 parameters
for a given xi, and the total degree of freedom is

k∑

i=0

(k − i+ 1) =
k∑

i=0

(k + 1) −
k∑

i=0

i

= (k + 1)2 − k(k + 1)
2

=
(k + 1)(k + 2)

2
.

Some degrees of freedom for different k’s are:

• 3 when k = 1, the linear function space P1;

• 6 when k = 2, the quadratic function space P2;

• 10 when k = 3, the cubic function space P3;

• 15 when k = 4, the fourth order polynomials space P4; and

• 21 when k = 5, the fifth order polynomials space P5.

Regularity requirements: Generally, we cannot conclude that v(x, y) ∈ C0 if
v(x, y) ∈ H1. However, if Vh is a finite dimensional space of piecewise polynomials, then
that is indeed true. Similarly, if v(x, y) ∈ H2 and v(x, y)|Ki ∈ Pk, ∀Ki ∈ Th, then
v(x, y) ∈ C1. The regularity requirements are important for the construction of finite
element spaces.

As is quite well known, there are two ways to improve the accuracy. One way is to
decrease the mesh size h, and the other is to use high order polynomial spaces Pk. If we
use a Pk space on a given triangulation Th for a linear second order elliptic PDE, the error
estimates for the finite element solution uh are

‖u− uh‖H1(Ω) ≤ C1h
k‖u‖Hk+1(Ω), ‖u − uh‖L2(Ω) ≤ C2h

k+1‖u‖Hk+1(Ω) . (9.39)

9.7.1 A piecewise quadratic function space

The degree of the freedom of a quadratic function on a triangle is six, so we may add thre
auxiliary middle points along the three sides of the triangle.
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Figure 9.13. A diagram of six points in a triangle to determine a quadratic

function.

Theorem 9.13. Consider a triangle K = (a1, a2, a3), as shown in Fig. 9.13. A function

v(x, y) ∈ P2(K) is uniquely determined by its values at

v(ai) , i = 1, 2, 3, and the three middle points v(a12), v(a23), v(a31) .

As there are six parameters and six conditions, we expect to be able to determine
the quadratic function uniquely. Highlights of the proof are as follows.

• We just need to prove the homogeneous case v(ai) = 0, v(aij) = 0, since the right-
hand side does not affect the existence and uniqueness.

• We can represent a quadratic function as a product of two linear functions, i.e.,
v(x) = ψ1(x)ω(x) = ψ1(x)ψ2(x)ω0, with ψi(x) denoting the local linear basis func-
tion such that ψi(ai) = 1 and ψi(aj) = 0 if i 6= j. Note that here we use x = (x, y)
notation for convenience.

• It is easier to introduce a coordinate axis aligned with one of the three sides.

Proof: We introduce the new coordinates (cf. Fig. 9.7)

ξ = (x− x2) cosα+ (y − y2) sinα ,

η = −(x− x2) sinα+ (y − y2) cosα ,

such that a2 is the origin and a2a3 is the η- axis. Then v(x, y) can be written as

v(x, y) = v(x(ξ, η), y(ξ, η)) = v̄(ξ, η) = ā00 + ā10ξ + ā01η + ā20ξ
2 + ā11ξη + ā02η

2 .

Furthermore, under the new coordinates, we have

ψ1(ξ, η) = σ + βξ + γη = βξ , β 6= 0,

since ψ1(a2) = ψ1(a3) = 0. Along the η-axis (ξ = 0), v̄(ξ, η) has the following form

v̄(0, η) = ā00 + ā01η + ā02η
2.



i i

i

i

i

i

248 Chapter 9. The Finite Element Method for 2D elliptic PDEs

Since v̄(a2) = v̄(a3) = v̄(a23) = 0, we get ā00 = 0, ā01 = 0 and ā02 = 0, therefore,

v̄(ξ, η) = ā10ξ + ā11ξη + ā20ξ
2 = ξ (ā10 + ā11η + ā20ξ)

= βξ

(
ā10

β
+
ā20

β
ξ +

ā11

β
η

)

= ψ1(ξ, η)ω(ξ, η) .

Similarly, along the edge a1a3, we have

v(a13) = ψ1(a13)ω(a13) =
1
2
ω(a13) = 0,

v(a1) = ψ1(a1)ω(a1) = ω(a1) = 0,

i.e.,

ω(a13) = 0, ω(a1) = 0 .

By similar arguments, we conclude that

ω(x, y) = ψ2(x, y)ω0 ,

and hence

v(x, y) = ψ1(x, y)ψ2(x, y)ω0 .

Using the zero value of v at a12, we have

v(a12) = ψ1(a12)ψ2(a12)ω0 =
1
2

1
2
ω0 = 0 ,

so we must have ω0 = 0 and hence v(x, y) ≡ 0.

Continuity along the edges

Along each edge, a quadratic function v(x, y) can be written as a quadratic function of
one variable. For example, if the edge is represented as

y = ax+ b or x = ay + b ,

then

v(x, y) = v(x, ax+ b) or v(x, y) = v(ay + b, y).

Thus the piecewise quadratic functions defined on two triangles with a common side are
identical on the entire side if they have the same values at the two end points and at the
mid-point of the side.
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Representing quadratic basis functions using linear functions

To define quadratic basis functions with minimum compact support, we can determine
the six nonzero functions using the values at three vertices and the mid-points v =
(v(a1), v(a2), v(a3), v(a12), v(a23), v(a13)) ∈ R6. We can either take v = ei ∈ R6, i =
1, 2, · · · , 6 respectively, or determine a quadratic function on the triangle using the linear
basis functions as stated in the following theorem.

Theorem 9.14. A quadratic function on a triangle can be represented by

v(x, y) =
3∑

i=1

v(ai)φi(x, y)
(

2φi(x, y) − 1
)

+
3∑

i,j=1,i<j

4 v(aij)φi(x, y)φj(x, y) ,

(9.40)

where φi(x, y), i = 1, 2, 3, is one of the three linear basis function centered at one of the

vertices ai.

Proof: It is easy to verify the vertices if we substitute aj into the right-hand side
of the expression above,

v(aj)φj(aj)
(

2φj(aj) − 1
)

= v(aj) ,

since φi(aj) = 0 if i 6= j. We take one mid-point to verify the theorem. On substituting
a12 into the left expression, we have

v(a1)φ1(a12)
(
2φ1(a12) − 1

)
+ v(a2)φ2(a12)

(
2φ2(a12) − 1

)

+ v(a3)φ3(a12)
(
2φ3(a12) − 1

)
+ 4v(a12)φ1(a12)φ2(a12)

+ 4v(a13)φ1(a12)φ3(a12) + 4v(a23)φ2(a12)φ3(a12)

= v(a12) ,

since 2φ1(a12) − 1 = 2 × 1
2

− 1 = 0, 2φ2(a12) − 1 = 2 × 1
2

− 1 = 0, φ3(a12) = 0 and
4φ1(a12)φ2(a12) = 4 × 1

2
× 1

2
= 1. Note that the local stiffness matrix is 6 × 6 when

quadratic basis functions are used.
We have included a Matlab code of the finite element method using the quadratic

finite element space over a uniform triangular mesh for solving a Poisson equation with a
homogeneous (zero) Dirichlet boundary condition.

9.7.2 A cubic basis functions in H1 ∩ C0

There are several ways to construct cubic basis functions in H1 ∩C0 over a triangulation,
but a key consideration is to keep the continuity of the basis functions along the edges of
neighboring triangles. We recall that the degree of freedom of a cubic function in 2D is
ten, and one way is to add two auxiliary points along each side and one auxiliary point
inside the triangle. thus together with the three vertices, we have ten points on a triangle
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to match the degree of the freedom (cf. the left diagram in Fig. 9.14). Existence and
uniqueness conditions for such a cubic function are stated in the following theorem.

a1

a2

a3

a332

a223

a112 a221

10, P3(K), C0

a331

a113

10, P3(K), C0

Figure 9.14. A diagram of the freedom used to determine two different

cubic basis functions in H1 ∩ C0. We use the following notation: • for function

values; ◦ for values of the first derivatives.

Theorem 9.15. A cubic function v ∈ P3(K) is uniquely determined by the values of

v(ai), v(aiij), i, j = 1, 2, 3, i 6= j and v(a123) , (9.41)

where

a123 =
1
3

(
a1 + a2 + a3

)
, aiij =

1
3

(
2ai + aj

)
, i, j = 1, 2, 3, i 6= j . (9.42)

Sketch of the proof: Similar to the quadratic case, we just need to prove that the
cubic function is identically zero if v(ai) = v(aiij) = v(a123) = 0. Again using the local
coordinates where one of the sides of the triangle T is on an axis, we can write

v(x) = Cφ1(x)φ2(x)φ3(x) ,

where C is a constant. Since v(a123) = Cφ1(a123)φ2(a123)φ3(a123) = 0, we conclude that
C = 0 since φi(a123) 6= 0, i = 1, 2, 3; and hence v(x) ≡ 0.

With reference to the continuity along the common side of two adjacent triangles, we
note that the polynomial of two variables again becomes a polynomial of one variable there,
since we can substitute either x for y, or y for x from the line equations l0 + l10x+ l01y = 0.
Furthermore, a cubic function of one variable is uniquely determined by the values of four
distinct points.

There is another choice of cubic basis functions, using the first order derivatives at
the vertices, cf. the right diagram in Fig. 9.14. This alternative is stated in the following
theorem.

Theorem 9.16. A cubic function v ∈ P3(K) is uniquely determined by the values of

v(ai),
∂v

∂xj
(ai), i = 1, 2, 3, j = 1, 2 and i 6= j, v(a123) , (9.43)
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where ∂v/∂xj(ai) represents ∂v/∂x(ai) when j = 1 and ∂v/∂y(ai) when j = 2, at the

nodal point ai.

At each vertex of the triangle, there are three degrees of freedom, namely, the func-
tion value and two first order partial derivatives; so in total there are nine degrees of
freedom. An additional degree of freedom is the value at the centroid of the triangle.
For the proof of the continuity, we note that on a common side of two adjacent trian-
gles a cubic polynomial of one variable is uniquely determined by its function values at
two distinct points plus the first order derivatives in the Hermite interpolation theory.
The first order derivative is the tangential derivative along the common side defined as
∂v/∂t = ∂v/∂x t1 + ∂v/∂y t2 , where t = (t1, t2) such that t21 + t22 = 1 is the unit direction
of the common side.

9.7.3 Basis functions in H2 ∩ C1

To solve fourth order PDEs such as a 2D biharmonic equation

∆ (uxx + uyy) = uxxxx + 2uxxyy + uyyyy = 0 , (9.44)

using the finite element method, we need to construct basis functions in H2(Ω) ∩ C1(Ω).
Since second order partial derivatives are involved in the weak form, we need to use
polynomials with degree more than three. On a triangle, if the function values and partial
derivatives up to second order are specified at the three vertices, the degree of freedom
would be at least 18. The closest polynomial would be of degree five, as a polynomial
v(x) ∈ P5 has degree of freedom 21, cf. the left diagram in Fig. 9.15.

Figure 9.15. A diagram of the freedom used to determine two different

fifth order polynomial basis functions in H2 ∩C1. Left diagram, we specify Dαv(ai),

0 ≤ α ≤ 2 at each vertex (3 × 6 = 18) plus three normal derivatives ∂v/∂n(aij) at

the mid-point of the three edges. Right diagram, we can specify three independent

constrains to reduce the degree of freedom, for example, ∂v/∂n(aij) = 0 at the

mid-point of the three edges.

Theorem 9.17. A quintic function v(x, y) ∈ P5(K) is uniquely determined by the values

of

Dαv(ai) , i = 1, 2, 3, |α| ≤ 2,
∂v

∂n
(aij) , i, j = 1, 2, 3, i < j , (9.45)
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where ∂v/∂n(ai) = n1∂v/∂x(ai) + n2∂v/∂y(ai) represents the normal derivative of v(x)
at ai and n = (n1, n2) (n2

1 + n2
2 = 1) is the outward unit normal at the boundary of the

triangle.

Sketch of the proof: We just need to show that v(x) = 0 if Dαv(ai) = 0, i =
1, 2, 3, |α| ≤ 2 and ∂v/∂n(aij) = 0, i, j = 1, 2, 3, i < j. A fifth order polynomial v(s)
of one variable s is uniquely determined by the values of v and its derivatives v′(s) and
v′′(s) at two distinct points, so along a2a3, v(x) must be zero for the given homogeneous
conditions. We note that ∂v

∂n
(x) is a fourth order polynomial of one variable along a2a3.

Since all of the first and second order partial derivatives are zero at a2 and a3,

∂v

∂n
(ai) = 0 ,

∂

∂t

(
∂v

∂n

)
(ai) = 0, i = 2, 3 ,

and ∂v
∂n

(a23) = 0. Here again, ∂
∂t

is the tangential directional derivative. From the five
conditions, we have ∂v

∂n
(x) = 0 along a2a3, so we can factor φ2

1(x) out of v(x) to get

v(x) = φ2
1(x) p3(x) , (9.46)

where p3(x) ∈ P3. Similarly, we can factor out φ2
2(x) and φ2

3(x) to get

v(x) = φ2
1(x)φ2

2(x)φ2
3(x)C , (9.47)

where C is a constant. Consequently C = 0, otherwise v(x) would be a polynomial of
degree six, which contradicts that v(x) ∈ P5.

The continuity condition along a common side of two adjacent triangles in C1 has
two parts, namely, both the function and the normal derivative must be continuous. Along
a common side of two adjacent triangles, a fifth order polynomial of v(x, y) is actually a
fifth order polynomial of one variable v(s), which can be uniquely determined by the
values v(s), v′(s) and v′′(s) at two distinct points. Thus the two fifth order polynomials
on two adjacent triangles are identical along the common side if they have the same values
of v(s), v′(s) and v′′(s) at the two shared vertices. Similarly, for the normal derivative
along a common side of two adjacent triangles, we have a fourth order polynomial of one
variable ∂v/∂n(s). The polynomials can be uniquely determined by the values ∂v/∂n(s)
and (d/ds) (∂v/∂n) (s) at two distinct points plus the value of a ∂v/∂n(s) at the mid-point.
Thus the continuity of the normal derivative is also guaranteed.

An alternative approach is to replace the values of ∂v
∂n

(aij) at the three mid-points
of the three sides by imposing another three conditions. For example, assuming that along
a2a3 the normal derivative of the fifth order polynomial has the form

∂v

∂n
= ã00 + ã10η + ã20η

2 + ã30η
3 + ã40η

4 ,

we can impose ã40 = 0. In other words, along the side of a2a3 the normal derivative of
∂v/∂n becomes a cubic polynomial of one variable. The continuity can again be guaranteed
by the Hermite interpolation theory. Using this approach, the degree of the freedom is
reduced to 18 from the original 21, cf. the right diagram in Fig. 9.15 for an illustration.
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9.7.4 Finite element spaces on rectangular meshes

While triangular meshes are intensively used, particularly for arbitrary domains, meshes
using rectangles are also popular for rectangular regions. Bilinear functions are often used
as basis functions. Let us first consider a bilinear function space in H1 ∩ C0. A bilinear
function space over a rectangle K in 2D, as illustrated Fig. 9.16, is defined as

Q1(K) =
{
v(x, y), v(x, y) = a00 + a10x+ a01y + a11xy

}
, (9.48)

where v(x, y) is linear in both x and y. The degree of the freedom of a bilinear function
in Q1(K) is four.

Theorem 9.18. A bilinear function v(x, y) ∈ Q1(K) is uniquely determined by its values

at four corners.

(0, 0) (x1, 0)

(x1, y1)(0, y1)

Figure 9.16. A standard rectangle on which four bilinear basis functions

can be defined.

Proof: without loss of the generality, assume that the rectangle is determined by
the four corners ai: (0, 0), (x1, 0), (x1, y1) and (0, y1). The coefficient matrix of the
linear system of algebraic equations that determines the coefficients aij , i, j = 0, 1 is

A =




1 0 0 0
1 x1 0 0
1 0 y1 0
1 x1 y1 x1y1


 ,

with determinant det(A) = x2
1y

2
1 6= 0 since x1y1 6= 0. Indeed, we have analytic expressions
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for the four nonzero basis functions over the rectangle, namely,

φ1(x, y) = 1 − x

x1
− y

y1
+

xy

x1y1
, (9.49)

φ2(x, y) =
x

x1
− xy

x1y1
, (9.50)

φ3(x, y) =
xy

x1y1
, (9.51)

φ4(x, y) =
y

y1
− xy

x1y1
. (9.52)

On each side of the rectangle, v(x, y) is a linear function of one variable (either x or y),
and uniquely determined by the values at the two corners. Thus any two basis functions
along one common side of two adjacent rectangles are identical if they have the save values
at the two corners, although it is hard to match the continuity condition if quadrilaterals
are used instead of rectangles or cubic boxes.

A bi-quadratic function space over a rectangle is defined by

Q2(K) =
{
v(x, y), v(x, y) = a00 + a10x+ a01y + a11xy

+ a20x
2 + a20y

2 + a21x
2y + a12xy

2 + a22x
2y2
}
.

(9.53)

The degree of the freedom is nine. To construct basis functions in H1 ∩ C0, as for the
quadratic functions over triangles we can add four auxiliary points at the mid-points of
the four sides plus a point, often the center of the in the rectangle.

In general, a bilinear function space of order k over a rectangle is defined by

Qk(K) =

{
v(x, y), v(x, y) =

∑

i,j=0,i≤k,j≤k

aijx
iyj

}
. (9.54)

In Fig. 9.17, we show two diagrams of finite element spaces defined on the rectangles
and their degree of freedom. The first one is the bi-quadratic Q2(K) finite element in
H1 ∩ C0 whose degree of the freedom is nine and can be determined by the values at
the marked points. The right diagram is the bi-cubic Q3(K) finite element in H2 ∩ C1

whose degree of the freedom is sixteen and can be determined by the values at the marked
points. The right diagram is the bi-cubic Q3(K) in H2 ∩C1 whose degree of the freedom
is 16. The bi-cubic polynomial is the lowest bi-polynomial in H2 ∩C1 space. The bi-cubic
function can be determined by its values, its partial derivatives ( ∂

∂x
, ∂

∂y
), and its the mixed

partial derivative ∂2

∂x∂y
at four vertices.

9.7.5 Some finite element spaces in 3D

In three dimensions, most commonly used meshes are tetrahedrons and cubics. In Fig. 9.18,
we show two diagrams of finite element spaces defined on the tetrahedrons and their degree
of freedom. The first one is the linear T1(K) finite element in H1 ∩ C0 whose degree of
the freedom is four and can be determined by the values at the four vertices. The right
diagram is the quadratic T2(K) finite element in H1 ∩ C0 whose degree of the freedom is



i i

i

i

i

i

9.7. Some FE spaces in H1(Ω) and H2(Ω) 255

Figure 9.17. Left diagram: Q2(K) (bi-quadratic) in H1 ∩C0 whose degree

of the freedom is 9 which can be uniquely determined by the values at the marked

points; Right diagram: Q3(K) (bi-cubic) in H2 ∩C1 whose degree of the freedom is

16, which can be determined by its values, first order partial derivatives marked as

/, and mixed derivative marked as ր, at the four corners.

ten and can be determined by the values at the four vertices and the mid points of the six
edges.

Figure 9.18. Finite element spaces in 3D. Left diagram: T1(K) (linear)

in H1 ∩ C0 whose degree of the freedom is 4; Right diagram: T2(K) (quadratic) in

H1 ∩ C0 whose degree of the freedom is 10.

9.7.6 *Non-conforming finite element spaces

For high order partial differential equations, such as biharmonic equations (∆2u = f ,
where ∆ is the Laplacian operator ∆ = ∂2

∂x2 + ∂2

∂y2 ), in two or three dimensions, or systems
of partial differential equations with certain constraints, such as divergence free condition,
it is difficult to construct and verify conforming finite element spaces. Even if it possible,
the degree of polynomial of the basis functions is relative high, for example, we need
fifth polynomials for biharmonic equations in two space dimensions, which may lead to
Gibb’s oscillations near the edges. Other type of applications include non-fitted meshes or
interface conditions for which it is difficult or impossible to construct finite elements that
meet the conforming constraints. To overcome these difficulties, various approaches have
been developed such as non-conforming finite element methods, discontinuous and weak
Galerkin finite element methods. Here we mentioned some non-conforming finite element
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spaces that are developed in the framework of Gelerkin finite element methods.

Figure 9.19. Diagram of non-conforming finite element spaces. Left:

Crouzeix-Raviart (C-R) linear nonconforming element that is determined by the

values at the middle points of the edges. Right: Morley quadratic nonconforming

element that is determined by the values at the vertices and the normal derivatives

at the middle points of the edges.

For triangle meshes, a non-conforming P1 finite element space called Cronzeix-
Raviart (C-R) finite element space is defined as a set of linear functions over all triangle
that is continuous at the mid-points of all the edges. The basis functions can be determined
by taking either unity at one middle point and zeros at other middle points of a triangle,
see Fig. 9.19 (a) for an illustration. The theoretical analysis can be found in [3, 30], for ex-
ample. A non-conforming Q1 finite element space on rectangles called the Wilson element
that is defined in a similar way but with the basis {1, x, y, xy} of degree four. A rotated
non-conforming Q1 is defined in the similar way but using

{
1, x, y, x2 − y2

}
as the basis.

Note that, for the conforming bi-quadratic finite element space, those basis are equivalent,
but it is not true for non-conforming finite element spaces anymore.

For bi-harmonic equations, a non-conforming finite element space defined on triangle
meshes called the Morley finite element [30] has been developed. A Morley finite element
on a triangle is defined as a quadratics functions that are determined by the values at
the three vertices, and the normal derivative at the middle points of the three edges, see
Fig. 9.19 (b) for an illustration. An alternative definition is to use the line integrals along
the edges instead of the values at the middle points.

9.7.7 * The immersed finite element method (IFEM) for

discontinuous coefficients

Following the idea of the immersed finite element method (IFEM) for one dimensional
problems, we explain the IFEM for two dimensional interface problems when the coefficient
p(x, y) has a discontinuity across a closed smooth interface Γ. The interface Γ can be
expressed as a parametric form (X(s), Y (s)) ∈ C2, where s is a parameter, say the arc-
length. The interface cuts through the domain Ω into two sub-domains Ω+ and Ω−, see
the diagram in Fig. 9.20 (a).
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(a)

−3 −2 −1 0 1 2 3
−3
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0
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2

3

Γ

β+

β−

Ω = Ω+ ∪ Ω−

Ω+

Ω−

(b)
A

B C

E

D

(h, 0)

(h− y2, y2)

(0, 0)

(0, y1)

(0, h)

β+

β−

T+

T−

M

Figure 9.20. Left figure: a configuration of a rectangular domain Ω =

Ω+ ∪ Ω− with an interface Γ from an IFEM test. The coefficient p(x) may have

a finite jump across the interface Γ. Right diagram: an interface triangle and the

geometry after transformed to the standard right triangle.

For simplicity, we assume that the coefficient p(x) is a piecewise constant

p(x, y) =

{
β+ if (x, y) ∈ Ω+,

β− if (x, y) ∈ Ω−.

Again, across the interface Γ where the discontinuity occurs, the natural jump conditions
hold

[u]Γ = 0,
[
β
∂u

∂n

]
Γ

= 0. (9.55)

where the jump at a point X = (X,Y ) ∈ Γ on the interface is defined as

[u]X = u

∣∣∣
+

X

− u

∣∣∣
−

X

= lim
x→X,x∈Ω+

u(x) − lim
x→X,x∈Ω−

u(x),

and so on, where x = (x, y) is an interior point in the domain. Due to the discontinuity
in the coefficient, the partial derivatives across the interface Γ are discontinuous although
the solution and the flux (the second jump condition), are continuous. Such a problem is
referred as a two-dimensional interface problem.

To solve such an interface problem using a finite element method, first a mesh needs
to be chosen. One way is to use a fitted mesh as illustrated in Fig. 9.21 (a). A fitted
mesh can be generated by many existing academic or commercial software packages, for
example, Matlab PDE Toolbox, Freefem, Comsol, PLTMG, Triangle, Gmesh, etc. Usually
there is no fixed pattern between the indexing of nodal points and elements, thus such
a mesh is called an unstructured mesh. For such a mesh, the finite element method and
most theoretical analysis are still valid for the interface problem.

However, it may be difficult and time consuming to generate a body fitted mesh.
Such difficulty may become even severer for moving interface problems because a new mesh
has to be generated at each time step, or every other time steps. A number of efficient
software packages and methods that are based Cartesian meshes such as the FFT, the
level set method, and others may not be applicable with a body fitted mesh.
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(a) (b)

Figure 9.21. (a). A diagram of a fitted mesh (unstructured). (b). A

unfitted Cartesian mesh (structured).

Another way to solve the interface problem is to use an unfitted mesh, for example, a
uniform Cartesian mesh as illustrated in Fig. 9.21 (b). There is rich literature on unfitted
meshes and related finite element methods. The non-conforming immersed finite element
method (IFEM) [20] is one of early work in this direction. The idea is to enforce the
natural jump conditions in triangles that the interface cuts through, which we call it an
interface triangle. Without loss of generality, we consider a reference interface element
T whose geometric configuration is given in Figure 9.20 (b) in which the curve between
points D and E is a part of the interface. We assume that the coordinates at A, B, C, D,
and E are

(0, h), (0, 0), (h, 0), (0, y1), (h− y2, y2), (9.56)

with the restriction

0 ≤ y1 < h, 0 ≤ y2 < h. (9.57)

Given the values at the three vertices we explain how to determine a piecewise linear
function in the triangle that satisfies the natural jump conditions. Assume that the values
at vertices A, B, and C of the element T are specified, we construct the following piecewise
linear function:

u(x) =

{
u+(x) = a0 + a1x+ a2(y − h), if x = (x, y) ∈ T+,

u−(x) = b0 + b1x+ b2y, if x = (x, y) ∈ T−,
(9.58a)

u+(D) = u−(D), u+(E) = u−(E), β+ ∂u

∂n

+

= β− ∂u

∂n

−

, (9.58b)

where n is the unit normal direction of the line segment DE. Intuitively, there are six
constraints and six parameters, so we can expect the solution exists and is unique as
confirmed in Theorem 8.4 in [21].

The dimension of the non-conforming IFE space is the number of interior points for
a homogeneous Dirichlet boundary condition (u|∂Ω = 0) as if there was no interface. The
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basis function centered at a node is defined as:

φi(xj) =

{
1 if i = j

0 otherwise,
[φi ]Γ̄ = 0,

[
β
∂φi

∂n

]
Γ̄

= 0, φi|∂Ω = 0. (9.59)

A basis function φi(x) is continuous in each element T except along some edges if xi is a
vertex of one or several interface triangles, see Figure 9.22. We use Γ̄ to denote the union
of the line segment that is used to approximate the interface.

(a)

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15
−0.5

−0.45
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−0.35
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−0.2

−0.15

(b)
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−0.3

−0.25

−0.2

−0.15

−0.5

0

0.5

1

Figure 9.22. (a). A standard domain of six triangles with an interface

cutting through. (b). A global basis function on its support of the non-conforming

immersed finite element space. The basis function has small jump across some

edges.

The basis functions in an interface triangle are continuous piecewise linear. However,
it is likely discontinuous across the edges of neighboring interface triangles. Thus it is a non-
conforming finite element space. Nevertheless, the corresponding non-conforming finite
element method performs much better than the standard finite element method without
any changes. Theoretical, an second order approximation property has been proved for
the interpolation function in the L∞ norm; and first order approximation for the partial
derivatives except for the small mismatched region depicted as bounded by the points D,
E, and M . It has been shown that the non-conforming IFEM is second order accurate in
the L2 norm. But its convergence order in the L∞ norm is not so clear. Various variations,
improvements, extensions, and applications can be found in the literature, particularly the
symmetric and consistent IFEM that takes mismatched edge contributions into account
in the variational form[15], and various penalty methods. Note that, a conforming IFEM
can also be found in [23] although its implementation is not so straightforward.

9.8 The FE method for parabolic problems

We can apply the finite element method to solve time dependent problems using two
different approaches. One approach is to discretize the space variables using the finite
element method while discretizing the time variable using a finite difference method. This
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is possible if the PDE is separable. Another way is to discretize both the space and time
variables using the finite element method. In this section, we briefly explain the first
approach, since it is simple and easy to implement.

Let us consider the following parabolic problem in 2D,

∂u

∂t
= ∇ · (p∇u) + qu+ f(x, y, t) , (x, y) ∈ Ω, 0 < t ≤ T , (9.60)

u(x, y, 0) = 0 , (x, y) ∈ Ω , the initial condition, (9.61)

u(x, y, t)
∣∣∣
∂Ω

= g(x, y, t) , the boundary condition, (9.62)

where p, q, f and g are given functions with usual regularity assumptions. Multiplying
the PDE by a test function v(x, y) ∈ H1(Ω) on both sides, and then integrating over the
domain, once again we obtain the weak form below,

∫∫

Ω

utv dxdy =

∫∫

Ω

(qv − p∇u · ∇v) dxdy +

∫∫

Ω

fv dxdy , (9.63)

where ut = ∂u/∂t. The weak form above can be simplified as

(ut, v) = −a(u, v) + (f, v) ∀v ∈ H1(Ω) , (9.64)

where a(u, v) =
∫∫

Ω
(p∇u · ∇v − qv) dxdy.

Given a triangulation Th and finite element space Vh ∈ H1(Ω)∩C0(Ω), with φi(x, y),
i = 1, 2, · · · ,M denoting a set of basis functions for Vh, we seek the finite element solution
of form

uh(x, y, t) =
M∑

j=1

αj(t)φj(x, y) . (9.65)

Substituting this expression into (9.64), we obtain
(

M∑

j=1

α′
i(t)φi(x, y) , vh

)
= −a

(
M∑

j=1

αi(t)φi(x, y), vh

)
+ (f, vh), (9.66)

and then take vh(x, y) = φi(x, y) for i = 1, 2, · · · ,M to get the linear system of ordinary
differential equations in the αj(t):




(φ1, φ1) (φ1, φ2) · · · (φ1, φM )

(φ2, φ1) (φ2, φ2) · · · (φ2, φM )

...
...

...
...

(φM , φ1) (φM , φ2) · · · (φM , φM )







α′
1(t)

α′
2(t)

...

α′
M (t)




=




(f, φ1)

(f, φ2)

...

(f, φM )




−




a(φ1, φ1) a(φ1, φ2) · · · a(φ1, φM )

a(φ2, φ1) a(φ2, φ2) · · · a(φ2, φM )

...
...

...
...

a(φM , φ1) a(φM , φ2) · · · a(φM , φM )







α1(t)

α2(t)

...

αM (t)



.
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The corresponding problem can therefore be expressed as

B
d~α

dt
+ A~α = F, αi(0) = u(Ni, 0), i = 1, 2, · · · ,M. (9.67)

There are many methods to solve the above problem involving the system of first
order ODEs. We can use the ODE Suite in Matlab, but note that the ODE system is
known to be very stiff. We can also use finite difference methods that march in time, since
we know the initial condition on ~α(0). Thus with the solution ~αk at time tk, we compute
the solution ~αk+1 at the time tk+1 = tk + ∆t for k = 0, 1, 2, · · · .

Explicit Euler method

If the forward finite difference approximation is invoked, we have

B
~αk+1 − ~αk

∆t
+ A~αk = F k, (9.68)

or ~αk+1 = ~αk + ∆tB−1
(
F k −A~αk

)
. (9.69)

Since B is a non-singular tridiagonal matrix, its inverse and hence B−1
(
F k − A~αk

)
can

be computed. However, the CFL (Courant-Friedrichs-Lewy) condition

∆t ≤ Ch2 , (9.70)

must be satisfied to ensure the numerical stability. Thus we need to use a rather small
time step.

Implicit Euler method

If we invoke the backward finite difference approximation, we get

B
~αk+1 − ~αk

∆t
+ A~αk+1 = F k+1, (9.71)

or (B + ∆tA) ~αk+1 = B~αk + ∆tF k+1 (9.72)

then there is no constraint on the time step and thus the method is called unconditionally
stable. However, we need to solve a linear system of equations similar to that for an elliptic
PDE at each time step.

The Crank-Nicolson method

Both of the above Euler methods are first order accurate in time and second order in space,
i.e., the error in computing ~α is O(∆t+ h2). We obtain a second order scheme in time as
well in space if we use the central finite difference approximation at tk+ 1

2 :

B
~αk+1 − ~αk

∆t
+

1
2
A
(
~αk+1 + ~αk

)
=

1
2

(
F k+1 + F k

)
, (9.73)

or
(
B +

1
2

∆tA
)
~αk+1 =

(
B − 1

2
∆tA

)
~αk +

1
2

∆t
(
F k+1 + F k

)
. (9.74)

This Crank-Nicolson method is second order accurate in both time and space, and it is
unconditionally stable for linear parabolic PDEs. The challenge is to solve the resulting
linear system of equations efficiently.
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9.9 Exercises

1. Derive the weak form for the following problem:

−∇ · (p(x, y)∇u(x, y)) + q(x, y)u(x, y) = f(x, y) , (x, y) ∈ Ω ,

u(x, y) = 0 , (x, y) ∈ ∂Ω1 ,
∂u

∂n
= g(x, y), (x, y) ∈ ∂Ω2 ,

a(x, y)u(x, y) +
∂u

∂n
= c(x, y) , (x, y) ∈ ∂Ω3 ,

where q(x, y) ≥ qmin > 0, ∂Ω1 ∪ ∂Ω1 ∪ ∂Ω3 = ∂Ω and ∂Ωi ∩ ∂Ωj = φ. Provide
necessary conditions so that the weak form has a unique solution. Show your proof
using the Lax-Milgram Lemma but without using the Poincaré inequality.

2. Derive the weak form and appropriate space for the following problem involving the
bi-harmonic equation:

∆∆u(x, y) = f(x, y) , (x, y) ∈ Ω ,

u(x, y)|∂Ω = 0 , un(x, y)|∂Ω = 0 .

What kind of basis function do you suggest, to solve this problem numerically?

Hint: Use Green’s theorem twice.

3. Consider the problem involving the Poisson equation:

−∆u(x, y) = 1 , (x, y) ∈ Ω ,

u(x, y)|∂Ω = 0 ,

where Ω is the unit square. Using a uniform triangulation, derive the stiffness matrix
and the load vector for N = 2; in particular, take h = 1/3 and consider

(a) the nodal points ordered as (1/3, 1/3), (2/3, 1/3); (1/3, 2/3), and (2/3, 2/3);
and

(b) the nodal points ordered as ((1/3, 2/3), (2/3, 1/3); (1/3, 1/3), and (2/3, 2/3).

Write down each basis function explicitly.

4. Use the Matlab PDE toolbox to solve the following problem involving a parabolic
equation for u(x, y, t), and make relevant plots:

ut = uxx + uyy, (x, y) ∈ (−1 1) × (−1 1) ,

u(x, y, 0) = 0 .

The geometry and the BC are defined in Fig. 9.23. Show some plots of the solution
(mesh, contour, etc.).

5. Download the Matlab source code f.m, my_assemb.m, uexact.m from

http://www4.ncsu.edu/~zhilin/FD\_FEM\_Book.
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u = 0

u = 0

u_n = - 1

u _n = 0

(0,0)

r = 0.5
u_n = 1

Figure 9.23. Diagram for Exercise 2.

Use the exported mesh of the geometry generated from Matlab, see Fig. 9.23 to
solve the Poisson equation

−(uxx + uyy) = f(x, y) ,

subject to the Dirichlet BC corresponding to the exact solution

u(x, y) =
1
4

(
x2 + y4

)
sin πx cos 4πy .

Plot the solution and the error.

6. Modify the Matlab code to consider the generalized Helmholtz equation

−(uxx + uyy) + λu = f(x, y) .

Test your code with λ = 1, with reference to the same solution, geometry and BC
as in Problem 5. Adjust f(x, y) to check the errors.

7. Modify the Matlab code to consider the Poisson equation

−∇ (p(x, y) · ∇u(x, y)) = f(x, y) , (9.75)

using a third order quadrature formula. Choose two examples with nonlinear p(x, y)
and u(x, y) to show that your code is bug-free. Plot the solutions and the errors.

9.9.1 Matlab PDE-Toolbox lab exercises

Purpose: to learn the Matlab Partial Differential Equation toolbox.
Use the Matlab PDE toolbox to solve some typical second order PDE on some
regions with various BC. Visualize the mesh triangulation and the solutions, and
export the triangulation.

Reference: Partial Differential Equation Toolbox, MathWorks.
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Test Problems

1. Poisson equation on a unit circle:

−∆u = 1 , x2 + y2 < 1 ,

u|∂Ω = 0 , x ≤ 0 ,

un|∂Ω = 1 , x > 0 .

2. Wave equation on a unit square x ∈ [−1, 1] × y ∈ [−1, 1]:

∂2u

∂t2
= ∆u ,

u(x, y, 0) = arctan
(

cos
πx

2

)
,

ut(x, y, 0) = 3 sin(πx)esin (πy/2) ,

u = 0 at x = −1 and x = 1 , un = 0 at y = −1 and y = 1 .

3. Eigenvalue problem on an L-shape:

−∆u = λu, u = 0 on ∂Ω.

The domain is the L-shape with corners (0,0) , (−1, 0) , (−1,−1) , (1,−1) , (1,1) ,
and (0,1).

4. The heat equation:

∂u

∂t
= ∆u .

The domain is the rectangle [−0.5 0.5] × [−0.8 0.8], with a rectangular cavity
[−0.05 0.05] × [−0.4 0.4]; and the BC are:

• u = 100 on the left-hand side;

• u = −10 on the right-hand side; and

• un = 0 on all other boundaries.

5. Download the Matlab source code 2D.rar from

http://www4.ncsu.edu/~zhilin/FD\_FEM\_Book

Export the mesh of the last test problem from Matlab and run assemb.m to solve
the example.

General Procedure

• Draw the geometry;
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• define the BC;

• define the PDE;

• define the initial conditions if necessary;

• solve the PDE;

• plot the solution;

• refine the mesh if necessary; and

• save and quit.
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Index

L2(Ω) space, 157
p-th order accurate, 17
1D IFEM, 211
1D IIM, 40
1D Sturm-Liouville problem, 28, 165
1D interface problem, 40
1D interpolation function, 170
2D IFEM, 256
2D interface problem, 257
2D second order self-adjoint elliptic PDE,

221

mixed (Robin) boundary condition, 35

abstract FE method, 210
ADI method, 99

consistency, 102
stability, 102

algebraic precision of Gaussian quadra-
ture, 188

assembling element by element, 195

backward Euler method
1D parabolic, 84
2D parabolic, 98
stability, 96

Beam-Warming method, 116
biharmonic equation, 250
bilinear basis on a rectangle, 252
bilinear form, 135

1D elliptic, 165
2D elliptic PDE, 222

Boundary value problem (BVP), 5

Cauchy-Schwartz inequality, 159
CFL condition, 83, 110
characteristics, 108

compatibility condition, 52, 221
conforming FE methods, 164
conforming FEM, 141
Courant-Friedrichs-Lewy, 83
Crank-Nicolson scheme

1D parabolic equation, 87
2D, 98
for 1D advection equation, 117
in FEM for 2D parabolic, 261

cubic basis function
in 1D H1, 186
in 1D H2, 202
in 2D H1 ∩ C0, 249
in 2D H2 ∩ C1, 250

D’Alembert’s formula, 119
degree of freedom, 182, 202
discrete Fourier transform, 92
discrete inverse Fourier transform, 92
discrete maximum principle in 2D, 58
distance in a space, 156
domain of dependence, 119
domain of influence, 119
double node, 204
dynamical stability, 267

eigenvalue problem, 5, 27, 216
energy norm, 165, 206
essential BC, 201
essential boundary condition, 175, 201
explicit method, 82

fast Fourier transform (FFT), 72
FD approximation for u′(x), 16

backward finite difference, 16
central finite difference, 16
forward finite difference, 16

279



i i

i

i

i

i

280 Index

FD in polar coordinates, 70
FE method for parabolic problems, 258
FE space in 1D, 141
finite difference grid, 11
Finite difference method

1D grid points, 11
1D uniform Cartesian grid, 11
consistency, 25
convergence, 25
discretization, 25
finite difference stencil, 12
five-point stencil in 2D, 53
ghost point method in 2D, 61
local truncation error, 12, 24
master grid point, 25, 53
stability, 25, 26
step size, 17

Finite difference method (FD), 6, 11
Finite element method, 133

a 1D element, 141
a 1D node, 141
assembling element by element, 145
hat functions, 134
piecewise linear function, 134
weak form in 1D, 134

Finite element method (FEM), 7
Finite element solution, 134
first order accurate, 17
FM spaces on rectangles, 252
forward Euler method

1D parabolic, 82
2D heat equation, 97
in FEM for 2D parabolic PDE, 260
stability, 94

Fourier transform (FT), 89
fourth order BVP in 1D, 201
fourth-order compact scheme in 2D, 67
functional spaces, 155

Galerkin method, 140
Gauss-Seidel iterative method, 64
Gaussian points and weights, 188
Gaussian quadrature formulas, 187
global basis functions, 227
grid refinement analysis, 18

growth factor, 95

hat functions, 142

immersed finite element method (IFEM),
256

implicit Euler method, 261
Initial value problem (IVP), 4
initial value problem (IVP), 265
inner product in Hm, 162
inner product in L2, 158
interpolation function in 2D, 230
inverse Fourier transform, 72, 89

Jacobi iterative method, 63

Lax-Friedrichs method, 109
Lax-Milgram Lemma, 204, 206, 222
Lax-Wendroff scheme, 115
Leap-Frog scheme, 112
leapfrog scheme

for heat equation, 96
linear form, 135
linear transform in 2D, 234
local load vector, 147
local stiffness matrix, 147
local stiffness matrix and load vector, 196
local truncation error

1D parabolic, 82

maximum principle in 2D elliptic PDE,
57

mesh parameters, 223
mesh size in 1D, 141
method of line (MOL), 85
method of undetermined coefficients, 20
minimization form, 210
modified PDE, 113

Lax-Wendroff method, 116
multi-index notation, 156

natural boundary condition, 176, 202
natural jump conditions

in 1D, 41, 212
in 2D, 256

natural ordering, 54
neutral stability, 113
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nine-point discrete Laplacian, 69
non-conforming IFE space, 258
numerical boundary condition, 117
numerical dissipation, 114
numerical solutions, 3

one-sided finite difference, 21
one-way wave equations, 107
ordinary differential equation (ODE), 3

partial differential equation (PDE), 3
piecewise linear basis function

in 2D H1, 224
piecewise quadratic function in 2D H1,

246
Poincaré inequality, 207, 222
pole singularity, 70

quadratic basis function in 1D H1, 182
quadrature formula in 2D, 235
quintic function, 251

red-black ordering, 54
Ritz method, 140, 144
round-off errors, 27, 56
Runge-Kutta methods RK(k), 268

second Green’s theorem, 219
shape function, 191, 203
simplified FE algorithm in 2D, 240
Sobolev embedding theorem, 163
Sobolev space, 160
SOR(ω) method, 65
stability

Lax-Wendroff scheme, 115
staggered grid in polar coordinates, 71
steady state solution, 80, 103
Sturm-Liouville problem in 1D, 176
symmetric positive definite (SPD), 56

Taylor expansion, 16
time marching method, 82, 267
truncated Fourier series, 72

unconditionally stability, 96
upwind scheme for 1D advection equa-

tion, 110

upwinding discretization, 31

von Neumann stability analysis, 89, 94

wave equation, 107
weak derivative, 161
weak form

1D Sturm-Liouville BVP, 176
2D elliptic PDE, 221




