

Catabolism: Energy Release and Conservation

11.1 Metabolic diversity and nutritional types

- 1. Use the terms that describe a microbe's carbon source, energy source, and electron source
- 2. State the carbon, energy, and electron sources of photolithoautotrophs, photoorganoheterotrophs, chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs
- 3. Describe the products of the fueling reactions
- 4. Discuss the metabolic flexibility of microorganisms

Requirements for Carbon, Hydrogen, and Oxygen

- Often satisfied together
 - carbon source often provides H, O, and electrons
- Heterotrophs
 - use organic molecules as carbon sources which often also serve as energy source
 - can use a variety of carbon sources
- Autotrophs
 - use carbon dioxide as their sole or principal carbon source
 - must obtain energy from other sources

Nutritional Types of Organisms

- Based on energy source
 - phototrophs use light
 - chemotrophs obtain
 energy from oxidation
 of chemical compounds
- Based on electron source
 - lithotrophs use reduced inorganic substances
 - organotrophs obtain electrons from organic compounds

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

	Table 11.1	So	urces of Carbon, Energy, and Electrons		
	Carbon Sources				
	Autotrophs		CO ₂ sole or principal biosynthetic carbon source		
5	Heterotrophs		Reduced, preformed, organic molecules from other organisms		
	Energy Sources				
Ł	Phototrophs		Light		
	Chemotrophs		Oxidation of organic or inorganic compounds		
	Electron Sources				
	Lithotrophs		Reduced inorganic molecules		
	Organotrophs		Organic molecules		

Classes of Major Nutritional Types

- Majority of microorganisms known
 - photolithoautotrophs (photoautotrophs)
 - chemoorganoheterotrophs (chemoheterotrophs)
 - majority of pathogens
- Ecological importance
 - photoorganoheterotrophs
 - chemolithoautotrophs
 - chemolithotrophs

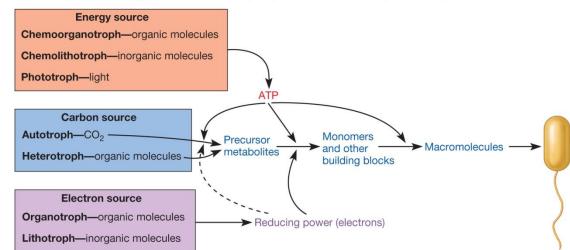
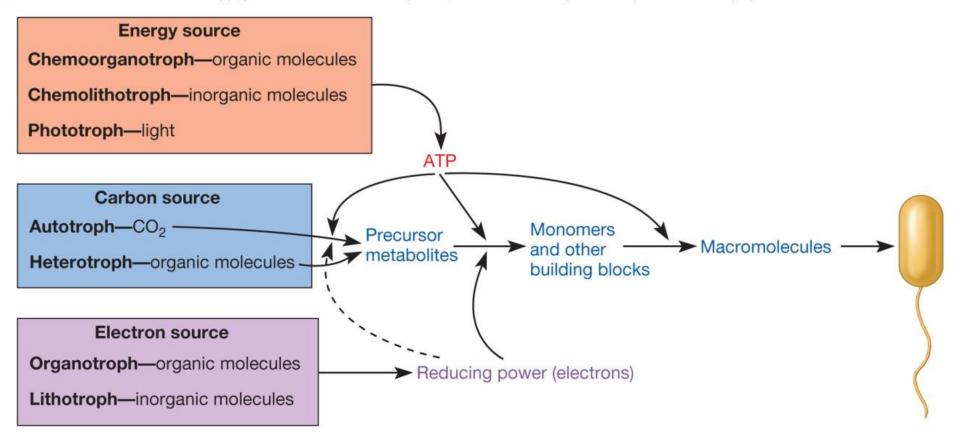

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 11.2Major Nutritional Types of Microorganisms

Nutritional Type	Carbon Source	Energy Source	Electron Source	Representative Microorganisms
Photolithoautotroph	CO ₂	Light	Inorganic e ⁻ donor	Purple and green sulfur bacteria, cyanobacteria, diatoms
Photoorganoheterotroph	Organic carbon	Light	Organic e [−] donor	Purple nonsulfur bacteria, green nonsulfur bacteria
Chemolithoautotroph	CO ₂	Inorganic chemicals	Inorganic e [−] donor	Sulfur-oxidizing bacteria, hydrogen- oxidizing bacteria, methanogens, nitrifying bacteria, iron-oxidizing bacteria
Chemolithoheterotroph	Organic carbon	Inorganic chemicals	Inorganic e ⁻ donor	Some sulfur-oxidizing bacteria (e.g., <i>Beggiatoa</i>)
Chemoorganoheterotroph	Organic carbon	Organic chemicals, often same as C source	Organic e ⁻ donor, often same as C source	Most nonphotosynthetic microbes, including most pathogens, fungi, and many protists and archaea


Fueling Reactions

- Despite diversity of energy, electron, and carbon sources used by organisms, they all have the same basic needs
 - ATP as an energy currency
 - Reducing power to supply electrons for chemical reactions
 - Precursor metabolites for biosynthesis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Microorganisms May Change Nutritional Type

- Some have great metabolic flexibility based on environmental requirements
- Provides distinct advantage if environmental conditions change frequently

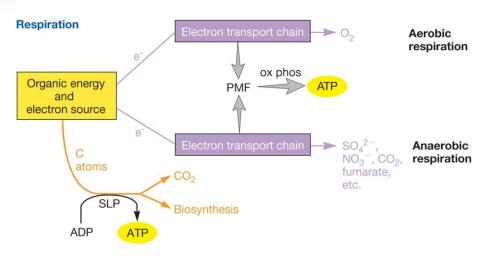
11.2 Chemoorganotrophic fueling processes

- 1. List the three types of chemoorganotrophic metabolisms
- 2. List the pathways of major importance to chemoorganotrophs and explain their importance
- 3. Propose an explanation that accounts for the existence of amphibolic pathways

Chemoorganotrophic Fueling Processes

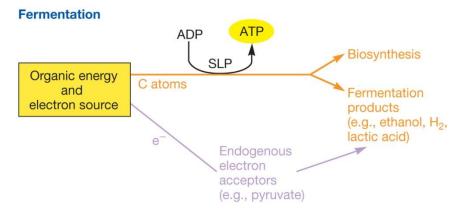
- Also called chemoheterotrophs
- Processes
 - aerobic respiration
 - anaerobic respiration
 - fermentation

Chemoorganic Fueling Processes - Respiration - 1


- Most respiration involves use of an electron transport chain
- As electrons pass through the electron transport chain to the final electron acceptor, a proton motive force (PMF) is generated and used to synthesize ATP

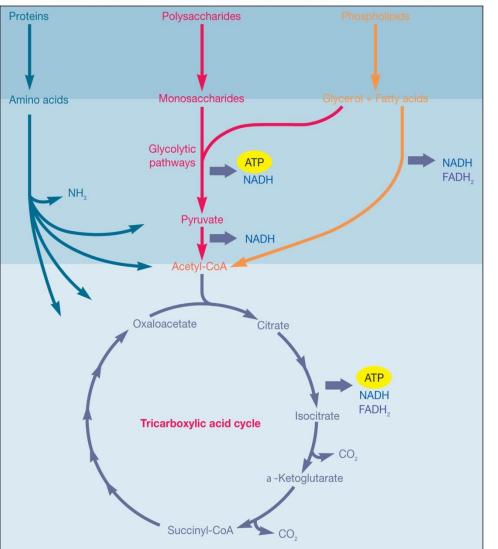
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemoorganotrophic Fueling Processes


Chemoorganic Fueling Processes -Respiration - 2

- aerobic respiration
 - final electron acceptor is oxygen
- anaerobic respiration
 - final electron acceptor is different exogenous acceptor such as
 - NO_3^{-} , SO_4^{2-} , CO_2 , Fe^{3+} , or SeO_4^{2-}
 - organic acceptors may also be used
- ATP made primarily by oxidative phosphorylation

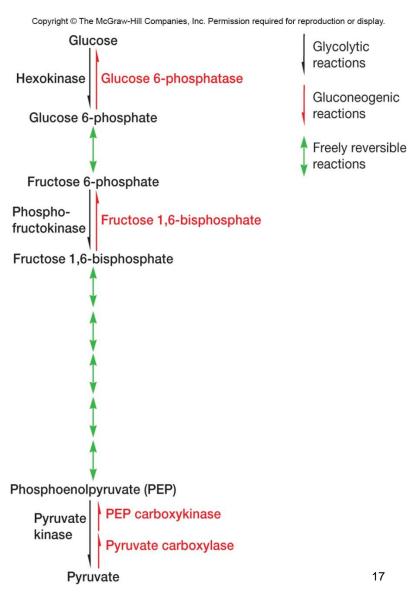
Chemoorganic Fueling Processes - Fermentation


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Uses an endogenous electron acceptor
 - usually an intermediate of the pathway used to oxidize the organic energy source e.g., pyruvate
- Does not involve the use of an electron transport chain nor the generation of a proton motive force
- ATP synthesized only by substrate-level phosphorylation

Energy Sources

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


- Many different energy sources are funneled into common degradative pathways
- Most pathways generate glucose or intermediates of the pathways used in glucose metabolism
- Few pathways greatly increase metabolic efficiency

Catabolic Pathways

- Enzyme catalyzed reactions whereby the product of one reaction serves as the substrate for the next
- Pathways also provide materials for biosynthesis
- Amphibolic pathways

Amphibolic Pathways

- Function both as catabolic and anabolic pathways
- Important ones
 - Embden-Meyerhof pathway
 - pentose phosphate pathway
 - tricarboxylic acid (TCA) cycle

11.3 Aerobic respiration

- 1. Describe in general terms what happens to a molecule of glucose during aerobic respiration
- 2. List the end products made during aerobic respiration
- 3. Identify the process that generates the most ATP during aerobic respiration

Aerobic Respiration

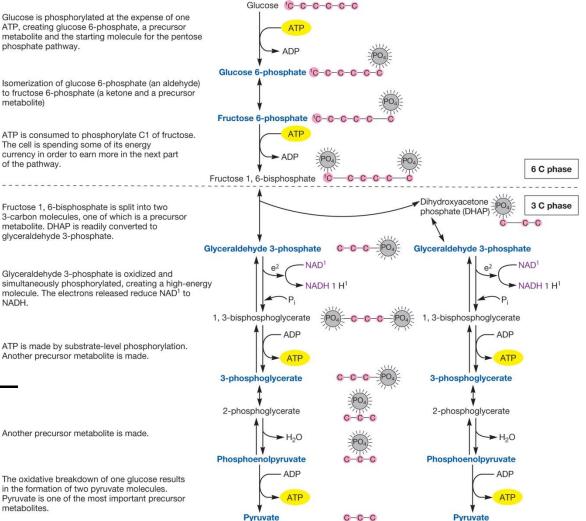
- Process that can completely catabolize an organic energy source to CO₂ using
 - glycolytic pathways (glycolysis)
 - TCA cycle
 - electron transport chain with oxygen as the final electron acceptor
- Produces ATP (most of it indirectly via the activity of the electron transport chain), and high energy electron carriers

11.4 From glucose to pyruvate - 1

- 1. List the three major pathways that catabolize glucose to pyruvate
- 2. Describe substrate-level phosphorylation
- Diagram the major changes made to glucose as it is catabolized by the Embden-Meyerhof, Entner-Duodoroff, and pentose phosphate pathways
- Identify those reactions of the Embden-Meyerhof, Entner-Duodoroff, and pentose phosphate pathways that consume ATP, produce ATP and NAD(P)H, generate precursor metabolites, or are redox reactions

11.4 From glucose to pyruvate - 2

- 5. Calculate the yields of ATP and NAD(P)H by the Embden-Meyerhof, Entner-Duodoroff, and pentose phosphate pathways
- 6. Summarize the function of the Embden-Meyerhof, Entner-Duodoroff, and pentose phosphate pathways
- 7. Draw a simple diagram that shows the connection between, the Entner-Duodoroff pathway and the Embden-Meyerhof pathway and the connection between the pentose phosphate pathway and the Embden-Meyerhof pathway
- 8. Create a table that shows which types of organisms use each of the glycolytic pathways


The Breakdown of Glucose to Pyruvate

- Three common routes
 - Embden-Meyerhof pathway
 - pentose phosphate pathway
 - Entner-Duodoroff pathway

The Embden-Meyerhof Pathway

- Occurs in cytoplasmic matrix of most microorganisms, plants, and animals
- The most common pathway for glucose degradation to pyruvate in stage two of aerobic respiration
- Function in presence or absence of O₂
- Two phases
 - Six carbon phase
 - Three carbon phase

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Addition of phosphates "primes the pump"

Oxidation step – generates NADH

High-energy molecules – used to synthesize ATP and by substrate-level phosphorylation

Summary of Glycolysis

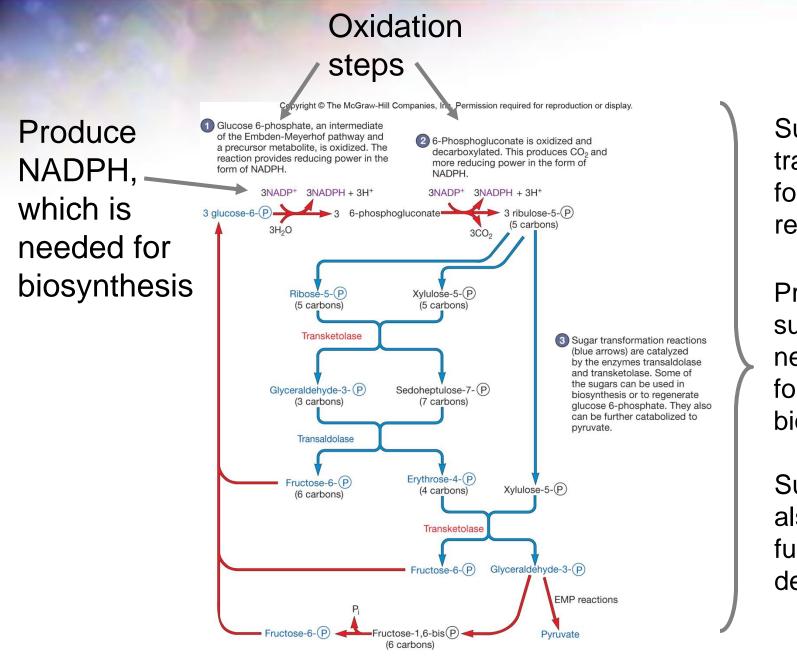
glucose + 2ADP + $2P_i$ + 2NAD+

2 pyruvate + $2ATP + 2NADH + 2H^+$

The Entner-Duodoroff Pathway

- Used by soil bacteria and a few gramnegative bacteria
- Replaces the first phase of the Embden-Meyerhof pathway
 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Glucose
- Yield per glucose molecule: 2-keto
 1 ATP

 1 NADPH Reactions of glycolytic
 1 NADH


Glucose 6-phosphate NADP NADPH + H^+ Entner-Doudoroff 6-phosphogluconate pathway -H₂O 2-keto-3-deoxy-6-phosphogluconate (KDPG) Glyceraldehyde 3-phosphate Pyruvate NAD⁺ NADH + H^+ Further catabolism of glyceraldehyde 3-phosphate by enzymes of the Embden-Meyerhof pathway. pathway ADP

Pyruvate

26

The Pentose Phosphate Pathway

- Also called hexose monophosphate pathway
- Can operate at same time as glycolytic pathway or Entner-Duodoroff pathway
- Can operate aerobically or anaerobically
- An amphibolic pathway

Sugar transformation reactions Produce sugars needed for biosynthesis Sugars can also be further degraded

Summary of Pentose Phosphate Pathway

$glucose-6-P + 12NADP^+ + 7H_2O$

6CO₂ + 12NADPH + 12H⁺ P_i

11.5 Tricarboxylic acid cycle - 1

- State the alternate names for the tricarboxylic acid (TCA) cycle
- 2. Diagram the major changes made to pyruvate as it is catabolized by the TCA cycle
- Identify those reactions of the TCA cycle that produce ATP (or GTP) and NAD(P)H, generate precursor metabolites, or are redox reactions
- 4. Calculate the yields of ATP (or GTP), NAD(P)H, and FADH₂ by the TCA cycle

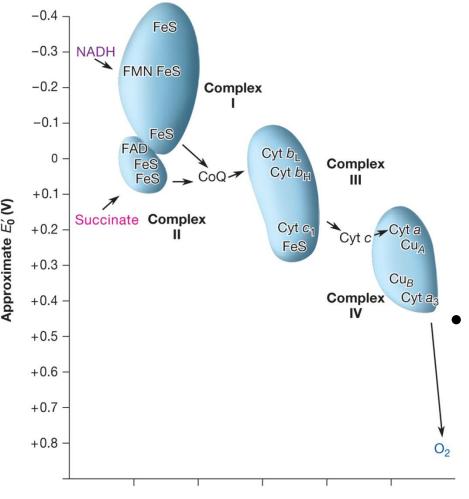
11.5 Tricarboxylic acid cycle - 2

- 5. Summarize the function of the TCA cycle
- 6. Diagram the connections between the various glycolytic pathways and the TCA cycle
- 7. Locate the TCA cycle enzymes in bacterial, archaeal, and eukaryotic cells

11.6 Electron transport and oxidative phosphorylation - 1

- 1. Compare and contrast the mitochondrial electron transport chain (ETC) and bacterial ETCs
- 2. Describe the chemiosmotic hypothesis
- 3. Correlate length of an ETC and the carriers in it with the strength of the proton motive force (PMF) it generates
- 4. Explain how ATP synthase uses PMF to generate ATP

11.6 Electron transport and oxidative phosphorylation - 2

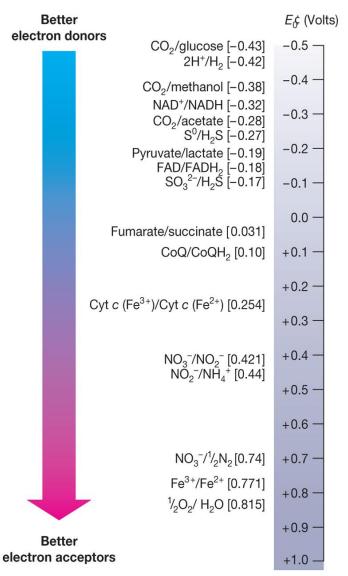

- 5. Draw a simple diagram that shows the connections between the glycolytic pathways, TCA cycle, ETC, and ATP synthesis
- 6. List uses for the PMF generated by bacterial cells in addition to ATP synthesis
- Calculate the maximum possible ATP yields when glucose is completely catabolized to six molecules of CO₂ during aerobic respiration

Electron Transport and Oxidative Phosphorylation

- Only 4 ATP molecules synthesized directly from oxidation of glucose to CO₂
- Most ATP made when NADH and FADH₂ (formed as glucose degraded) are oxidized in electron transport chain (ETC)

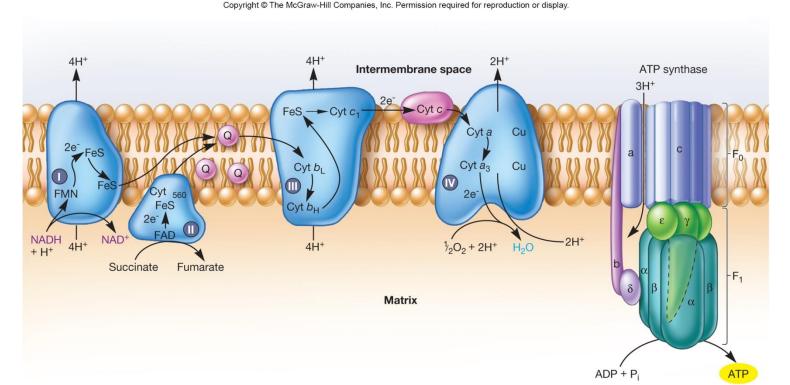
Electron Transport Chains

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


The mitochondrial electron transport chain (ETC) = a series of e⁻ carriers, operating together to transfer e⁻ from NADH and FADH₂ to a terminal e⁻ acceptor, O₂

 E^{-} flow from carriers with more negative reduction potentials (E_{0}) to carriers with more positive E_{0}

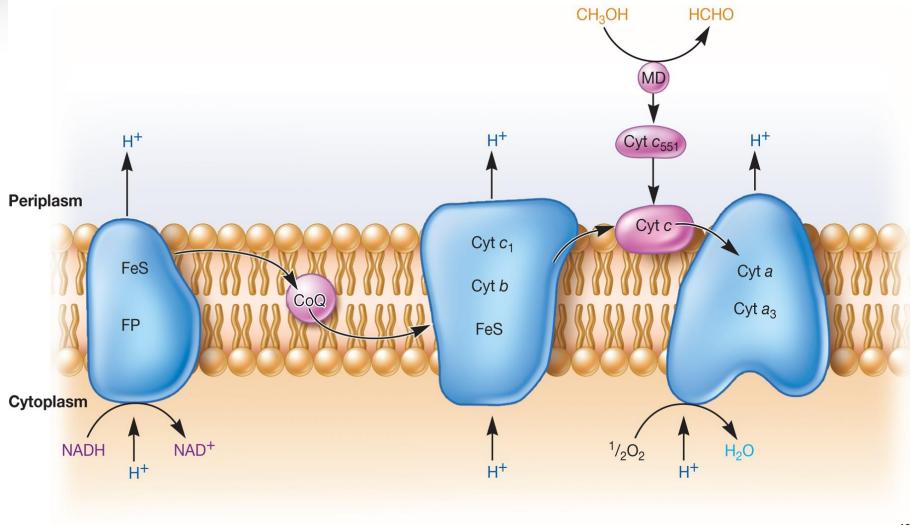
Electron Transport Chain


- Each carrier is reduced and then reoxidized
- Carriers are constantly recycled
- The difference in reduction potentials electron carriers, NADH and O₂ is large, resulting in release of great deal of energy

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electron Transport Chain...

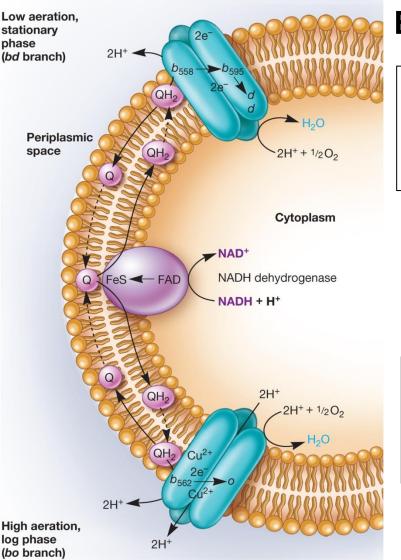
- In eukaryotes the e⁻ transport chain carriers are in the inner mitochondrial membrane, connected by coenzyme Q and cytochrome c
- E⁻ transfer accompanied by proton movement across inner mitochondrial membrane



Bacterial and Archaeal ETCs

- Located in plasma membrane
- Some resemble mitochondrial ETC, but many are different
 - different electron carriers
 - may be branched
 - may be shorter
 - may have lower P/O ratio

Paracoccus denitrificans


- Facultative, soil bacterium
- Extremely versatile metabolically
- Under oxic conditions, uses aerobic respiration
 - similar electron carriers and transport mechanism as mitochondria
 - protons transported to periplasmic space rather than inner mitochondrial membrane
 - can use one carbon molecules instead of glucose

Electron Transport Chain of E. coli

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Different array of cytochromes used than in mitochondrial

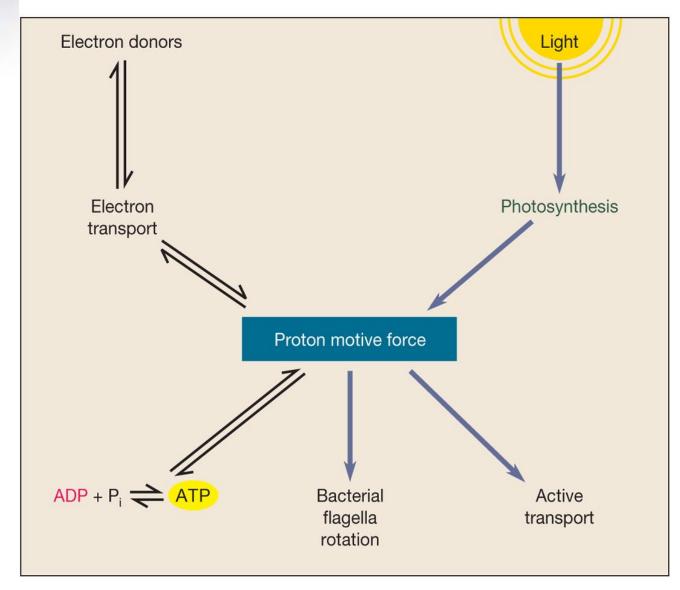
Branched pathway

Upper branch – stationary phase and low aeration

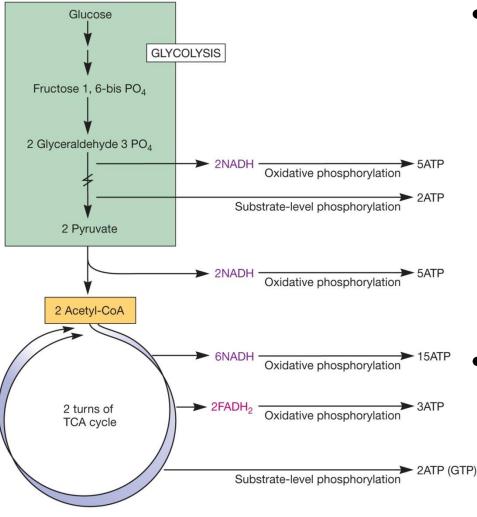
Lower branch – log phase and high aeration

Oxidative Phosphorylation

 Process by which ATP is synthesized as the result of electron transport driven by the oxidation of a chemical energy source


Chemiosmotic Hypothesis

- The most widely accepted hypothesis to explain oxidative phosphorylation
 - protons move outward from the mitochondrial matrix as e⁻ are transported down the chain
 - proton expulsion during etransport results in the formation of a concentration gradient of protons and a charge gradient
 - the combined chemical and electrical potential difference make up the proton motive force (PMF)


Intermembrane space (periplasm) 2H Cvt c Mitochondrial matrix (cytoplasm) Oxidation of second QH₂ Intermembrane space (periplasm) $2H^{+}$ Cvt c Mitochondrial matrix (cytoplasm) Net reaction: $QH_2 + 2Cyt c$ (oxidized) + $2H^+$ (matrix side) Q + 2Cyt c (reduced) + $4H^+$ (intermembrane space side)

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Oxidation of first QH₂

ATP Yield During Aerobic Respiration

Total aerobic yield 32ATP

- Maximum ATP yield can be calculated
 - includes P/O ratios of NADH and FADH₂
 - ATP produced by substrate level phosphorylation
- The theoretical maximum total yield of ATP during aerobic respiration is 38
 - the actual number closer
 to 30 than 38

Theoretical vs. Actual Yield of ATP

- Amount of ATP produced during aerobic respiration varies depending on growth conditions and nature of ETC
- Under anaerobic conditions, glycolysis only yields 2 ATP molecules

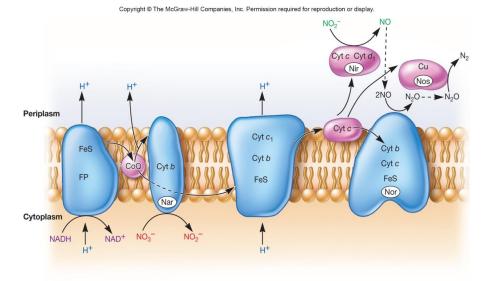
Factors Affecting ATP Yield

- Bacterial ETCs are shorter and have lower P/O ratios
- ATP production may vary with environmental conditions
- PMF in bacteria and archaea is used for other purposes than ATP production (flagella rotation)
- Precursor metabolite may be used for biosynthesis

11.7 Anaerobic respiration

- 1. Compare and contrast aerobic respiration and anaerobic respiration using glucose as carbon source
- 2. List examples of terminal electron acceptors used during anaerobic respiration
- 3. Defend this statement: "The use of nitrate (NO3-) as a terminal electron acceptor is dissimilatory nitrate reduction."
- 4. Predict the relative amount of energy released for each of the common terminal electron acceptors used during anaerobic respiration, as compared to energy released during aerobic respiration
- 5. List three examples of the importance of anaerobic respiration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

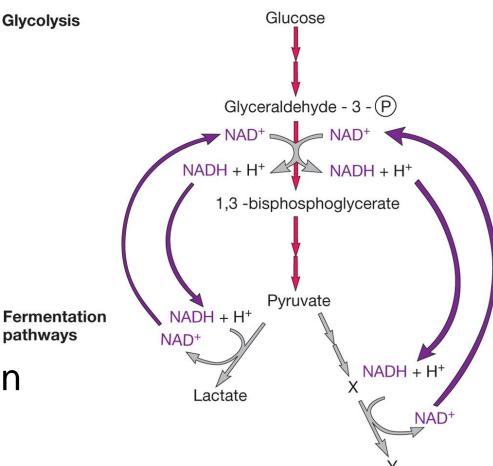

Anaerobic Respiration

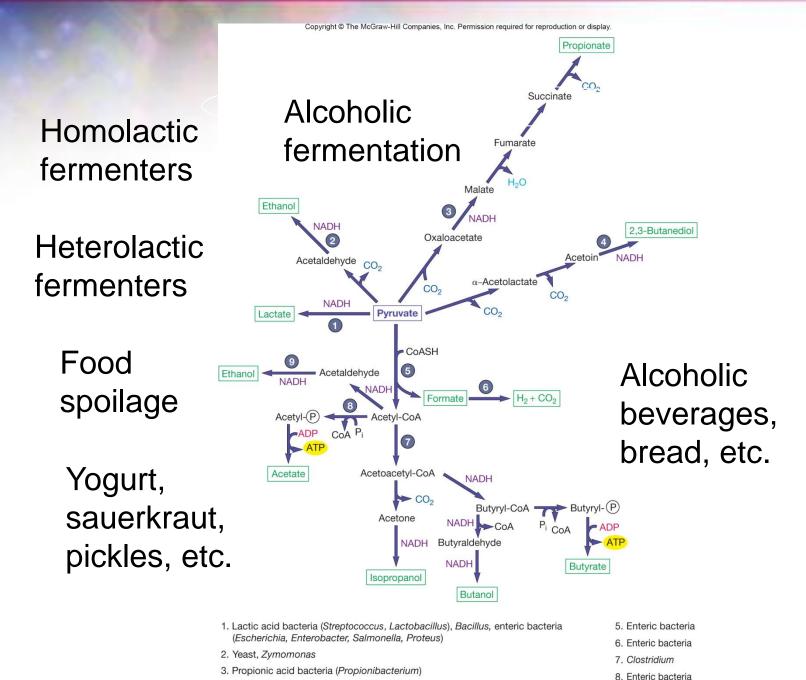
- Uses electron carriers other than O₂
- Generally yields less energy because E₀ of electron acceptor is less positive than E₀ of O₂

Table 11.	Some Electron Acceptors Used in Respiration		
	Electron Acceptor	Reduced Products	Examples of Microorganisms
Aerobic	O ₂	H ₂ O	All aerobic bacteria, fungi, and protists
Anaerobic	NO ₃ ⁻	NO ₂ ⁻	Enteric bacteria
	NO ₃ ⁻	NO ₂ ⁻ , N ₂ O, N ₂	Pseudomonas, Bacillus, and Paracoccus
	SO4 ²⁻	H ₂ S	Desulfovibrio and Desulfotomaculum
	CO ₂	CH ₄	Methanogens
	CO ₂	Acetate	Acetogens
	S ^o	H ₂ S	Desulfuromonas and Thermoproteus
	Fe ³⁺	Fe ²⁺	Pseudomonas, Bacillus, and Geobacter
	HAsO ₄ ²⁻	HAsO ₂	Bacillus, Desulfotomaculum, Sulfurospirillum
	SeO ₄ ²⁻	Se, $HSeO_3^-$	Aeromonas, Bacillus, Thauera
	Fumarate	Succinate	Wolinella

An Example...

- Dissimilatory nitrate reduction
 - use of nitrate as terminal electron acceptor, making it unavailable to cell for assimilation or uptake
- Denitrification
 - reduction of nitrate to nitrogen gas
 - in soil, causes loss of soil fertility




11.8 Fermentation

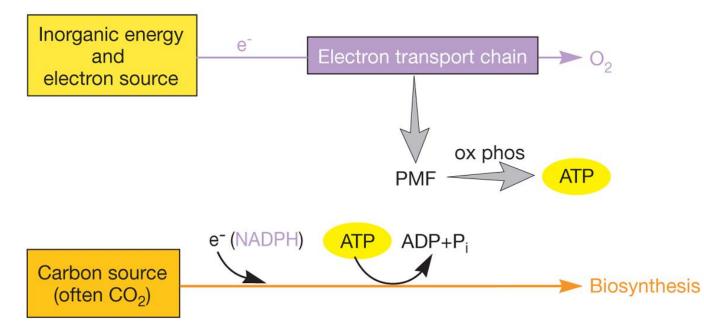
- 1. Compare and contrast aerobic respiration, anaerobic respiration, and fermentation of glucose
- 2. List the pathways that may function during fermentation if glucose is the organism's carbon and energy source
- 3. Create a table that lists some of the common fermentation pathways and their products, and gives examples of their importance
- 4. Compare the use of ATP synthase during respiration and fermentation

Fermentation

- Oxidation of NADH produced by glycolysis
- Pyruvate or derivative used as endogenous electron acceptor
- Substrate only partially oxidized
- Oxygen not needed
- Oxidative phosphorylation does not occur
 - ATP formed by substrate-level phosphorylation

4. Enterobacter, Serratia, Bacillus

9. Enteric bacteria


Table 11.4	Mixed Acid Fermentation Products of Escherichia coli			
FERMENTATION BALANCE (μΜ PRODUCT/100 μΜ GLUCOSE)				
	Acid Growth (pH 6.0)	Alkaline Growth (pH 8.0)		
Ethanol	50	50		
Formic acid	2	86		
Acetic acid	36	39		
Lactic acid	80	70		
Succinic acid	11	15		
Carbon dioxide	88	2		
Hydrogen gas	75	0.5		

11.10 Chemolithotrophy

- 1. Describe in general terms the fueling reactions of chemolithotrophs
- 2. List the molecules commonly used as energy sources and electron donors by chemolithotrophs
- 3. Discuss the use of electron transport chains and oxidative phosphorylation by chemolithotrophs

Chemolithotrophy

- Carried out by chemolithotrophs
- E⁻ released from energy source which is an inorganic molecule
 - transferred to terminal e⁻ acceptor by ETC
- ATP synthesized by oxidative phosphorylation

Table 11.5 Representative Chemolithotrophs	Representative Chemolithotrophs and Their Energy Sources			
Bacteria	Electron Donor	Electron Acceptor	Products	
Alcaligenes, Hydrogenophaga, and Pseudomonas spp.	H ₂	O ₂	H ₂ O	
Nitrobacter	NO_2^{-}	O ₂	NO ₃ ⁻ , H ₂ O	
Nitrosomonas	NH_4^+	O ₂	NO_2^-, H_2O	
Thiobacillus denitrificans	S ⁰ , H ₂ S	NO_3^-	SO ₄ ²⁻ , N ₂	
Acidithiobacillus ferrooxidans	Fe^{2+} , S ⁰ , H ₂ S	O ₂	Fe^{3+} , $\mathrm{H}_2\mathrm{O}$, $\mathrm{H}_2\mathrm{SO}_4$	

Energy Sources Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 11.6	Energy Yields from Oxidations Used by Chemolithotrophs		
Reaction		$\Delta {\sf G}^{\sf o'}$ (kcal/mole) 1	
$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$		-56.6	
$NO_2^- + \frac{1}{2}O_2 \rightarrow NO_3^-$		-17.4	
$NH_4^+ + 1\frac{1}{2}O_2 \rightarrow NO_2^- + H_2O + 2H^+$		-65.0	
$S^0 + 1\frac{1}{2}O_2 + H_2O \rightarrow H_2SO_4$		-118.5	
$S_2O_3^{2-} + 2O_2 + H_2O \rightarrow 2SO_4^{2-} + 2H^+$		-223.7	
$2Fe^{2+} + 2H^+ +$	-11.2		

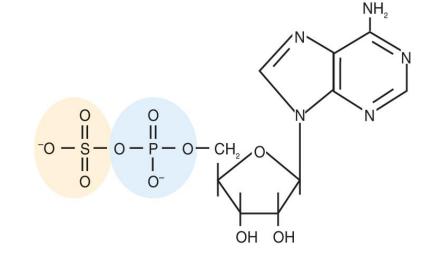
1 The $\Delta G^{\circ\prime}$ for complete oxidation of glucose to CO_2 is -686 kcal/mole. A kcal is equivalent to 4.184 kJ.

- Bacterial and archaeal species have specific electron donor/acceptor preferences
- Much less energy is available from oxidation of inorganic molecules than glucose oxidation due to more positive redox potentials

Three Major Groups of Chemolithotrophs

- Have ecological importance
- Several bacteria and archaea oxidize hydrogen
- Sulfur-oxidizing microbes
 - hydrogen sulfide (H₂S), sulfur (S⁰), thiosulfate $(S_2O_3^{2-})$
- Nitrifying bacteria oxidize ammonia to nitrate

Sulfur-Oxidizing Bacteria

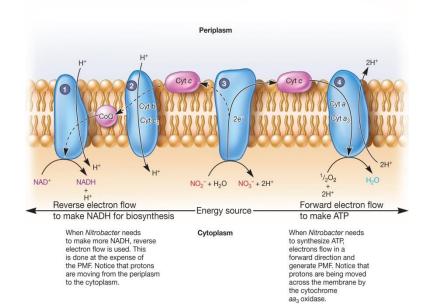

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Direct oxidation of sulfite

 SO_3^{2-} sulfite oxidase $SO_4^{2-} + 2e^-$

- (b) Formation of adenosine 5'-phosphosulfate
 - $2SO_3^{2-} + 2AMP \longrightarrow 2APS + 4e^{-}$
 - 2APS + 2P, -> 2ADP + 2SO₄²⁻
 - 2ADP → AMP + ATP

$$2SO_{3}^{2^{-}} + AMP + 2P_{i} \longrightarrow 2SO_{4}^{2^{-}} + ATP + 4e^{-}$$


(c) Adenosine 5'-phosphosulfate

*ATP can be synthesized by both oxidative phosphorylation and substrate-level phosphorylation

Reverse Electron Flow by Chemolithotrophs

- Calvin cycle requires NAD(P)H as e⁻ source for fixing CO₂
 - many energy sources used by chemolithotrophs have E_0 more positive than NAD⁺(P)/NAD(P)H
 - use reverse electron flow to generate NAD(P)H

Metabolic Flexibility of Chemolithotrophs

- Many switch from chemolithotrophic metabolism to chemoorganotrophic metabolism
- Many switch from autotrophic metabolism (via Calvin cycle) to heterotrophic metabolism

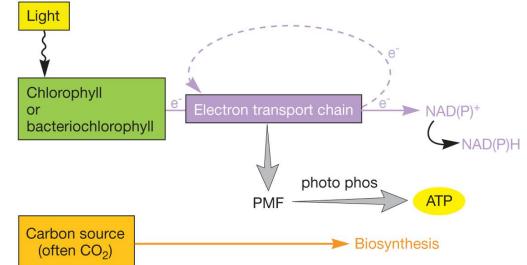
11.11 Phototrophy - 1

- 1. Describe in general terms the fueling reactions of phototrophs
- 2. Differentiate phototrophy from photosynthesis
- 3. Describe the light and dark reactions that occur during photosynthesis
- 4. Summarize the structure and function of the lightabsorbing pigments used by oxygenic and anoxygenic phototrophs

11.11 Phototrophy - 2

- Defend this statement: "Oxidative phosphorylation and photophosphorylation by chlorophyll-based phototrophs differ primarily in the energy source driving the process."
- 2. Distinguish cyclic photophosphorylation from noncyclic photophosphorylation.
- 3. Compare and contrast oxygenic photosynthesis, anoxygenic phototrophy, and rhodopsin-based phototrophy
- 4. List two examples of the importance of chlorophyllbased phototrophy

Phototrophy


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.Table 11.7Diversity of Phototrophic MicroorganismsEukaryotesMulticellular green, brown, and red algae; unicellular
protists (e.g., euglenoids, dinoflagellates, diatoms)BacteriaCyanobacteria, green sulfur bacteria, green nonsulfur
bacteria, purple sulfur bacteria, purple nonsulfur
bacteria, heliobacteria, acidobacteriaArchaeaHalophiles

- Photosynthesis
 - energy from light trapped and converted to chemical energy
 - a two-part process
 - light reactions: light energy is trapped and converted to chemical energy
 - dark reactions: energy produced in the light reactions is used to reduce CO₂ and synthesize cell constituents

Light Reactions in Oxygenic Photosynthesis

- Photosynthetic eukaryotes and cyanobacteria
- Oxygen is generated and released into the environment
- Most important pigments are chlorophylls

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chlorophyll-based phototrophy

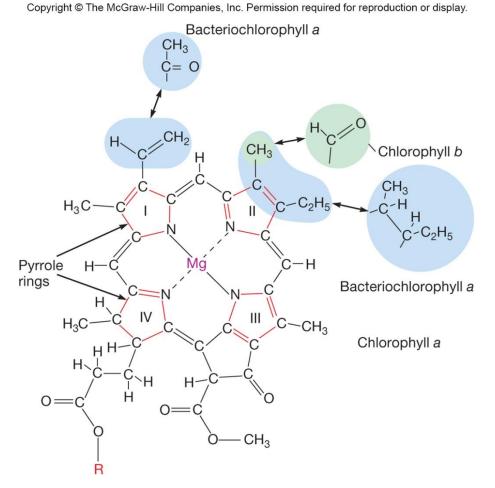
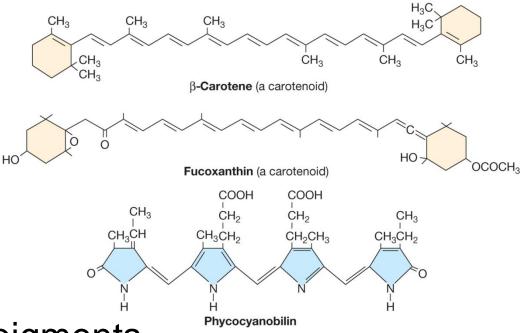

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 11.8 Properties of Chlorophyll-Based Photosynthetic Systems					
Property	Eukaryotes	Cyanobacteria	Green Bacteria, Purple Bacteria, Heliobacteria, and Acidobacteria		
Photosynthetic pigment	Chlorophyll a	Chlorophyll a ¹	Bacteriochlorophyll		
Number of photosystems	2	2 ²	1		
Photosynthetic electron donors	H ₂ O	H ₂ O	H ₂ , H ₂ S, S, organic matter		
O ₂ production pattern	Oxygenic	Oxygenic ³	Anoxygenic		
Primary products of energy conversion	ATP + NADPH	ATP + NADPH	ATP		
Carbon source	CO ₂	CO ₂	Organic or CO ₂		


Members of the cyanobacterial genus *Prochlorococcus* have divinyl chlorophyll *a* and *b*.
 A recently discovered cyanobacterium lacks photosystem II.
 Some cyanobacteria can function anoxygenically under certain conditions. For example, *Oscillatoria* can use H₂S as an electron donor instead of H₂O.

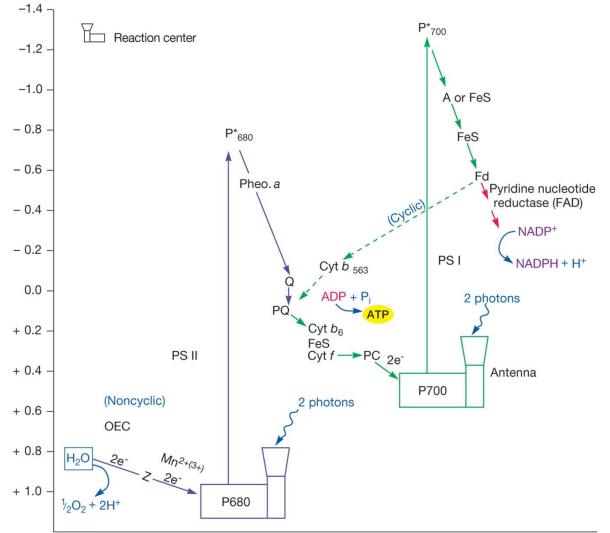
The Light Reaction in Oxygenic Photosynthesis

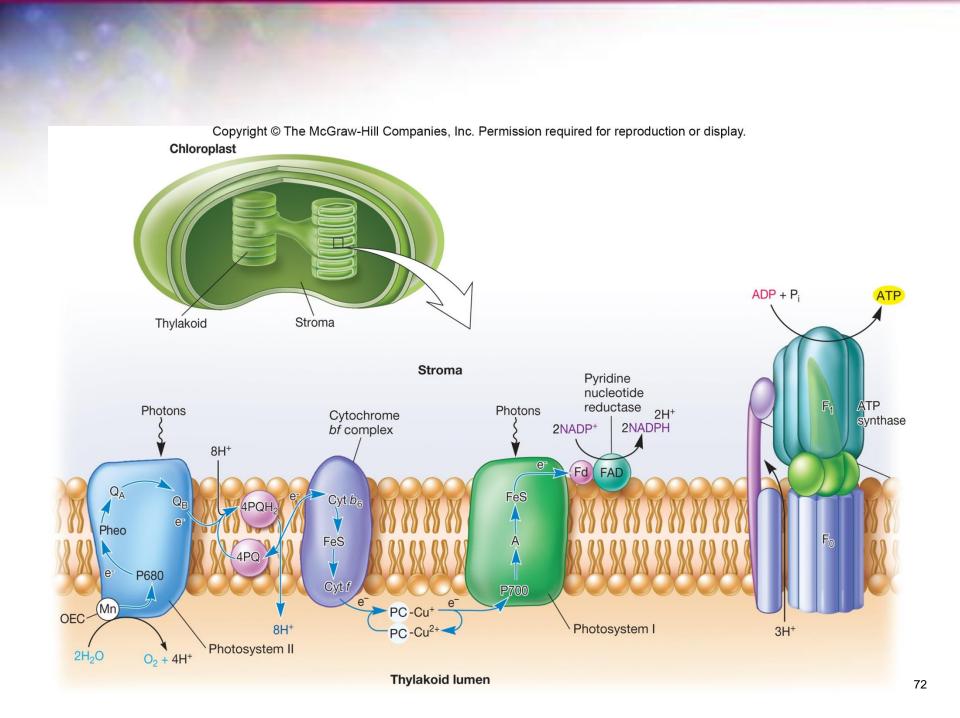
- Chlorophylls
 - major light-absorbing pigments
 - different chlorophylls have different absorption peaks

The Light Reaction in Oxygenic Photosynthesis

- Accessory pigments
 - transfer light energy to chlorophylls
 - e.g., carotenoids and phycobiliproteins
 - accessory pigments absorb different wavelengths of light than chlorophylls

Organization of Pigments

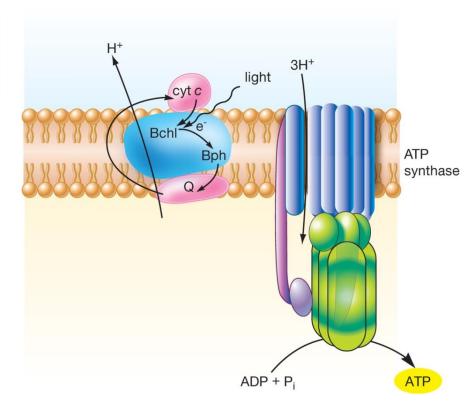

- Antennas
 - highly organized arrays of chlorophylls and accessory pigments
 - captured light transferred to special reactioncenter chlorophyll
 - directly involved in photosynthetic electron transport
- Photosystems
 - antenna and its associated reaction-center chlorophyll
- Electron flow \rightarrow PMF \rightarrow ATP


Oxygenic Photosynthesis

Noncyclic electron flow – ATP + NADPH made (noncyclic photophosphorylation)

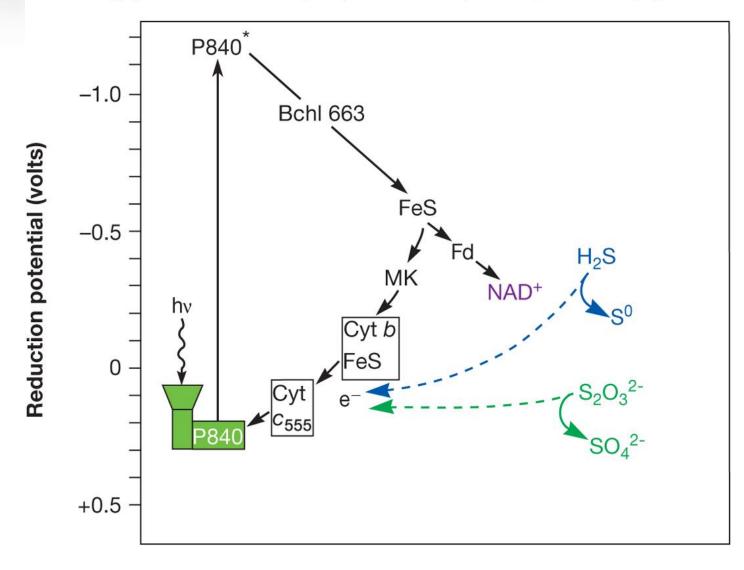
Redox potential (volts)

Cyclic electron flow – ATP made (cyclic photophosphorylation)

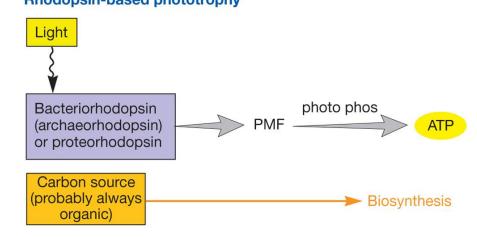


The Light Reaction in Anoxygenic Photosynthesis

- H₂O not used as an electron source; therefore O₂ is not produced
- Only one photosystem involved
- Uses bacteriochlorophylls and mechanisms to generate reducing power
- Carried out by phototrophic green bacteria, phototrophic purple bacteria, and heliobacteria


-1.0 P870-Reduction potential (volts) BPh -0.5 NAD⁺ Succinate C Fumarate 0 hv Cyt b/c₁ **Reversed** electron flow Cyt c₂ FeS ~ P870 +0.5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Bacteriorhodopsin-Based Phototrophy

- Some archaea use a type of phototrophy that involves bacteriorhodopsin
 - a membrane protein
 - functions as a light-driven proton pump
- A proton motive force is generated
- An electron transport chain is not involved

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Rhodopsin-based phototrophy

